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Motivation

- Different regimes of the Maxwell egs.
- Resistive effects and anisotropies




Different regimes of the Maxwell eqs (l)
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Different regimes of the Maxwell eqs. (ll)

O,E-VxB=-J
OB+ ¥YXxE=20
V-B=0
V-E=q

J=c6(E+vxB)

VACUUM
6 : conductivity (0—0)




Resistive effects and anisotropies

e The ideal MHD approximation seems to describe properly
many astrophysical systems (stars, disks,...), but
- they may lead to very distorted field lines—> reconnections
- anisotropic effects coming from the Hall term

* The force free approximation describe well the
magnetospheres of NS and BHs, but
- they may lead to current sheets = anomalous resistivity

e [s it possible to have different limits/approximations in the
same physical system?




The system of equations

- The relativistic MHD equations
- Generalized Ohm law
- Ideal and force-free approximation




The relativistic MHD equations (l)

* the description of a fluid in presence of EM fields
1s given by:

1) Conservation of mass and total energy and
momentum + EOS closure relation
Hydrodynamic equations to describe the fluid
p: density, u,: 4-velocity, €: internal energy, P: pressure

V.pu)=0 , V T®=0 , P=P(pe)
Tab y [p(1+8) T P]ua Uy +P 8ab 15 [Fac FCb - (chFCd)gab/4]




The relativistic MHD equations (ll)

2) (Extended) Maxwell equations for the EM fields

VY, (F*+g®¥) =-I° +xn® V¥ Fab . Maxwell tensor
V., (*F® + g®® ®)=xn® O I : current 4-vector

V. P=0 q : charge, J2: 3-current
Fab 4 naEb v nbEa L 8abCBc | [2 =n2 q + Ja

3) The coupling between the fluid and the EM fields,
which is given by the choice of current J' .




The relativistic MHD equations (lll)

- 31 decomposition (special relativistic)

O+ V- E
o +V - B
GE -V x B+ Vi
OB+V x E+Vo

B¢T+V~F.—=O,

HS+V-Fs=0, DZWp
g+V-J=0. h:p(1_|_8)_|_p
D +V -Fp=0 W:(I-Vz)'l/z

ro= %(E"’ +BY)+RW2_p

S = ExB+hW?wv.
F.=ExB+hW?wv,

. L 1< |9
Ps= —EE— BB +hW o+ | L5+ B 45| g ...But, what 1s J¢




The generalized Ohm’s law (l)

* The first charge moment of the Boltzmann equation
for a two-component fluid (electrons and 1ons) 1n the
Newtonian case (Goossens)

: : Battery term
induction,

ideal MHD .
electron inertia,  Hall term, introduces

Ohmic term, allows negligible anisotropies wrt B

for dissipation




The generalized Ohm’s law (ll)

* Keep not only the induction term, but also the
Ohmic and the Hall ones. In the collision-time
approximation, in full GR covariant form (Bekenstein )

Ia =qu, + Gab A Gabzcj(gab u (gaabb o igabcd u, bd)

E=et/m , o=ne&/(1+E&b?)

written 1n terms of the charge density and EM fields measured
by a observer co-moving with the fluid

A — b —* b
q— _Iaua ’ ea_Fabu > ba_F abu




The generalized Ohm's law (lll)

* Neglecting the second and third term, in 3+1 form

O,E-VXxB =-J=-qv-cW[E+VvxB-(Ev)vV]
B+ VxE=0

*There are two important reasons to avoid this form:

- contains electromagnetic waves (v, ,.=C) = more
expensive for Newtonian fluids (but consistent limit!)
- contains strong stiff terms (large 6)-2> difficult to

solve with standard explicit numerical methods




The ideal MHD approximation

» The induction terms 1s much larger than all the
others, formally recovered when c—o0

Jfinite 2 E=-vxB

- the EM waves has been removed (V,,.,=V Aifven)
- the evolution of E 1s not needed = no stiffness




The force free approximation

 From the total energy-momentum conservation
and Maxwell equations

V. 1®=0 > V T, =-V T = _Fabf

(em)
*if pP<<B? then V T ., << F*L =0

3+1 decomposition E:J=0, gE+JxB=0

xB 2>
- B>

O(E'B=B-¥xB-E - VxE-B-J §(EB)=0-> B-J




Magnetospheres of NS and BHs
with force-free («omissarov, Spitkovski, Gruzinov,...)

 Current sheet at the equator and
instabilities when B2-E?<(

—>1inertia effects are not neglegible
—>dissipation processes restore E=B

* Let us consider B-J=c,(E-B), and add
oL

J=[qExB+o,(E-B)B]/B?*+0oLEy

- O0(E-‘B)=... -0,(E,B)(E*B)
implies E-B=0when 6,20
- o.E. can restore B>E?




