
Radial Stellar Pulsations

Up to this point, you have studied stars in hydrostatic equilibrium. In the next few lectures, we
will consider oscillating stars. We begin with the simplest but perhaps most important case: radial
pulsators. These stars remain spherically symmetric, though not hydrostatic.1

Two important classes of radial pulsators are RR Lyrae and delta Cepheid variables. (The
term “variable” can be applied to any star whose brightness varies. In addition to various types of
pulsators, these include eclipsing binaries, novae, and other stars whose brightness variations have
nothing to do with pulsation.) RR Lyraes and Cepheids are important because they are used as
distance estimators. These stars are bright and can be recognized at great distances. Furthermore,
their periods are closely related to their luminosities. Hence by measuring the period we know the
absolute magnitude of such a star, and by comparing this with the apparent magnitude, we deduce
the distance.

Delta Cepheids are evolved stars with masses 5−10M⊙, usually in the helium-core-burning phase.
They belong to Population I and are found in the disks of spiral galaxies. (There are other sorts
of Cepheid variables, for example beta Cepheids. The delta Cepheids are the brightest and most
useful, however, so one usually calls them simply “Cepheids,” or sometimes “classical Cepheids.”)
Their absolute visual magnitudes are MV = −1 to −6 (compare the Sun: MV,⊙ = +4.83). The
period-luminosity relation for Cepheids was discovered by Henrietta Leavitt in 1906 ([4]), and it
has played an important role in the Galactic and extragalactic distance scale ever since. A recent
determination is

MV = −2.88(±0.20) log

(

Π

10d

)

− 4.12(±0.09)[±0.29], (1)

where Π is the period, and the final [±0.29] is the scatter around the mean relation. The other ±
numbers are estimated errors in the mean relation itself. This formula has been taken from a review
by [5]. The slope (the coefficient of log Π above) can be determined from any group of Cepheids at
a common but unkown distance (e.g. in the LMC) and is therefore relatively uncontroversial. But
the zero-point (given as −4.12 above) must be determined by calibration against Cepheids whose
distance is known, and is still vigorously debated. Cepheids remain crucial part of the distance
ladder and hence of the measurement of the Hubble constant.

RR Lyrae stars are old horizontal-branch stars (hence also core helium burning), low metallicity,
and masses . 1M⊙. They belong to Population II; they are found in globular clusters and in the
Galactic bulge. The horizontal branch is so named because it forms a sequence of roughly constant
luminosity in the HR diagram. Therefore RR Lyraes cover a much smaller range of luminosities
than Cepheids; typically, MV ≈ +0.5 → +0.2. They are fainter than the Cepheids, though still
much brighter than the Sun. Within their narrow range of magnitudes, however, the RR Lyraes
also satisfy a period-luminosity relation.

A Rough Explanation of the Period-Luminosity Relation

Cepheids, RR Lyraes, and many other pulsators are found in a narrow and nearly vertical strip
in the HR diagram. Thus the effective temperatures of these stars are closely similar and only
weakly dependent on luminosity (Teff ≈ 6 ± 1 × 103 K). We shall see why this is true shortly. Since
L = 4πR2σT 4

eff and Teff ∼ constant,
L ∝ R2. (2)

The period of the fundamental radial mode of pulsation, in which the entire star expands and
contracts together, is determined by the mean density:

Π ∼ (Gρ̄)−1/2 ∝

(

M

R3

)−1/2

. (3)

Eliminating the stellar radius R between these last two equations, one finds

Π ∝ L3/4M−1/2. (4)

1A more detailed treatment of this subject is given in §§38-39 of the textbook [3].

1



Since the classical Cepheids are post-main-sequence objects, we cannot use the main-sequence mass-
luminosity relation to eliminate M in favor of L. Nevertheless, since L is usually a sensitive function
of mass, mass is insensitive to luminosity. Thus equation (4) suggests Π ∝ Lx with x ≤ 3/4 since
dM/dL > 0. However, Teff is not strictly constant within the instability strip: it slowly decreases
with increasing L. The empirical relation (1) indicates Π ∝ L0.87±0.06 if one ignores variations in
the bolometric correction.

