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  - Different regimes of the Maxwell equations 
  - Resistive effects and anisotropies 

  The system of equations 
  - The relativistic MHD equations 
  - The generalized Ohm law 
  - The ideal MHD and the force-free approximation 

  Solving the hyperbolic-relaxation eqs. 
  - Approaches to the problem 
  - The IMEX Runge-Kutta methods 

 Application to the resistive MHD equations 
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  - Numerical tests 
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 - Different regimes of the Maxwell eqs. 
  - Resistive effects and anisotropies 



       Vacuum 

Magnetosphe
re 

Star 

•   Star or disk  
 Dominated by the fluid 

     IDEAL MHD 

•  Magnetosphere   
  Dominated by the EM 

     FORCE FREE 

•  ElectroVacuum  
   no sources 

     MAXWELL EQS. 



   IDEAL MHD 
       (σ→ ∞)       

  FORCE FREE 

     VACUUM  
        (σ→0)        

∂t E - ▼x B = -J 
∂t B + ▼x E =  0 
▼· B = 0 
▼· E = q 

J = σ (E + v x B) 

  σ  : conductivity 

   E = - v x B 

   q E + J x B = 0 

   J = q = 0 



•  The ideal MHD approximation seems to describe properly 
many astrophysical systems (stars, disks,…), but 
   - they may lead to very distorted field lines reconnections 
   - anisotropic effects coming from the Hall term 

•  The force free approximation describe well the 
magnetospheres of NS and BHs, but 
   - they may lead to current sheets  anomalous resistivity 

•  Is it possible to have different limits/approximations in the 
same physical system? 



  - The relativistic MHD equations 
  - Generalized Ohm law 
  - Ideal and force-free approximation 



•   the description of a fluid in presence of EM fields 
     is given by: 

1) Conservation of mass and total energy and
 momentum + EOS closure relation  

    Hydrodynamic equations to describe the fluid 
    ρ: density, ua: 4-velocity, ε: internal energy, P: pressure 

       ▼a (ρ ua) = 0   ,     ▼a Tab = 0     ,    P = P(ρ,ε)  

Tab = [ρ(1+ε) + P]ua ub + P gab + [Fac Fc
b – (FcdFcd)gab/4] 



 2) (Extended) Maxwell equations for the EM fields  

▼a  (Fab + gab Ψ)   = -Ib  + κ nb Ψ        Fab : Maxwell tensor 
▼a  (*Fab  + gab Φ) = κ nb Φ                  Ib : current 4-vector 

 ▼a Ia = 0                                               q : charge,  Ja: 3-current 

    Fab = naEb – nbEa + εabcBc       ,     Ia = na q + Ja  

 3) The coupling between the fluid and the EM fields,
 which is given by the choice of current Ji . 



  - 3+1 decomposition (special relativistic) 

  D= Wρ 
  h = ρ(1+ε) + p 
 W = (1-v2)-1/2 

…But, what is J? 



•  The first charge moment of the Boltzmann equation
 for a two-component fluid (electrons and ions) in the
 Newtonian case (Goossens) 

induction, 
ideal MHD 

Ohmic term, allows
 for dissipation 

Hall term, introduces
 anisotropies wrt B 

Battery term 

electron inertia, 
negligible 



•  Keep not only the induction term, but also the
 Ohmic and the Hall ones. In the collision-time
 approximation, in full GR covariant form (Bekenstein ) 

written in terms of the charge density and EM fields measured
 by a observer co-moving with the fluid 

  Ia = q ua + σab ea              σab=σ(gab + ξ2babb + ξεabcd uc bd) 

                   ξ=eτ / m    ,   σ=neeξ / (1 + ξ2 b2)       

         q= -Iaua  ,  ea≡Fab ub ,  ba≡F*
ab ub 



•  Neglecting the second and third term, in 3+1 form 

• There are two important reasons to avoid this form: 
   - contains electromagnetic waves (vmax=c)  more
 expensive for Newtonian fluids (but consistent limit!) 
   - contains strong stiff terms (large σ) difficult to
 solve with standard explicit numerical methods 

∂t E - ▼x B  = -J = -q v - σW [E + v x B - (E·v) v]  
∂t B + ▼x E =  0 



•  The induction terms is much larger than all the 
others, formally recovered when σ→∞ 

  J finite         E = - v x B 

                   ∂tB  - ▼x (v x B) = 0 

 - the EM waves has been removed (vmax=vAlfven) 
 - the evolution of E is not needed  no stiffness 



•  From the total energy-momentum conservation  
and Maxwell equations 

   ▼aTab=0         ▼aTab
(fluid) = -▼aTab

(em) = -FabIa 

•  if   ρ,P << B2   then    ▼aTab
(fluid) <<  FabIa ≈ 0 

    3+1 decomposition       E·J = 0 ,  q E + J x B = 0 

x B    J = q ExB/B2 + (J·B) B/B2 

·  B    E·B = 0 

∂t(E·B)=B·▼xB - E·▼xE - B·J      ∂t(E·B)=0  B·J 



•  Current sheet at the equator and 
instabilities when B2-E2<0 
inertia effects are not neglegible 
dissipation processes restore E=B 