Force-free with ideal MHD
BH+disk (McKinney & Gammie)

‘I CORONA
the dependence on the Ohm law

/'BLACK HOLE seems to diminish as p,P<<B2

DISK

PLUNGING REGION




Summarizing...

* A complete description of the different regions may be
necessary to study magnetized fluid, but 1t 1s difficult to match
solutions of different limits of the MHD equations

* The equations may lead to very distorted fields, where the
limits are not valid anymore and there are significant
dissipative effects inside the star or in the current sheets

* Naive approach : evolve the full Maxwell equations with a
generic current prescription in the three domains with no
approximations, just changing the effective conductivity. The
simplest example is to go from ideal MHD (o = )

to vacuum (o = 0).




...Resistive MHD

O,E-VxB=-qv-cW[E+vxB-(EvV)V]
O, B+VxE=0

Hyperbolic-relaxation

0, U=F(U) +R(U) /¢ equation (STIFF)

€ (= 1/0) : relaxation time
e—0 2 RU)=0 difficult to evolve with

standard numerical methods




Solving the
hyperbolic-relaxation eqs.

- Approaches to the problem
- The IMEX Runge-Kutta methods




Approaches to the problem

« SOLUTION 1 : let us consider a simple case
discretized with an explicit scheme

8, U=F(U)+R(U)/c 4@ du=-ad u—u/e

(a=0): u™! —ur=—-Atu*/e > u™l=u"(1-At/e)
amplification factor C"=|u™!/u"| <1 for stability

« CFL stability condition: At <Ax/ a
« Stiff stability condition with explicit method: At < 2¢




Approaches to the problem

« SOLUTION 2 : solving the full equation implicitly
» Let us consider an implicit method
(a=0): ul-ur=—Atu™l/e > ul=u"/(1+Atle)

« Stiff stability condition with implicit method: At > 0
 But... itis




Approaches to the problem

« SOLUTION 3 : the equilibrium system
- expand the solution around €—0

o, U=F(U)+R(U)/¢ “ 0, B-AB=[-0B+ ¥x(vxB)]/e

U=U,+eU, +0(&) B=B,+¢B, +0O(&?)

g

O(s%) : IDEAL MHD 0,By- ¥x (vxBy)=0
O(e!) : 0,B;- ¥x(vxB,)=-(0,B,-AB,)

* hierarchy of solutions : compute B, then By, ... but
it is




Approaches to the problem
« SOLUTION 4 : Strang Splitting

8, U=F(U)+R(U)/c 4@ o,U=S(AU2)= T(AD) = S(AU2) U

U* : U'=U"+(At/2) R(UM /¢
U™ . U"=U+AtFUY
urtl, Ul =U™ + (At/2) R(U™)/e

* The source step can be solved exactly with the
analytical solution (Komissarov 2007)... but




Approaches to the problem
« SOLUTION 5 : discontinuous Galerkin methods

« There are high order schemes (3-5!" order)
which can deal with the stiff terms (Dumbser & Zanotti

2009)... but




The IMEX Runge Kutta methods

« treat implicitly the stiff part and explicitly the non-stiff
IMplicit-EXplicit methods (Pareschi & Russo 05)

0, U=F(U) +R(U) /¢
U =Ur+At X a; F(UY) + At X a; R(UY) / &
Ul =Ur+At X 0. F(UD) + At X o, R(UW) / ¢

" Explicit RK il B

Co

DIRK ¢,

Butcher Tableau




The IMEX Runge Kutta methods

 Let us consider a simple IMEX RK as an example

o, U=F(U) +R(U) /¢ IMEX-Midpoint(1,2,2)

0 0 0|00
Ul =Un 12 0 12| 0 1/2

U2=U"+ At F(UY) /2 0 1 0 1
+ At R(U?) /(2 &)

Urtl =Ur+ At F(U?) + At R(U?) / ¢

* high order convergence in time (usually 3 order)
« strong theoretical background (it has to work!)




Application to the Maxwell eqs.