Frequencies of Adiabatic Radial Modes

The radial modes of a star can be likened to standing sound waves in an organ pipe. For our
purposes, an organ pipe is a cylinder capped at one end but open at the other. The pressure and
velocity perturbations in a standing acoustic wave are 90◦ out of phase. Thus at the closed end of the
pipe, the velocity vanishes and the pressure fluctuations are maximal. Similarly, at the center of a
radially pulsating star, the radial velocity has a node and the pressure has an antinode. At the open
end of the organ pipe and at the surface of a star, the situation is reversed: the pressure fluctuations
vanish and those of the velocity are maximal. (The latter boundary condition is inaccurate for organ
pipes, because it doesn’t allow for radiation of sound, but is better for stars.) In this approximation,
the length of the pipe, a, is one quarter of the wavelength of the fundamental. Thus the lowest
note—the fundamental—has period Π0 = 4a/vs. The sound speed of the star varies with radius,
and furthermore gravitational forces modify the period, but nevertheless we may expect that

Π0 ∼ 4
R

v̄s
. (5)

The equation of hydrostatic equlibrium,

dP

dr
= −

GMrρ

r2
, (6)

can be very crudely approximated by

P̄

R
∼

GMρ̄

R2
, or

P̄

ρ̄
∼

GM

R
, (7)

where P̄ and ρ̄ represent the average pressure and the average density in the star. The combination
P/ρ is related to the sound speed, vs:

v2
s ≡

(

∂P

∂ρ

)

S

≡ Γ1

P

ρ
. (8)

Since the adiabatic index Γ1 is always of order unity, it follows that

v̄s ∼

(

GM

R

)1/2

. (9)

Putting this into eq. (5), we find that the fundamental frequency is of order

Π0 ∼ 4

(

GM

R3

)−1/2

, (10)

in agreement with eq. (3). In fact, for an n = 3/2 polytrope with Γ1 = 5/3, the rough estimate (10)
is remarkably accurate: the actual numerical coefficient turns out to be 3.815 instead of 4. For a star
having the equilibrium structure of an n = 3 polytrope but responding to adiabatic perturbations
with Γ1 = 5/3 (this is a crude model of the Sun), the coefficient is 2.065 [[1], Table 8.1].

By variational methods akin to Rayleigh-Ritz, which you may have encountered in quantum
mechanics, it is possible to establish the following bounds on the angular frequency (ω0 ≡ 2π/Π0)
of the fundamental mode:

(3Γ1 − 4)

(

GM

R3

)

≤ ω2
0 ≤ (3Γ1 − 4)

|W |

I
, (11)
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Figure 1: The Carnot cycle.

in which

W ≡ −

∫

Gm

r
dm (12)

is the gravitational potential energy of the star and

2

3
I ≡

2

3

∫

r2dm (13)

is the moment of inertia. For a derivation, see Chapter 8 of [1]. It is assumed here that pressure
and density fluctuations are connected by the adiabatic relation (8) with Γ1 constant throughout
the star. The lefthand inequality in eq. (11) must be reversed if Γ1 < 4/3. In this case both limits
imply that ω2 < 0, so that the fundamental mode grows exponentially. Like a white dwarf above
the Chandrasekhar mass, such a star is unstable to gravitational collapse.

In an organ pipe, higher harmonics exist in addition to the fundamental, with wavelengths
λn = 4a/(2n + 1) and periods Πn = λn/vs. Because the sound speed varies with radius in a
given star, its pulsational harmonics are not so simply related. However, the periods decrease
monotonically with increasing numbers of nodes. The nth overtone has n nodes in the velocity
or displacement, not counting the node that is always present at r = 0. The ratio Π1/Π0 of the
period of the first overtone to that of the fundamental measures the degree of central concentration
of the star; this ratio tends to increase as the central density increases with respect to the mean
density. For example, Π1/Π0 is 0.465 and 0.738 for the (n, Γ1) = (3/2, 5/3) and (3, 5/3) polytropes,
respectively ([1]).

Excitation of radial pulsations: The Kappa and Epsilon Mechanisms

If the adiabatic approximation were exact, or in other words if the entropy of every gas element
were constant through the pulsation cycle, then the energy in pulsations would be conserved. Oscil-
lations of stars with Γ1 > 4/3 throughout most of their interior would neither grow nor decay. One
might think that nonadiabatic effects, such as viscosity and radiative diffusion, would tend to damp
the oscillations. This is indeed usually the case. Under certain circumstances, however, nonadiabatic
effects may actually excite pulsations.