•  Let us consider B·J=σ//(E·B), and add 
σ┴ 

  J = [ q ExB + σ// (E·B) B ] / B2  + σ┴ E┴ 

  ∂t(E·B) = … - σ//(E,B) (E·B) 
        implies E·B=0 when σ//∞ 
    σ┴E┴ can restore B2>E2 

    similar to generalized Ohm law  



Magnetically dominated (effectively force-free)  
  B2>>P 

Matter dominated  
P>>B2 

the dependence on the Ohm law 
seems to diminish as ρ,P<<B2  

P~B2 



•  A complete description of the different regions may be
 necessary to study magnetized fluid, but it is difficult to match
 solutions of different limits of the MHD equations 

•   The equations may lead to very distorted fields, where the
 limits are not valid anymore and there are significant
 dissipative effects inside the star or in the current sheets  

•  Naïve approach : evolve the full Maxwell equations with a
 generic current prescription in the three domains with no
 approximations, just changing the effective conductivity. The
 simplest example is to go from ideal MHD (σ  ∞) 
to vacuum (σ = 0). 



∂t E - ▼x B = -q v - σW [ E + v x B - (E·v) v]  
∂t B +▼x E =  0 

∂t U =F(U) + R(U) / ε 
   Hyperbolic-relaxation   
      equation (STIFF) 

  difficult to evolve with 
standard numerical methods 

ε (= 1/σ)  : relaxation time 
    ε→0   R(U) = 0 



   - Approaches to the problem 
  - The IMEX Runge-Kutta methods 



∂t u = a ∂x u – u / ε ∂t U =F(U) + R(U) / ε 

•   CFL stability condition: Δt < Δx / a 
•   Stiff stability condition with explicit method: Δt < 2ε 

  if Δt~ε=1/σ~10-6   computationally VERY expensive 

     (a=0) :  un+1 – un = – Δt un / ε     un+1 = un ( 1- Δt/ε ) 

      amplification factor  Cn = | un+1/un | < 1 for stability   

•   SOLUTION 1 : let us consider a simple case
 discretized with an explicit scheme 



•  SOLUTION 2 : solving the full equation implicitly 

•   Let us consider an implicit method 

   (a=0) :     un+1 – un = – Δt un+1 / ε      un+1 = un / ( 1+ Δt/ε ) 

•   Stiff stability condition with implicit method: Δt > 0 
•   But… it is expensive/complicated with  
   non-vanishing F(U) containing partial derivatives 



∂tt B - Δ B = [ -∂t B + ▼x (v x B) ] /ε 
B = B0 + ε B1 + O(ε2) 

∂t U =F(U) + R(U) / ε 
U = U0 + ε U1 + O(ε2) 

•  SOLUTION 3 : the equilibrium system  
  - expand the solution around ε→0 

O(ε0)  : IDEAL MHD            ∂t B0 - ▼x (v x B0) = 0 
O(ε1)  :                         ∂t B1 - ▼x (v x B1) = - (∂tt B0 - Δ B0) 

•  hierarchy of solutions : compute B0, then B1,… but 
  it is only valid close to ε→0 



   U*   :      U* = Un + (Δt/2) R(Un) /ε   

   U**  :      U** = U* + Δt F(U*)  

   Un+1:     Un+1 = U** + (Δt/2) R(U**)/ε  

∂t U =F(U) + R(U) / ε 

•  SOLUTION 4 : Strang Splitting 

•  The source step can be solved exactly with the
 analytical solution (Komissarov 2007)… but it does
 not work for general Ohm law and have
 problems with strong stiff terms in the presence
 of shocks 

∂t U = S(Δt/2) ¤ T(Δt) ¤ S(Δt/2) U  



•  SOLUTION 5 : discontinuous Galerkin methods 

•  There are high order schemes (3-5th order)
 which can deal with the stiff terms (Dumbser & Zanotti
 2009)… but they are complicated and expensive 



   U(i) = Un + Δt Σ aij F(U(j)) + Δt Σ aij R(U(j)) / ε  

   Un+1 = Un + Δt Σ ωi F(U(i)) + Δt Σ ωi R(U(i)) / ε  

∂t U =F(U) + R(U) / ε 

•   treat implicitly the stiff part and explicitly the non-stiff 
   IMplicit-EXplicit methods  (Pareschi & Russo 05) 

c1    0   0    0  …. 
c2   a12 0    0  …. 
…   ……………… 
cn   a1n  a2n  ... 0 

       ω1 ω2  ... ωn      

c1   a11   0    0  …. 
c2   a12  a22  0  …. 
…   ……………… 
cn   a1n  a2n  ... ann 

       ω1 ω2  ... ωn      

Explicit RK 

                      DIRK 

Butcher Tableau 



•  Let us consider a simple IMEX RK as an example 

•  only the stiff part has to be inverted 
•  high order convergence in time (usually 3 order) 
•  strong theoretical background (it has to work!) 

