The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies

Eliot Quataert (UC Berkeley)

w/ Todd Thompson & Eli Waxman

Thompson, Quataert, & Waxman 2007, ApJ, 654, 219 Thompson, Quataert, et al, 2006, ApJ, 645, 186

Ultraluminous Infrared Galaxy Arp 220 HST • NICMC PRC97-17 • ST ScI OPO • June 9, 1997 R. Thompson (University of Arizona), N. Scoville (California Institute of Technology) and NASA

Arp 220 w/ HST

Arp 220 w/ the VLA

Outline

- Context: Starbursts & the FIR-Radio Correlation
- Direct Constraints on CRs & B-fields in Other Galaxies
 - Minimum Energy Argument (synchrotron emission)
- Rapid Electron Cooling in Starbursts
 - The Failure of the Minimum Energy Argument
 - The Origin of the FIR-Radio Correlation
- Implications for GLAST

Starbursts

Iras Number Counts

Yun et al. 2001

- 10% of star formation at z ~ 0
 majority at high z (ellipticals)
- ~ 10-10³ M_☉ yr⁻¹

often AGN activity present as well

galactic winds -- thermal plasma & cosmic rays expelled (driven by SN, radiation, maybe CRs ...)

M82 w/ Chandra

The FIR-Radio Correlation

Magnetic Fields & CRs in the Milky Way (and other normal spiral galaxies)

- $\langle B \rangle \approx 5-10 \ \mu G$: Faraday Rotation + Dispersion Measure, synchrotron
- energy density in CR ~ energy density in B-field
- $B^2/8\pi \sim \pi G \Sigma^2$
 - Applicable from n ~ 1-10⁷ cm⁻³
 (via Zeeman in molecular clouds)
 - B-field & CRs dynamically important compared to gravity (for hydro equil)

Surface Density Σ P Hydro Equil: $P \approx \pi G \Sigma^2$

Estimating B-Field Strengths in Other Galaxies

- There are (were) no Zeeman detections in other galaxies
 - Robishaw, Heiles, & Quataert (2008) detected 15 B-field components in 4 ULIRGs (OH masers)
- Use observed radio emission (synchrotron) to estimate B
- Two Observables: L_{rad} & R (+ radio spectrum)

− e.g., Arp 220 (
$$L_{FIR} \sim 10^{12} L_{\odot}$$
):

 $L_{rad} \sim 10^{40} \, ergs/s \& R \sim 100 \, pc$

Arp 220 w/ the VLA

The Minimum Energy Estimate

 $\mathbf{P} \propto \gamma^2 \mathbf{B^2} \quad t_{syn} \sim 10^9 \mathbf{B}_{\mu G}^{-3/2} \nu_{GHz}^{-1/2} \text{ yr } \gamma \sim 10^4 \nu_{GHz}^{1/2} \mathbf{B}_{\mu G}^{-1/2}$

$$\nu L_{\nu} \sim \frac{\epsilon_e V}{t_{syn}} \propto \epsilon_e V B^{3/2}$$

assume
$$\epsilon_{tot} = \delta \epsilon_e \sim \frac{B^2}{8\pi}$$
 ($\delta \equiv p/e \ CR \ energy \sim 10 - 100$)
 $\rightarrow \nu L_\nu \propto \delta^{-1} B^{7/2} V$ $\Rightarrow \mathbf{B} \equiv \mathbf{B}_{\min} \propto \delta^{2/7} \left(\frac{\mathbf{L}_\nu}{\mathbf{V}}\right)^{2/7}$

(minimum energy bec. $\epsilon_{tot} + B^2/8\pi$ minimized by $\epsilon_{tot} \sim B^2/8\pi$)

Milky Way: $B_{min} \sim 5 \mu G$, consistent with Faraday Rot. $ε_{tot} \sim B^2/8\pi$ confirmed by γ-ray observations (pion decay from p-p interactions)

The Minimum Energy Field From Local Spirals to Luminous Starbursts

if B_{min} is correct, B-fields & cosmic rays are dynamically weak compared to gravity in starbursts

(and thus likely unimpt. in regulating star formation, driving outflows, ...)

The Failure of the Min. Energy Estimate

t_{cool} << t_{esc}

• $\varepsilon_e << B^2/8\pi$ if

time for rel. eto radiate away its energy (synch & IC)

time for rel eto escape the galactic disk

• if $t_{cool} \ll t_{esc}$, B >> B_{min}

-
$$L_{radio} \sim \epsilon_e B^{3/2}$$
: $\epsilon_e \downarrow \Rightarrow B \uparrow$

- MW: $t_{syn} \sim t_{IC} \sim t_{esc} \sim 10^7 10^8 \text{ yr}$
- Arp 220: t_{syn} ~ ? (B ~ ?) t_{IC} ~ 5000 yr t_{esc} ~ ?; t_{esc} > R/v_w~ 3x10⁵ yr t_{IC} << t_{esc}

Implications of t_{syn} << t_{esc}

t_{syn} << t_{esc}: e's radiate all the energy supplied by SN shocks

$\nu \mathbf{L}_{\nu} \sim \dot{\mathbf{E}}_{\mathbf{e}} \propto \mathrm{SN} \ \mathrm{Rate} \propto \mathbf{L}_{\mathbf{FIR}}$

- Clean explanation for linear FIR-Radio Correlation
 - "calorimeter theory" (Volk 1989)
- vL_v = 2 x 10⁻⁶ L_{FIR} requires t_{syn} ≤ t_{esc}
 - \Rightarrow ~ 1% of SN energy supplied to CR e's
 - consistent w/ inferences from SN shocks
 - t_{esc} > t_{syn} requires tremendous fine tuning