To see how this can happen, it is useful to convert our organ pipe of the previous section into a
heat engine. Fill the open end with a movable piston and allow the pipe to make thermal contact
with hot and cold heat baths. Just to remind you, the classical Carnot engine works as follows (refer
to Figure 1):
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A → B: The piston is compressed adiabatically, that is, at constant entropy: ∆SAB = 0. Pressure P ,
volume V , and temperature V vary as P ∝ V −Γ1 and T ∝ V 1−Γ1 . The temperature increases
from TA to TB = TA(VA/VB)Γ1−1.

B → C: The gas is brought into contact with the hotter heat bath, Thot = TB, and allowed to expand
at constant temperature. Since PV ∝ T and T is constant, P ∝ V −1. During this step, the
entropy increases by ∆SBC = ∆QBC/Thot, where ∆QBC is the heat added to the gas.

C → D: The gas is detached from the heat bath and allowed to expand adiabatically until its tem-
perature falls back to TA = Tcold. At this point the volume is larger than VA because of the
increase in entropy during the previous step.

D → A: Finally, the gas is brought into contact with the cold bath at temperature Tcold and isothermally
recompressed to its original volume VA. In this step, ∆SDA = ∆QDA/Tcold. Since S (a
function of state) must return to its original value, ∆SDA = −∆SBC . So ∆QBC + ∆QDA =
∆QBC(Thot−Tcold)/Thot > 0. Thus net heat is absorbed by the engine, and energy conservation
requires that the heat is converted to work.

The net work done by the gas on the piston is

∆W =

∮

ABCDA

PdV, (14)

which is the area enclosed by the curve in the (V, P ) plane. Since the internal energy (U) returns to its
original value after one complete cycle,

∮

dU = 0. Therefore using the First Law, dU = TdS−PdV ,
we can rewrite the work done as

∆W =

∮

TdS. (15)

Clearly ∆W > 0 along any clockwise closed path, not just those composed of adiabats and isotherms.
Hence if the gas tends to gain entropy when it is compressed (at high temperature) and to lose it
when expanded (at lower temperature), then the net work done is positive.

In the Carnot engine described above, heat and entropy are gained or lost only when the gas
is in contact with a heat bath. At the center of a star, however, heat and entropy are continually
produced by nuclear reactions. In equilibrium, heat production in the core is exactly balanced by
heat loss from the surface, i.e., by the stellar luminosity. Stellar pulsation disturbs this balance by

(i) modulating the nuclear reaction rate in the core (epsilon mechanism); and more importantly,

(ii) by modulating the radiative luminosity (kappa mechanism).

Effect (i) is always destabilizing because the nuclear reaction rate increases with increasing
temperature and pressure: thus the change in reaction rate tends to add entropy to the core when
it is at higher than equilibrium temperature. Except in very massive stars (& 100 M⊙), the epsilon
mechanism tends to be weak, so that a small amount of dissipation is enough to prevent growth.

At the lower temperatures characteristic of the outer envelopes of stars, the opacity may actually
increase with temperature (at fixed entropy, for example) because the gas is incompletely ionized.
In such a case, luminosity decreases when the star contracts and its temperature rises, trapping heat
in the interior and raising the entropy; the reverse is true when the star expands. During one period
of oscillation, most mass shells then execute a clockwise closed path in the (S, T ) and (V, P ) planes,
leading to an increase in mechanical energy.

The reason for the increase of opacity with temperature is roughly as follows. In the solar
photosphere, almost all of the hydrogen atoms are in their ground state (n = 1). To excite such
an atom into the higher states requires photons energies of ≥ 10.2 eV, whereas the characteristic
photon energy at 5700 K is only kT = 0.49 eV. Hence neutral hydrogen contributes little to the
opacity, which is in fact dominated by the weakly bound H− ion. At modestly higher temperatures
∼ 104 K, a small but significant proportion of the hydrogen lies in excited states, where the spacing
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between adjacent levels is smaller (∝ n−3), as is the ionization energy (∝ n−2), so that the opacity
is dominated by the excited neutral hydrogen. At these temperatures, ∂κ/∂T > 0. At still higher
temperatures, the fraction of the hydrogen in excited bound states actually decreases with increasing
temperature because most of the hydrogen is already ionized; since free electrons are much less
effective than bound ones at absorbing photons, the hydrogen opacity then decreases with further
increases in T . However, at T ∼ 4×104 K, helium is in transition between singly and doubly ionized
states and tends to cause ∂κ/∂T > 0.

