
Nuclear Masses and Mass Excess: Q values for Nuclear
Reactions

Nuclear masses for a given atomic weight (A) and nuclear charge/atomic number (Z)
can be approximated by the semi-empirical mass formula

M(A,Z) = (A− Z)mn + Z(mp +me)

− a1A+ a2A
2/3 + a3

(A/2− Z)2

A
+ a4

Z2

A1/3
+ a5

δ

A3/4
. (1)

Note that implicit in eq. (1) is that the mass density of the nucleus is a constant (∼ 2.6×1014

g cm−3) and that the radius of the spherical nucleus is ∼1.2× 10−13 cm (= 1.2 fermi). The
first term ((A−Z)mn +Z(mp +me)) is just the rest masses of the nucleons (and electrons),
the second is the bulk nuclear term proportional to the number of nucleons in the nucleus,
the third term is the bulk “surface tension” term proportional to the surface area of
the nucleus, the fourth term is the “symmetry energy” term that is proportional to the
neutron-proton asymmetry in the nucleus, the fifth term is the Coulomb term (∝ Z2e2/a),
and the last term is the pairing term. This formula was originally inspired by the “liquid
drop” model of the nucleus and is quite classical and empirical. The original theory of
nuclear fission involved the relative values of the surface tension and Coulomb terms. It
was determined that a nucleus would fission in twain if Z2/A was greater than roughly ∼45.
For values of this fission parameter lower than ∼37, the mean time for spontaneous fission
is longer than the age of the Universe.

The difference between the atomic mass and the nuclear mass is the atomic binding
energy of the electrons, plus the rest mass of the electron. Take care to determine which
mass you use from tables in the literature. Generally, the binding energy of the electrons
in the atom (∼eVs to keVs) are too small to compete with the nuclear terms (∼MeVs) and
you needn’t worry, but for nuclei with the largest atomic numbers the atomic correction
can be ∼50-100 keV. In a strong or electromagnetic nuclear reaction, since total nuclear
charge is conserved, the Zme term in eq. (1) drops out when determining Q values. For
a weak interaction, since the nuclear charge changes, the extra me must be accounted for
explicitly.
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More specifically, the coefficients in eq. (1) have the following approximate values mea-
sured in MeV/c2:

a1 = 15.53, a2 = 17.804, a3 = 94.77, a4 = 0.7103, a5 = 33.6.

The nucleon and electron masses (in MeV) are: mn ≈ 939.57, mp ≈ 938.27, and me ≈ 0.511
MeV/c2. The term in a1 represents an increase in the binding energy (i.e., decrease in
nuclear mass) due to nearest-neighbor interactions between nucleons: to lowest order, nuclei
are rather like drops of liquid, in which the interactions are very short range, and are
attractive at low pressure, but are strongly repulsive under compression. Consequently, the
liquid prefers to maintain a roughly constant density and the volume of the nucleus ∝ A.
Just as in most liquids, there is a positive energy associated with the surface area of the drop
because particles near the surface have fewer neighbors to bond with: this is represented
by the positive term a2A

2/3. The next term (in a3) favors comparable numbers of neutrons
(A−Z) and protons (Z). However, the term in a4 is the electrostatic energy of the protons,
which causes a shift toward neutron-rich nuclei (i.e., A − Z > Z) with increasing atomic
number. The last term reflects an attractive pairing between like nucleons: δ = −1 if the
number of protons and the number of neutrons are both even, δ = 0 if A or Z but not both
is odd, and δ = +1 if both are odd. Nuclei with larger binding energies per nucleon

B

A
≡ −M(A,Z)− (A− Z)mn − Z(mp +me)

A
(2)

tend of course to be stabler. 56Fe is the most bound common nucleus, 56Ni is the most
bound nucleus for symmetric (A − Z = Z) nuclei, and 62Ni is the most bound nucleus of
all. Notice that all these “most bound nuclei” are at the “iron peak.”
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Q Values