   U1 = Un  
   U2 = Un + Δt F(U1) /2    
                 + Δt R(U2) /(2 ε)  
   Un+1 = Un + Δt F(U2) + Δt R(U2) / ε  

∂t U =F(U) + R(U) / ε 
  0      0   0  
1/2   1/2  0  

         0    1 

  0      0   0  
1/2     0  1/2  

         0    1 

IMEX-Midpoint(1,2,2) 



- Inverting explicitly the stiff part 
-  Numerical tests 
-  Pulsars in 3D: matching ideal MHD 
                          and vacuum 

          (CP,Lehner,Reula,Rezzolla 09) 



∂t E - ▼x B  = -q v - σ W [ v x B + E  - (E·v) v]  

∂t U =F(U) + R(U) / ε 
F(E) = ▼x B  - q v  
R(E) = - W [v x B + E  - (E·v) v] 
       ε = 1/σ 

•  only the evolution of the electric field has stiff terms     

•  use standard TVD explicit RK scheme for the other
 fields and apply the IMEX only to E 



Example:          U1 = Un  
                            U2 = Un + Δt F(U1) /2    
                                          + Δt R(U2) /(2 ε)  
                             Un+1 = Un + Δt F(U2) + Δt R(U2) / ε  



  - the conserved variables (D,τ,Si,Ei,Bi,q) are evolved by using
 HRSC methods for conservation laws 
 - the primitive variables (ρ,ε,P,vi,Ei,Bi,q) are needed to compute
 the rhs of the evolution equations 

   * with the IMEX, only the explicit part of Ei is evolved 
   * the implicit part can be solved explicitly, but depends on 
      the unknown velocity 

- The transformation from conserved to primitive variables is
 non-linear and has to be solved numerically in general  
   * with the IMEX  Ei=f(..,vi) so the implicit evolution and the
 inversion from conserved to primitive has to be done at the
 same time (4-dimensional system) 



•  Testing the high conductivity limit (ideal MHD) 

By = Bo cos(x-vA t) 
Bz = Bo sin(x-vA t) 
vy = -vA By/Bo 
vz = -vA Bz/Bo 

Alfven speed vA 

Ρ=ρ=1 , vA=1/2 
conductivity σ = 106        Solution after one period 

  ( periodic boundary conditions) 
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•  Testing the low conductivity limit 

P=cte, ρ=cte 
E = v = 0 
B= (0,By(x,t),0) 

∂t By – (1/σ) ∂xx By =  0 

By = Bo erf[(σ/(4 ξ))1/2] 

          with ξ=t/x2    Solution at t=10 with σ=100 
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•  Testing the resistive MHD with shocks 

Left state  
(ρL,pL,By

L)=(1,1,1/2) 
Right state  
(ρR,pR,By

R)=(1/8,0.1,-1/2) 

   Solution at t=0.4 
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•  Testing the resistive MHD with shocks in 2D 

  r<0.8   p=1, ρ = 0.01 
  r>1.0   p= ρ = 0.001  

B = (0.05, 0, 0) 
E = q = 0 

Bx 

By    Solution at t=4 



•  Testing the resistive MHD in toy model stars  

ρ = ρ0 exp[-(r/ro)2] 
vφ = ρ Ω 
Bz = 2 Bo[1 - (r/ro)2] 
E,q from ideal MHD 
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- Very compact objects  needs General Relativity 



•  IMEX scheme implemented in the had infrastructure
 (Lehner talk), which provides parallelization & AMR 

 - minimal changes 
 - fixed background, 
   easily full GR 
 - HLLE flux formulae 
 - PPM reconstruction 
 - ideal gas EOS, 
   being generalized 



• Rotating neutron star with a poloidal magnetic field 

- Full 3D simulations!! 
 (no symmetries)  
- Aligned/disaligned cases 
- Ideal MHD at the star 
- Vacuum at the magnetosphere 



•  magnetic moment aligned with spin 

      t =0     after 2 periods   σ = σ0 =106            σ = σ0 ρ2 

     σ =106                σ ≈ 0 



•  plot r2B to show the outer region 

      t =0   after 2 periods     σ = σ0 =106             σ = σ0 ρ2 



• Magnetic moment misaligned 45o wrt spin 

t=0              B                                         r2 B 



t=1.5P         B                                         r2 B 

• Magnetic moment misaligned 45o wrt spin 
                           σ = σ0 ρ2 



•  the IMEX Runge-Kutta allows to solve easily
 hyperbolic-relaxation eqs. where the stiff terms
 have no partial derivatives 
•  in particular, the resistive-anisotropic MHD
 equations in different regimes 
   - modify only on the RK (add DIRK) [simple!]  
   - add extra-memory only for E [cheap!] 
   - change your con2prim/solve implicit eq. 
     via  Newton-Raphson [straight!] 
•  the limit of ideal MHD and electrovacuum can be
 recovered easily, force free on the way:
 preliminary studies of a pulsar surrounded by
 electrovacuum 