These opacity effects constitute the kappa mechanism (ii). We can understand the physics in
a bit more detail by returning to the work integral in the form (15). The gas within the Carnot
engine is uniform in temperature, so S represents the total entropy of this gas. In the case of a
star, since the temperature varies with radius, we must evaluate TdS separately for each mass shell;
hence S(m, t) becomes the entropy per unit mass at mass fraction m (this notation will be used in
place of Mr in this lecture), and

∆W =

t′+Π
∫

t′

dt

M
∫

0

dm T
dS

dt
. (16)

Replace T (m, t) → T̄ (m) + δT (m, t) and S(m, t) → S̄(m) + δS(m, t), where T̄ (m) and S̄(m) are the
time-averaged temperature and entropy of the shell, and δT and δS have zero time average. Then
the work integral becomes

∆W =

∮

dt

∫

dm δT
dδS

dt
. (17)

The limits of integration are the same as before but will not be written out explicitly. Notice that
this is second order in the oscillating quantities; the zeroth-order terms vanish because dS̄/dt = 0,
and the first-order terms vanish in the time average:

〈

T̄
dδS

dt

〉

= T̄

〈

dδS

dt

〉

= 0.

In the fundamental radial mode, the entire star expands and contracts together. Hence the sign
of δT is independent of mass fraction, and since the pulsation is approximately homologous—i.e.,
the fractional change in radius δr/r and volume δV/V is approximately the same for most mass
shells—even the magnitude of δT

T is approximately constant with mass fraction. Thus it is useful to
pull the fractional temperature perturbation out of the mass integral:

∆W ≈

∮

dt

〈

δT

T̄

〉

m

∫

dm T̄
dδS

dt
, (18)

where the angle brackets indicate an appropriate average over mass at time t. Finally, if we ignore
changes in the nuclear reaction rate, then to first order,

T̄
dδS

dt
≈ −

∂δL

∂m
(m, t). (19)

The mass integral in eq. (18) now yields δL(r, M) − δL(r, 0), and this = δL(r, M) since L(r, 0) = 0
even under perturbation. Writing δL(t) ≡ δL(M, t) for the change in the total stellar luminosity,
we have at last

∆W ≈ −

∮

dt

〈

δT

T̄

〉

m

δL(t). (20)

The luminosity, opacity, and temperature are related by

L(m, t) = −16π2r4 c

κ

∂Prad

∂m
, (21)
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where Prad = 1

3
aT 4. At sufficient depth below the photosphere, we may evaluate δL from this

equation using the adiabatic values for δT , δρ, and δr. Variations in opacity, radius, and radiative
gradient contribute additively to first order. Clearly if

(

∂κ

∂T

)

S

=

(

∂κ

∂T

)

ρ

+

(

∂κ

∂ρ

)

T

(

∂ρ

∂T

)

S

> 0,

then the opacity will increase during contractions The second term on the righthand side tends to
be positive since (∂κ/∂ρ)T ≥ 0 and (∂ρ/∂T )S > 0. The first can be positive at low temperatures:
see Figure 17.5 in the textbook [3]. This will tend to make the product δLδT < 0 in eq. (20). The
decrease in radius during contractions reinforces this tendency because of the r4 factor in eq. (21).
On the other hand, δPrad > 0 in contractions and this implies ∂δPrad/∂m < 0 in a homologous
contraction:

∂

∂m
δPrad =

δPrad

P̄rad

∂Prad

∂m
.

So the first two effects must be stronger than the last in order to guarantee that ∆W > 0, i.e., in
order to increase the mechanical energy of the pulsation.

In the argument above, we evaluated the change in luminosity using the adiabatic variations
in T , r, and ρ. This is only an approximation, since it is precisely the deviation from adiabatic
behavior that makes growth possible. The approximation is valid if the local thermal timescale of
the ionization zone (i.e. the region where ∂κ/∂T > 0) is long compared to the pulsation period.
The local thermal timescale may be defined as the thermal energy of the matter exterior to the base
of the ionization zone, divided by the luminosity:

ttherm ∼ (M − m)
P

ρL

∣

∣

∣

∣

m=mioniz.