The Q value of a nuclear reaction is the difference between the sum of the masses of the
initial reactants and the sum of the masses of the final products, in energy units (usually
in MeV). This is also the corresponding difference of the binding energies of the nuclei (not
per nucleon), since nucleon number is conserved in a reaction. The masses may be provided
in a table of mass excesses (∆M(A,Z)), which is the value of M(A,Z) − Amu (usually
in MeV), but relative to the corresponding number for the isotope 12C. (mu ≡ mamu.) A
useful table of mass excesses can be found in Clayton’s book, p. 289 (his Table 4.1). Hence,
the “mass excess” of 12C is defined to be zero. For instance, for the reaction 12C(α, γ) 16O,
the Q value is

Q = 931.478 MeV
(
M( 12C) +M( 4He)−M( 16O)

)
= 7.1613 MeV , (3)

where the mass excess of 16O is negative (oxygen is more bound than carbon). For the
triple-α process, one finds Q/A = 0.606 MeV/nucleon, for hydrogen burning it is 26.73
MeV, or ∼6.7 MeV per nucleon. Note that 1 MeV/nucleon is equivalent to 0.965 × 1018

erg g−1, a very useful conversion factor. Note also that for hydrogen burning the efficiency
of conversion of mass into energy is ∼6.7/931≈0.007, less than but near 1%. This is the
core fact of fusion as the source of energy for stars.
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Magic Numbers and Abundances

There is a pronounced tendency for elements with odd Z to be less abundant than
those with even Z, reflecting the influence of the last term in eq. (1). Although it is not
accounted for in that formula, nuclei whose Z or A − Z is one of the magic numbers
2, 8, 20, 28, 50, 82, 126 are more strongly bound than their neighbors, and doubly magic
nuclei such as 4He, 16O (Z = 8), 40Ca (Z = 20), and 208Pb (Z = 82) are particularly
strongly bound, because they represent closed shells of nucleons orbiting within the mean-
field nuclear potential. These “magic” isotopes are also more abundant than their neighbors.
So the binding energy per nucleon clearly has some explanatory power. Note that the
dominate stable isotopes tend to be the “α-nuclei” up to 40Ca, after which they trend to
more neutron-rich species. This is due to the increasing importance of the Coulomb term,
which disfavors protons and requires that there be more neutrons as glue. The region in the
(A,Z) plane of stability against nucleon (β) decay is called the valley of beta stability.

The reason that the heavier nuclei are less abundant is of course that the Coulomb barrier
makes them difficult to form by fusion except at extreme temperatures. In the cores of
massive stars at the end of their evolution, the temperature approaches 1010 K ≈ 1 MeV/kB,
so that elements up to the iron group (meaning 24 ≤ Z ≤ 28, chromium through nickel) do
form. Since these cores are strongly gravitationally bound, much of the heavier elements
remain locked up in neutron stars or black holes, but some is returned to the interstellar
medium in supernovae.

In general, the elements and isotopes of Nature are produced predominantly in specific
environments, by specific processes. These include the Big Bang, cosmic-ray spallation,
the triple-α process and 12C(α, γ) 16O, the CNO cycle (e.g., 14N), supernovae, the s-
process, the r-process, the p-process, the rp-process, and the ν-process. Can you
identifiy which isotopes come from which processes?
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The Physics of Fusion in Stars and Elsewhere

Most stars derive their luminosity from the conversion of hydrogen to helium. The rest
mass of one 4He atom is about 0.71% less than the combined rest masses of four hydrogen
atoms (note that the electrons are included in the atomic masses here). The difference,
or about 26.7 MeV, is released as heat, except for ≈ 0.6 MeV worth of neutrinos (in the
pp chain). There are two paths from 4 1H to 4He: the pp cycle, which predominates in
the Sun and cooler stars, and the CNO cycle, which predominates in stars with slightly
higher central temperatures.

pp CNO

p+ p → 2H + e+ + νe
12C + p → 13N + γ

2H + p → 3He 13N → 13C + e+ + νe
3He + 3He → 4He + 2p 13C + p → 14N + γ

14N + p → 15O + γ (rate limiting)
15O → 15N + e+ + νe
15N + p → 12C + 4He

Table 1: The main channels of the pp and CNO cyles (Bahcall 1989).