Synchrotron vs. IC cooling

- Conditions in Starbursts & FIR-Radio favor t_{cool} << t_{esc}
 - B_{min} is an underestimate

FIR-Radio also Requires
 t_{syn} < t_{IC}, i.e., U_B > U_{ph}

Objection to t_{cool} << t_{esc}: Radio Spectra Do not Show Evidence of Strong Synchrotron Cooling (e.g., Condon 1992)

- Injected: $dn/d\gamma \propto \gamma^{-2} \Rightarrow L_{\gamma} \propto v^{-1/2}$ (weak cooling)
- Cooled: $dn/d\gamma \propto \gamma^{-3} (t_{cool} \propto \gamma^{-1}) \Rightarrow L_{\gamma} \propto \nu^{-1} (strong cooling)$

Observed $L_{v} \propto v^{-\alpha}$ $<\alpha > \approx 0.75$ at ~ GHz

Simple Model: CR e's interact with gas at ~ mean ISM density

 lose energy to ionization of neutral H & relativistic bremssrahlung on nuclei, in addition to synch & IC

$$\mathbf{r}_{\mathrm{ion}} \sim \mathbf{10^8 n^{-1}} \left(rac{\gamma}{\mathbf{2000}}
ight) \,\, \mathrm{yr}$$

 $t_{\rm brem} \sim 3 \times 10^7 \, {\rm n}^{-1} \, {\rm yr}^{-1}$

Linearity of FIR-Radio?

assume CR e's interact with gas at ~ mean ISM density and escape is neglected

 B > B_{min} & CR e⁻s interact w/ gas at ~ <n>:
 radio spectra in accord with observations and linear FIR-Radio correlation

 $\frac{B^2}{8\pi} = \pi G \Sigma_g^2$

Gamma-ray Emission

- Proton losses: pion production t_{pion} (protons) ~ t_{ion} (electrons): both ~ n⁻¹
- $p + p \rightarrow \pi^0 \rightarrow gamma-rays \Rightarrow strong > 100 MeV y-ray sources$
- constraint: $p + p \rightarrow \pi^{+/-} \rightarrow e^{+/-}$ (secondary leptons)
- if all the radio emission is from secondaries, FIR-radio correlation \Rightarrow

νL_{ν} (GeV) $\approx 10^{-5} L_{FIR}$

(IC and brem likely smaller by a factor of ~ 4)

	Object Name	D ^a (Mpc)	Σ_g^{b} (g cm ⁻²)	S _{60µm} ° (Jy)	S _{100µm} ^d (Jy)	S _{TIR} ^e (Jy)	S _{1.4 GHz} ^f (mJy)	$\nu F_{\nu} (\text{GeV})^{g}$ $10^{-11} \text{ GeV cm}^{-2} \text{ s}^{-1}$	Data Refs.
Glast	NGC 3034 (M82) NGC 253	3.3 3.5	0.69	1313.5 997.7	1355.4 1857.8	8302.4 7755.8	7657.0 5594.0	73 68 ^h	4,2,3 1,2,3
Detection	NGC 2146 NGC 3690	4.4 12.6 42.2	0.02 0.14 0.04	255.9 144.5 119.7	204.2 118.6	2311.6 1009.8 748.0	2250.0 1074.6 678.3	20 8.9 6.6	1,2,3 1,2,3 4,2,3
_	NGC 1808 NGC 1365	14.2 18.6	0.09	104.5 84.1	147.2 185.4	729.4 704.2	529.0 530.0	6.4 6.2	1,2,3 7,8,3
	NGC 891 NGC 3627	7.4 10.2	0.09	61.1 56.2	118.5 198.6 144.9	623.4 507.3	326.9 701.0 458.0	5.5 4.5	4,2,3 6,2,3 4,2,3
	NGC 660 NGC 3628	12.0 11.2	0.08	65.5 48.4	103.8 121.9	477.4 431.9	387.0 525.0	4.2 3.8	4,2,3 10,3
	NGC 1097 NGC 3079	15.9	3.7	40.7 50.2	103.5	414.0 407.8	415.0 849.0	3.6 3.6	4,2,3 4,2,3

TABLE 1 PROPERTIES OF LOCAL STARBURST & STAR-FORMING GALAXIES

nearby starbursts are detectable with GLAST & perhaps HESS NGC 253, M82, IC 342 (maybe NGC 1068)

What GLAST will Teach us

• 1 GLAST detection ⇒ Secondary leptons impt for Radio

 \Rightarrow SN & CRs couple to Dense ISM

- not all just vented by Galactic Winds
- ionization & brem losses impt for e-

 \Rightarrow Starbursts acct for ~25% of γ -ray BG

Summary

- $B_{min} \Rightarrow B^2/8\pi << \pi G\Sigma^2$ in starbursts
 - suggests B-field & CR dynamically unimportant (compared to gravity)
- Rapid e⁻ cooling in starbursts invalidates B_{min}
 - $t_{cool} \ll t_{esc}$ (IC & synch)
 - Origin of the FIR-Radio correlation ("calorimeter theory")
 - B_{min} is an underestimate by at least a factor of ~ 3-5 (U_B > U_{ph})
 - Ionization & Bremstrahlung losses modify radio spectra
- GLAST Observations Crucial Probe of ISM & CR Physics
 - Impt of secondaries?
 - M82, NGC 253, IC342 most promising sources