- Inverting explicitly the stiff part
- Numerical tests
- Pulsars in 3D: matching ideal MHD

and vacuum

(CP,Lehner,Reula,Rezzolla 09)




Inverting explicitly the stiff part (1)

 only the evolution of the electric field has stiff terms

O,E-VXxB =-qv-cW[vxB+E -(E'v)V]

 use standard TVD explicit RK scheme for the other
fields and apply the IMEX only to E

F(E)=VxB -qv
R(E)=-W[vxB+E -(Ewv)vV]
e=1/c

o, U=F(U)+R(U) /¢




Inverting explicitly the stiff part (ll)

Example: U'=1"
U2 = U + At F(U") /2
+ At R(U2) /(2 )

Urtl =Un + At F(U?) + At R(U?) / ¢

* compute the explicit part, partial evolution for E
E* = En + At F(E!) /2
* invert explicitly the implicit part, since R(E) =4 E
E°=M(V,B)[E*-AtW(vxB)/(2¢)]
» compute F(E?) and R(E?) to update E**!




Inverting explicitly the stiff part (lll)

- the conserved variables (D,t,S'E',B,q) are evolved by using
HRSC methods for conservation laws

- the primitive variables (p,e,P,v',E',B',q) are needed to compute
the rhs of the evolution equations

* with the IMEX, only the explicit part of E' is evolved
* the implicit part can be solved explicitly, but depends on
the unknown velocity

-The transformation from conserved to primitive variables 1s
non-linear and has to be solved numerically in general

* with the IMEX E=f(..,v') so the implicit evolution and the
inversion from conserved to primitive has to be done at the
same time (4-dimensional system)




Test 1: Alfven wave (del Zanna 2007)

* Testing the high conductivity limit (ideal MHD)

B,=B, cps(x-v A1)
B,= B, sin(x-v,t)
v, =-v, B/B,
v,=-v, B,/B,

V4

Altven speed v,

P=p=1,v,=1/2

conductivity ¢ = 106 Solution after one period

( periodic boundary conditions)




Test 2: current sheet (Komissarov 2007)

* Testing the low conductivity limit

P=cte, p=cte
E=v=0

0B, —(l/0) 0,,B,= 0

XXy

B, =B, erfl(c/(4 ))'"”]

with E=t/x? Solution at t=10 with 6=100




Test 3: shock tube problem

* Testing the resistive MHD with shocks

Left state
(p~p~B,H=(1,1,1/2)
Right state
(P®,p"%,B,f)=(1/8,0.1,-1/2)

Solution at t=0.4




Test 4: cylindrical explosion

* Testing the resistive MHD with shocks in 2D

r<0.8 p=I1, p=0.01
>1.0 p=p=0.001

B =(0.05, 0, 0)
E=q=0

Solution at t=4




Test 5: cylindrical star

* Testing the resistive MHD 1n toy model stars

p = po exp[-(1/1,)’]
Vo =P @)

BZ =2 Bo[l N (I’/I'O)z]
E,q from ideal MHD




Neutron Stars in 3D (l)

-Very compact objects =2 needs General Relativity

O (V7 ~ B*) + [ — 5’} ~ B + eI VYE;] =
—V ;B (O3 J
O (VT E") + 0] -B* A E*
—vYE . (O3 ) — /v 1 (_)_,-J/ —Aray/y J !
O + O -8 6+ aB® | =
—¢ (0p8%) + B¥(0ra) — oI} ;B* — ako
oW + O —p*W + aE* ] =
—5!7 (("'); %) + E*(0ra) — al},E* + Araq — ax¥
(V7 q) + O] — q—l-u\“J ]=0
(),(\-v,D) +()L[\ g D (av* — 8%)] =0
N(VYT) + Ok V7 (181‘ — BFr )] = V7 [aSYK;; — S70;a]
[

(),(\ v S;) + Ok \7, (151‘-— 31‘8 )]—\, ,[(tf’ Sl i + 5 O; (37 — TO;x ]
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- minima

easily full GR
- HLLE flux formulae
- PPM reconstruction
being generalized

- fixed background
- 1deal gas EOS,




Neutron stars in 3D (lll)

*Rotating neutron star with a poloidal magnetic field

-Full 3D simulations!!
(no symmetries)

- Aligned/disaligned cases
- Ideal MHD at the star
- Vacuum at the magnetosphere




Neutron stars in 3D (IV)

* magnetic moment aligned with spin

t=0 after 2 periods o =¢c,=10°
c =10°
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Neutron Stars in 3D (VI)

*Magnetic moment misaligned 45° wrt spin
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Summary
* the IMEX Runge-Kutta allows to

solve easily

hyperbolic-relaxation eqgs. where the stiff terms

have no partial derivatives

* in particular, the resistive-anisotropic MHD

equations 1n different regimes

- modify only on the RK (add DI

- add extra-memory only for E [c]
- change your con2prim/solve im

RK) [simple!]
neap! |
vlicit eq.

via Newton-Raphson [straight!]
* the limit of ideal MHD and electrovacuum can'be
recovered easily, force free on the way:
preliminary studies of a pulsar surrounded by