In Table 1, the isotopic designations refer to nuclei rather than whole atoms, so that
1H would be equivalent to a proton, p. In some books, the helium nucleus is denoted by α
instead of 4He, and the deuterium nucleus by d instead of 2H.

About 0.4% of pp reactions in the Sun start with 2p+ e− → 2H + νe (“PEP” reaction)
instead of the first reaction shown in the Table. About 15% involve

3He + 4He→ 7Be + γ
7Be + e− → 7Li + νe

7Li + p→ 4He + 4He (4)

instead of the third reaction shown. Even more rarely (0.02%), the second and third reac-
tions of (4) are replaced by

7Be + p→ 8B + γ
8B→ 8Be∗ + e+ + νe

8Be∗ → 4He + 4He (5)

in which 8Be∗ is a metastable state. This last side chain is energetically negligible but
experimentally important because it produces an exceptionally energetic neutrino (up to
∼14 MeV) which, though much rarer, is easier to detect than the paltry ≤ 0.420 MeV
neutrino resulting from the first reaction in the Table.
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The carbon, nitrogen, and oxygen in the CNO reactions serve as catalysts: no net
production of these elements occurs. The second column of Table 1, for example, replaces
the original 12C nucleus. There is a side chain that goes through 16O, but this also involves
no net production of elements other than helium. Thus, even at high central temperatures,
the CNO cycle could not have occurred in metal-free primordial high-mass stars.

On a per-proton basis, the pp and CNO cycles in stars proceed extremely slowly. Fusion
has reduced the central hydrogen abundance of the Sun by about a factor of two in the
4.6 Gyr since its formation; thus the fusion rate per proton is≈ 5×10−18 s−1. Let us compare
this to a characteristic proton-proton collision rate, npσvth, where n ≈ 6× 1025 cm−3 is the
central number density of protons and vth = (3kBTc/mp)1/2 ≈ 600 km s−1 is their thermal
velocity. The choice of the collision cross section, σ, depends upon what one considers a
collision. As will be seen later, a natural scale for cross sections is π2

dB where dB ≡ ~/mv
is the reduced de Broglie wavelength. If v = vth then dB ≈ 10−11 cm, and the collision rate
npπ

2
dBv ≈ 1012 s−1. Comparing this with the fusion rate estimated above, one sees that the

probability of fusion per collision is ∼ 2× 10−31.
The rest of this lecture is devoted to explaining why the latter probability is so small.

Actually, there are two principal reasons: the electrostatic repulsion between nuclei, and
the weakness of the weak interactions. As a byproduct, we will see why the CNO cycle is
so much more sensitive to temperature than the pp cycle.
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Barrier Penetration: Non-Resonant Reactions

The strong force binds nucleons (protons and neutrons) in nuclei but has a limited
range, of order one fermi: 1 fm ≡ 10−13 cm = 10−15 m, so a fermi is also a femtome-
ter. At separation r, the electrostatic energy between nuclei of charges Z1e and Z2e is
≈ 1.44Z1Z2 MeV fm/r, whereas thermal energies are ∼ kBT ∼ (T/107 K)keV. Since the
Boltzmann distribution falls off exponentially at E � kBT , and T ≈ 1.5×107 K at the cen-
ter of the Sun, the probability that two colliding protons could approach within 1 fm would
be ∼ e−670 ∼ 10−290, if classical physics applied. Quantum-mechanical tunneling allows
the protons to go “under” the Coulomb barrier with a probability that is much larger than
this, though still exponentially suppressed.