. (22)

If ttherm ≪ Π, then the adiabatic approximation fails completely in the ionization zone: the radiative
gradient will quickly compensate for any change in opacity so that the luminosity is not affected by
the pulsation and ∆W ≈ 0. As Teff increases, the ionization zones move closer to the surface and
ttherm decreases, and at some point the instability is quenched. This determines the blue, i.e. high-
Teff , edge of the “instability strip” in the HR diagram where Cepheids occur. On the other hand, if
the ionization zone lies too far below the surface, then ttherm ≫ Π both in the ionization zone and in
the regions immmediately above it; modulation of the local luminosity in the ionization zone then
has little effect on δL(t) emerging from the surface, which is determined by local conditions in some
shallower zone where ttherm ≈ Π. Furthermore, as Teff decreases and the ionization zones retreat to
greater depths, they become convective, at which point the opacity no longer controls the radiative
flux. These effects determine the red edge of the instability strip.

Our derivation of the kappa mechanism is impressionistic rather than rigorous. The proper way
to determine pulsational stability is to linearize the full non-steady stellar structure equations and
solve for the complex eigenfrequencies directly. This is described in [1] and will not be repeated
here.

Direct Determination of Distance: The Baade-Wesselink Method

We have noted that once a period-luminosity relation has been established, pulsating stars can
serve as distance indicators. Remarkably, however, the distance to a pulsating star can be determined
directly, in principle, without prior knowledge of the PL relation.

The flux received from a star of radius R, distance D, and effective temperature Teff is

F =
R2σT 4

eff

D2
. (23)

The flux and effective temperature of a pulsating star vary with time, but these are directly mea-
surable if we have photometry in multiple filters, or better yet series of spectra. Taking the log of
eq. (23) and differentiating, one has

d

dt
lnF = 4

d

dt
lnTeff +

2

R

dR

dt
. (24)
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Figure 2: Light curves of a few of the LMC Cepheids found by the OGLE II project [7].

Notice that the distance has dropped out because it is constant. One can solve the above for the
stellar radius in terms of measurable quantities:

R = 2
dR

dt

(

d

dt
lnF − 4

d

dt
lnTeff

)−1

. (25)

Here dR/dt is measured by the doppler shift of stellar absorption or emission lines. Once R is known,
eq. (23) can be solved for D. An obvious consistency check is that the derived distance should not
vary over the pulsation cycle.

This elegant method suffers some practical difficulties. First, determining Teff from colors or
spectra is not trivial. The star does not radiate as a blackbody—if it did, there would be no spectral
lines with which to measure the radial velocity. Second, the spectral lines used for the velocity and
the continuum represented by Teff are not formed at quite the same radius. This means of course
that the lines and the continuum may have different velocities. Both difficulties can be conquered in
principle by detailed physical modeling of the moving stellar atmosphere, but this is computationally
challenging. The field is still under development.

Incidentally, eq. (25) does not require that the pulsation be periodic. The same technique has
been used to measure distances to extragalactic Type II supernovae, but this application is called
by its practitioners “The Expanding Photosphere Method” [[6], [2]].
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Figure 3: I-band period-luminosity relation of the fundamental-mode Cepheids in the LMC (upper
points) and SMC (points shifted down by 0.8 mag) [8].

Calculation of linear adiabatic radial pulsations

To determine the pulsational eigenmodes of a given stellar model, one starts with the full radial
force equation in the form

(

∂2r

∂t2

)

m

= −4πr2

(

∂P

∂m
+

Gm

4πr4

)

. (26)

There is an equilibrium state in which r(m, t) = r0(m) and both sides of the equation vanish. Define
δr(m, t) ≡ r(m, t)−r0(m), and similarly δP (m, t), δρ(m, t), etc. Presuming that these perturbations
are small, expand (26) to first order, obtaining

δr̈ = −4πr2

(

∂δP

∂m
− 4

Gm

4πr5
δr

)

.