WKB estimate of the penetration factor

If U(r) is the Coulomb potential and ` = 0, the particle is classically forbidden to be
in this region if r < RE ≡ Z1Z2e

2/E. We would like to calculate the radial probability
current deep within the forbidden region where r ∼ 1 fm ∼ 10−2RE . While this can be
done exactly for U(r) = Z1Z2e

2/r in terms of special functions, a good approximation and
a much more enlightening result can be found by WKB. We set (the incoming or outgoing
part of) ψ0(r) equal to exp[χ(r)]/r, which would satisfy Schoedinger’s equation,

~2

2µr2
d

dr

(
r2
dψ`

dr

)
+

[
E − U(r)− ~2`(`+ 1)

2µr2

]
ψ`(r) = 0, (6)

for a partial wave with angular momentum quantum number, `, exactly if

d2χ

dr2
+

(
dχ

dr

)2

=
2µ
~2

[U(r)− E]. (7)

The WKB approximation assumes that dχ/dr is large but slowly varying (at large r,
dχ/dr → ±ik, a constant), so that |d2χ/dr2| � |dχ/dr|2. Then to leading order,

χ(r) ≈ ±
√

2µ
~

r∫
dr̄

√
U(r̄)− E . (8)

The lower limit has been deliberately left unspecified, which is equivalent to allowing an ar-
bitrary constant of integration. Plugging (8) into the previously neglected second-derivative
term of (7), one can obtain a more accurate approximation for χ, though we will not need
it here. The two choices for the sign in (8) yield two independent approximate solutions for
ψ0(r). In the permitted region where the integrand of (8) is imaginary, the solution whose
phase decreases (increases) with increasing r can be interpreted as the incoming (outgoing)
wave.
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The WKB approximation breaks down near the turning point r = RE because the
integrand in (8) is not smooth there (its derivative is singular). There are standard pre-
scriptions for matching the WKB solutions across the turning point. Since their derivation
would take up too much space, we will just quote results.1 Neglecting the small possibility
of fusion, the outgoing and ingoing waves must have equal magnitudes. In this situation,
the matching conditions say that we must use the upper sign of (8) at r < RE , so that the
solution decays inward into the forbidden zone. Let R0 � RE be the range of the strong
nuclear force. Then

χ(RE)− χ(R0) ≈
√

2µ
~

RE∫
R0

dr̄

√
Z1Z2e2

r̄
− E =

√
2µE
~

RE

1∫
R0/RE

dx

√
1
x
− 1

≈ π

√
Z2

1Z
2
2e

4µ

2E~2
= πZ1Z2α

c

v∞
, (9)

where α ≡ e2/~c ≈ 1/137 is the fine-structure constant. To obtain the second line, we have
replaced the lower limit of the x integral by 0: this makes only a small error because the
singularity of the integrand at x = 0 is integrable.

The probability that the two nuclei come within R0 is during a collision is of order

PB ≡
R2

0

R2
E

|ψ0(R0)|2

|ψ0(RE)|2
≈ exp

[
−2π

√
Z2

1Z
2
2e

4µ

2E~2

]
. (10)

The additional factor of two in the exponential relative to (9) occurs because the wave-
function is squared. You might think that the factor R0/RE should be cubed rather than
squared, to reflect the relative volumes, but the barrier penetration probability was origi-
nally defined by the physicist Gamow for radioactive decay by fission, and in that case it is
the probability flux rather than the probability density that comes in. The most sensitive
dependence on energy is due to the exponential factor in any case; discrepancies in the pref-
actor are absorbed into the nuclear factor S(E) defined below. Even for two colliding pro-
tons in the solar core, where Z1 = Z2 = 2, µ = mp/2, and (v2

∞)1/2 =
√

6kBTc/mp ≈ c/340,
the argument of the exponential is moderately large, ≈ −16, so PB � 1, but this is not
nearly small enough to explain the low probability of fusion per collision as estimated at
the beginning of these notes (∼ 10−31).

It is conventional to write the fusion cross section as the product of three factors:

1. The cross section σ0 = π2 = π~2/2µE for the plane wave to intercept an ` = 0 state.

2. The probability of what ever nuclear transition is necessary to transform the two
nuclei into one once they come into “contact.”

3. The probability of barrier penetration, as approximated by (10).

1Airy functions are involved; see any standard QM text.
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Conventionally then, the energy-dependent fusion cross section is written as

σ(E) = E−1S(E) exp

[
−2π

√
Z2

1Z
2
2e

4µ

2E~2

]
,

= E−1S(E) exp
[
− b√

E

]
, (11)

in which the three factors E−1, S(E), and the exponential correspond to items 1,2,3 above.
The quantity b in the exponential is

b =
2π√

2
Z1Z2αcµ

1/2

= 31.3 Z1Z2

(
µ

mp

)1/2

( keV)1/2 (12)

when the energy, E, is in keV.
By far the slowest reaction in the pp chain is the first one (Table 1). The strong force

is unable to bind two protons, i.e. the isotope 2He has a negligible half-life. It can bind a
proton and a neutron, though not terribly strongly: the binding energy of 2H (deuterium) is
2.2 MeV, or about one tenth of the binding energy per nucleon of 4He. So a beta decay must
occur during the brief time that the two protons are in contact. All the other important
weak decays in the pp and CNO cycles occur only after a bound (though only metastable)
nucleus forms, so S(E) is much larger for them.2

The factor S(E) is hard to calculate because it involves nuclear structure. It is also
difficult to measure experimentally at the relevent low energies (E . 10 keV), precisely be-
cause σ(E) is terribly small. However, there is reason to believe that this factor should vary
slowly with energy in the case of “nonresonant” reactions such as the first one in Table 1, so
that it can be estimated by extrapolation. A reasonably recent estimate (Adelberger et al.
1998) is S(E) ≈ 4.00 ± 0.03 × 10−22 keV barn, where 1 barn = 10−24 cm2. For application
to stars, one averages the rate coefficient v∞σ(E) over a thermal distribution of kinetic
energies,

σv(T ) =
(

8
πµ(kBT )3

)1/2
∞∫
0

σ(E)Ee−E/kBT dE,

=
(

8
πµ(kBT )3

)1/2
∞∫
0

S(E) exp
[
− b√

E
− E

kBT

]
dE . (13)

2An exception is 3He + p→ 4He + e+ + νe, but this is responsible for only ∼ 10−7 of 4He production in
the Sun.
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Since S(E) is presumed to be slowly varying, we may estimate this by the method
of steepest descent: Writing the argument of the exponential as −f(E), and noting that
f � 1, we expect the integral to be dominated by the neighborhood of the energy E0 that
minimizes f(E). Solving f ′(E0) = 0 yields

E0 =
(
bkT

2

)2/3

≈ 1.22
(
Z2

1Z
2
2µ/mpT

2
6

)1/3 keV, (14)

where T6 ≡ T/(106 K). Note Z2
1Z

2
2 (µ/mp) = 1/2 for pp collisions. E0 is called the “Gamow

peak” energy and is a fundamental quantity in thermonuclear theory. It is the effective
energy at which a reaction proceeds and is the energy near which experimenters want to
design their measurements. The Gamow peak energy for the pp reaction in the Sun is about
4.2kBTc, so it is out on the tail of the thermal distribution, but not terribly far. For the
12C(p,γ)13N reaction, E0 ≈ 3.9T 2/3

6 keV, far out on the thermal tail. Expanding f(E) =
b√
E

+ E
kBT ≈ f(E0)+ 1

2f
′′(E0)(E−E0)2 around the minimum and replacing S(E)→ S(E0),

one finds that

σv(T ) ≈
(

8
πµ(kBT )3

)1/2 [
2π

f ′′(E0)

]1/2

e−f(E0) S(E0).

The quantity f(E0) = 3E0/kBT , so the temperature dependence of non-resonant ther-
monuclear reactions is dominated by an exponential of the form exp[−(Td/T )1/3] as a re-
sult of a compromise between the barrier-penetration probability (which increases with
energy) and the thermal distribution (which decreases). The constant Td ∝ Z2

1Z
2
2µ, where

µ/mp = A1A2/(A1 + A2) and A1,2 are the atomic weights of the nuclei. Note that µ is
larger for the CNO reactions than for the pp ones. This is one reason the former are more
temperature sensitive. On the other hand, they have much larger S(E0), so they dominate
at higher temperatures (more massive or more evolved stars).
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f(E0) is frequently written as τ = 3
(

b2

4kBT

)1/3
. Therefore, the thermonuclear rate is

proportional to
τ2e−τ , (15)

which has the form
1

T 2/3
e
− K

T1/3 , (16)

where K ∝
(
Z2

1Z
2
2µ

)1/3. This is the canonical temperature dependence of non-resonant
thermonuclear rates. The Gamow peak has roughly a Gaussian shape

e
−

“
E−E0
∆/2

”2

, (17)

where the width ∆ is equal to 4√
3
(E0kBT )1/2 ≈ 0.75

(
Z2

1Z
2
2µ/mpT

5
6

)1/6.