The following equations are slightly tidier if r0 rather than m is used as independent variable. To
save writing, the subscript will be omitted from r0, but it should be remembered that unless prefixed
by δ, r will refer to the equilibrium radius of a given mass shell. Then the last equation becomes

δr̈ = −
1

ρ

∂δP

∂r
+ 4

GMr

r3
δr . (27)

We have put m → Mr to remind ourselves that it refers to the mass contained within the equilibrium
radius r. The dots refer to derivatives with respect to t at constant m or r0.

As yet, we have not used the assumption of adiabaticity, but we are about to do so:

δP =

(

∂P

∂ρ

)

S

δρ = Γ1P
δρ

ρ
, where Γ1 ≡

(

∂ lnP

∂ ln ρ

)

S

. (28)

In a gas-pressure-dominated star, Γ1 ≈ 5/3 everywhere—in radiative as well as convective regions—
because Γ1 describes not the equilibrium (in which entropy may vary with radius) but the response
of a given mass element to adiabatic perturbations. Conservation of mass implies

δρ

ρ
= −

1

r2

∂

∂r

(

r2δr
)

. (29)
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By combining (28) and (29), one converts (27) to an equation involving δr alone:

δr̈ =
1

ρ

∂

∂r

[

Γ1P

r2

∂

∂r

(

r2δr
)

]

+ 4
GMr

r3
δr . (30)

For an eigenmode, all mass shells should vibrate at the same frequency: that is,

δr(m, t) = ξ(r)e−iωt , so that

−ω2ξ =
1

ρ

d

dr

[

Γ1P

r2

d

dr

(

r2ξ
)

]

+ 4
GMr

r3
ξ . (31)

For numerical work, it is often convenient to unpack (31) as a pair of ordinary differential equations
by introducing η ≡ r−2d(r2ξ)/dr, which is essentially just −δρ/ρ, so that

dξ

dr
= η −

2

r
ξ ,

1

ρ

d

dr
(Γ1Pη) = −ω2ξ −

4GMr

r3
ξ . (32)

The boundary condition at r = 0 is obviously ξ = δr = 0. The boundary condition at r = R
(the equilibrium outer radius) is not so obvious, but it can be obtained from the requirement that ξ
should be regular as r → R: that is, ξ(r) and at least its first few derivatives with respect to r should
exist at r = R. [In fact, the requirement of regularity as r → 0 gives the central b.c., ξ(0) = 0, as
can be seen from the first of equations (32).] Let us rewrite the second of equations (32) in the form

Γ1P

ρ

dη

dr
− Γ1

GMr

r2
η = −

(

ω2 +
4GMr

r3

)

ξ. (33)

The coefficient of dη/dr in this equation is v2
s , which is proportional to temperature for an ideal gas

and therefore very small at the surface compared to its value at the center. In fact, for the purpose
of computing modes of oscillation, one often approximates the hydrostatic equilibrium structure by
models in which v2

s → 0 as r → R. If the solution is to be regular, then dη/dr will be finite as
r → R; in fact dη/dr ∼ ξ/R2 there. So the first term on the lefthand side of (33) essentially vanishes
at r = R, and the boundary conditions become

η = −
1

Γ1R

(

R3ω2

GM
+ 4

)

ξ at r = R (34)

ξ = 0 at r = 0. (35)

The surface boundary condition (34) is only approximate and would break down for high-frequency
modes whose wavelength is shorter than the pressure scale height at the photosphere; in the Sun,
this occurs for Π . 3 min, whereas Π0,⊙ ∼ 1 hr.

We may solve equations (32), (34) & (35) by shooting to a fitting point, i.e. integrating outward
from r = 0 and inward from r = R to an intermediate radius rfit But we have three unknowns
to guess: η(0), ξ(R), and ω itself. Fortunately, because the differential equations are linear and
homogeneous, we do not have to solve for all three simultaneously. We can freely rescale the
dependent variables by a common factor—and we may choose these scaling factors independently
for the inward and outward integrations to minimize the mismatch at rfit. This freedom reduces the
number of matching conditions from two to one:

[

η

ξ

]

outward

=

[

η

ξ

]

inward

at r = rfit. (36)

Since both sides of this equation are independent of the scaling factors, we may choose η(0) and
ξ(R) arbitrarily—I generally just set both to unity. Then we have a one-dimensional search over ω2

to perform in order to satisfy (36). The lowest root for ω2 is the fundamental mode. After finding
ω, we may easily rescale η(0) and ξ(R) so as to obtain continuous solutions for ξ and η.
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