If we want to write σv(T ) as something proportional to
(

T
T0

)n
near a temperature T0,

using either eq. (15) or (16) we find that

n =
∂ ln(σv)
∂ ln(T )

=
τ − 2

3
. (18)

For the pp chain where it applies (T ∼ 106.5−7.5 K), n ≈ 4. However, for the CNO cycle
around T ∼ 107.2−7.6 K, n ≈ 15− 20, a much higher power. These differences in sensitivity
translate into interesting differences in the stellar context.
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Resonant Reactions

A resonant reaction may be of the form:

A+ a→ C → B + b , (19)

where state C is a compound nucleus with quantized energy levels that is an intermediate
state. If the effective S-factor (S(E)), is not a slowly varying function of E, but a narrow
resonance, then the cross section is in a Breit-Wigner form, basically a Lorentzian around
the resonant energy:

σres(`) = (2`+ 1)
(2Jc + 1)

(2Ja + 1)(2Jb + 1)
ΓaΓb

(E − Er)2 + Γ2/4
, (20)

where the factor with the (2Ji + 1) s accounts for the statistical weights, ` is the angular
momentum quantum number of the incident particle, which is related to the classical impact
parameter, Er is the resonant energy, and Γ is the overall width for the decay of the
compound nucleus, C. The Γa and Γb are related to the probabilities of going into and/or
out of these respective entrance and exit channels and are related to the square of the
associated matrix elements. The rate formula

σv(T ) =
(

8
πµ(kBT )3

)1/2
∞∫
0

σ(E)Ee−E/kBT dE (21)

is still germane. Substituting eq. (20) into eq. (21), while at the same time assuming that
in the context of eq. (21), eq. (20) behaves like a delta function around Er, we arrive at
a reaction rate for each resonance of the form:

σv(T ) ∝ Er

(kT )3/2
e−

Er
kT

∞∫
0

σres dE . (22)
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The integral over σres is analogous to the “oscillator strength” sum-rule integral seen in
atomic and molecular spectroscopy and yields

∞∫
0

σres dE = 2π22
r (2`+ 1)

ΓaΓb

Γ
. (23)

The final expression for the rate of a resonance reaction is then

σv(T ) ∝ 1
T 3/2

ΓaΓb

Γ
e−11.61Er/kT = 8.1× 10−12(2`+ 1)

(
mp

µ T6

)3/2 ΓaΓb

Γ
e−11.61Er/kT cm3s−1 ,

(24)

where in this expression Er is in keV. The dependence upon temperature of a resonant
reaction (eq. 21) is distinctly different from that of a non-resonant reaction (eq. 13). Note
that 2

r is the reduced deBroglie wavelength squared, which is inversely proportional to Er,
and that it cancels the E in eq. (22). In general, one sums over all such resonances and
channels to obtain the total rate. Usually, only one resonance dominates. Note also that
for a resonant reaction the effective power index, n, is equal to 11.61Er( keV)/T6− 3/2 and
that this power index is generally large.

A classic example of a resonant reaction is the triple-α process, but there are many
more.
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Helium Burning

Helium burning occurs when there is a predominance of helium and the temperatures
are higher (T ∼ 108 K) than for hydrogen burning. In a star, it occurs in the core after core
hydrogen burning has depleted the hydrogen into helium. It also occurs in a shell during
the AGB phase, if reached. As first suggested by E. Salpeter, helium burning is a two step
process:

4He+4He→8Be∗ ; 4He+8Be∗ →12C + 2γ , (25)

followed as carbon accumulates by

4He+12C →16O + γ . (26)

The former reaction is the “triple-α” process and is the origin of carbon. The latter is
the origin of oxygen. If helium burning is ignited under degenerate conditions it leads to
the so-called “helium flash.” The first reaction of eq. (25) produces the metastable state
8Be∗, which decays back to 2 alphas within ∼2×10−16 seconds. This might seem like a
short time, but it is long enough to supply in a “Saha” equilibrium ample 8Be∗ to make the
second reaction in eq. (25) viable at high temperatures and densities. The Saha equilibrium
equation for 4He and 8Be∗ is

n2
α

n8Be
=

(
2πµkT
h2

)3/2

e−
Q
kT , (27)

where the Q value of this endothermic reaction is a scant -91.78 keV and µ = m2
α/m8Be =

mα/2. At T = 108 K, n(8Be)/nα ∼ 10−8. Note that if the Gamow peak energy is set to
92 keV, the associated temperature is ∼108 K. The Q value of the entire reaction (25) is
∼5.9× 1017 erg g−1∼0.6 MeV/baryon.
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The rate for the reaction 8Be∗(α, γ)12C depends on the product of the 4He and 8Be
abundances. Since the Saha provides the abundance of 8Be in terms of X2

α, the rate will be
proportional to X3

α. It turns out, as F. Hoyle posited, that this reaction is resonant - the
compound nucleus of 4He and 8Be has an energy level very close (∼0.29 MeV) to the 0+

level of carbon at 7.654 MeV. That carbon had such a level was not known when Salpeter
suggested his triple-α process, but Hoyle concluded that reaction (25) could not proceed at
a reasonable enough rate to explain the existence of copious carbon unless the resonance
was there. Cook et al. (1957) looked for this level in carbon and found it.

Since the reaction is resonant and the 8Be∗ abundance is temperature-dependent through
the Saha, we find that for the triple-α process

ε3α ≈ 5.1× 1011ρ2X
3
α

T 3
8

e
− 44.027

T8 erg g−1 s−1 , (28)

where ε3α is the energy generation rate, obtained from Qn1n2σv/ρ. Note the prefactor of
1

T 3
8
. This comes from the product of the temperature factor for a resonant reaction and the

Saha temperature term. Near T = 2 × 108 K, this rate is approximately 23.1 ρ2
(

T8
2

)18.5

erg g−1s−1, where the power index, n, is 44
T8
− 3 and is roughly equal to 40 at 108 K. In the

equations above, ρ is in cgs.
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The 12C(α, γ)16O rate is not well known and involves close resonances, one of which is
∼0.066 eV wide, putting the reaction out on its tail. Moreover, the associated cross sections
in the keV range are nanobarns and very difficult to measure. As a result, the rate of this
crucial reaction that determines the ratio of carbon to oxygen in Nature, is not known to
better than a factor of two. In any case, this rate is approximately

ε12,α ≈ 1.3× 1027X12Xα
ρ

T
2/3
8

e
− 69.2

T
1/3
8 erg g−1 s−1 . (29)

The Q value of this reaction is 7.162 MeV. Note that the “large” charge results in the large
69.1 in the exponent.

The processes (25) and (26) are the final core burning processes in most stars, but for
more massive stars the cores achieve temperatures sufficient to ignite carbon burning
(T ∼ 5− 10× 108 K):

12C +12C → 24Mg + γ

→ 20Ne+ α

→ 23Na+ p (30)

and oxygen burning (T ≥ 1× 109) K):

16O +16O → 32S + γ

→ 28Si+ α

→ 31P + p , (31)

where the above reactions depict only a subset of the possible final states. Silicon and
neon burning are more complicated and occur at still higher temperatures, mostly dur-
ing the pre- and postsupernova stages of massive-star evolution. Near the onset of core
carbon burning, core thermal neutrino losses by the pair annihilation, plasmon decay,
photoneutrino rates, and (at a lower level) electron-nucleus bremmstrahlung start to exceed
surface photon losses, but this is another topic.
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