The Biermann Lectures: Adventures in Theoretical Astrophysics III Searching for the Electromagnetic Counterparts of Gravitational Wave Sources

Eliot Quataert (UC Berkeley)

w/ Brian Metzger, Tony Piro, Siva Darbha, Almudena Arcones, Gabriel Martinez Pinedo, Dan Kasen, Todd Thompson, ...

Overview

- Context: kHz Gravitational Wave Astrophysics Likely Astrophysical Sources
- Why worry about EM Counterparts?
- Compact Object Mergers: GWs & Gamma-Ray Bursts
- EM Counterparts & Transient Surveys

~ kHz GWs: a New Frontier in Compact Object Astrophysics

- Direct detection of GWs: unique insights into compact objects
 - masses, spins, orientation to line of sight, ...
 - no bias re. photons escaping to observer!
 - probes of nuclear physics, relativity,
- Critical to connect these GW detections to wealth of EM data on similar (same??) sources

LIGO reached design sensitivity in ~ 2006: h ~ $\Delta L/L$ ~ 10⁻²¹ (no detections; as expected)

~ kHz GWs: a New Frontier in Compact Object Astrophysics

- Direct detection of GWs: unique insights into compact objects
 - masses, spins, orientation to line of sight, ...
 - no bias re. photons escaping to observer!
 - probes of nuclear physics, relativity,
- Critical to connect these GW detections to wealth of EM data on similar (same??) sources

Advanced LIGO & Virgo in ~ 2015 ~10x sensitivity $\rightarrow 10^3$ x volume/rate

> worldwide effort: Geo600 (Germany), LCGT (Japan), LIGO Australia (??), ...

Astrophysical Sources of ~ kHz GWs

$$\dot{E}_{GW} \sim \frac{G}{c^5} \left(\frac{d^3Q}{dt^3}\right)^2$$

 $Q \sim M_{na} L^2$

na = non-axisymmetric part of mass distribution

$$\dot{E}_{GW} \sim \frac{c^5}{G} \left(\frac{v}{c}\right)^6 \left(\frac{r_s}{L}\right)^2$$

r_s associated w/ non-axisymmetric mass distribution

- NS-NS, NS-BH, BH-BH Mergers (~ M_{\odot})
- Asymmetric stellar collapse
 - core-collapse supernovae, AIC of $WD \rightarrow NS$
- Rapidly rotating NSs; max obs ~ 700 Hz

Astrophysical Sources of ~ kHz GWs

'Guaranteed' Source: 3 known NS-NS binaries in our galaxy will merge in a Hubble time (no BH-NS systems known)

 $\dot{N}_{\text{merge}} \simeq 10^{-5} - 3 \times 10^{-4} \,\text{yr}^{-1} \,\text{per MW galaxy}$

Advanced LIGO : $20 - 10^3 \text{ yr}^{-1} \sim 100 \text{ yr}^{-1}$ best guess (Kalogera et al. 2004)

Advanced LIGO/VIRGO: NS-NS Mergers at ~ 300 Mpc BH-BH Mergers at ~ Gpc

Why Worry about EM Counterparts?

(i.e., can't we do all this great science w/ GWs alone?)

- post Nobel Prize, LIGO/VIRGO are astronomical observatories
- With EM counterparts, astrophysicists can
 - identify host galaxy (H₀; constrain progenitors)
 - connect to wealth of transient phenomenology (SNe, GRBs, new sources,)
 - uniquely constrain models: know masses, spins, orientation, ...

Why Worry about EM Counterparts?

(i.e., can't we do all this great science w/ GWs alone?)

- post Nobel Prize, LIGO/VIRGO are astronomical observatories
- With EM counterparts, GW astrophysicists can
 - improve parameter estimation on detections
 - cross-correlate GW w/ EM searches
 - gain factor of ~ 2 in sensitivity and ~ 10 in rate!
 - if merger rate low: EM signal critical to significant # of GW detections

Why Finding EM Counterparts is Hard

Sky Localization: LIGO + VIRGO

Problem: Poor positions ~ 3-100 deg² from few-arm interferometer Challenge: significant observational & theoretical work needed now

Astrophysical Sources of ~ kHz GWs

$$\dot{E}_{GW} \sim \frac{G}{c^5} \left(\frac{d^3Q}{dt^3}\right)^2$$

$$Q \sim M_{na}L^2$$

na = non-axisymmetric part of mass distribution

$$\dot{E}_{GW} \sim \frac{c^5}{G} \left(\frac{v}{c}\right)^6 \left(\frac{r_s}{L}\right)^2$$

rs associated w/ non-axisymmetric mass distribution

GWs & GRBs

- NS-NS, NS-BH, BH-BH Mergers (~ M_☉)
- Asymmetric stellar collapse
 - core-collapse supernovae, AIC of $WD \rightarrow NS$
- Rapidly rotating NSs; max obs ~ 700 Hz

Best Guess Progenitors of Gamma-ray Bursts

Gamma-Ray Bursts

- Bursts of ~ 0.1-10 MeV γ-rays (non-thermal)
- "Long" (~ 30 s) & "Short" (~ 0.3 s)
- Isotropic & Cosmological: z ~ 0.1-8.3
- Very Energetic: ~ 10⁴⁸⁻⁵⁵ ergs (isotropic)
- Highly Relativistic: $\Gamma \sim 10^{2-3}$
- Rare: GRB Rate ~ 10⁻⁶/yr/galaxy ~ 10⁻⁴ SN rate

Long-Duration GRBs

As GRB fades, a supernova appears

Associated with massive star formation and Type Ibc supernovae

→ Birth of a BH or NS during core-collapse

Distinguished from typical SNe by rapid rotation but ...

Level of Rotation Required in Long GRBs ⇒ GW Emission (can be ~ axisymmetric)

Short GRBs Hosts

Bloom et al. 2006

Berger et al. 2005

GRB Here Elliptical @ z = 0.22SFR < 0.1 M_{\odot} yr⁻¹

No Coincident SNe Older Stellar Population **Distinct Progenitor**

NS-NS & NS-BH Mergers

(Paczynski 1986; Goodman 1986; Eichler et al. 1989; Narayan et al. 1992)

NS-NS Merger

density contours & velocity vectors

Merger Leaves Behind Disk ~ 10-3-0.1 M_☉ (mostly free neutrons initially)

 $t_{
m visc} \sim 0.1 \left(rac{lpha}{0.1}
ight)^{-1} \left(rac{r}{100\,{
m km}}
ight)^{3/2} sec$

consistent w/ short GRB durations

NS-NS & NS-BH Mergers

(Paczynski 1986; Goodman 1986; Eichler et al. 1989; Narayan et al. 1992)

NS-NS Merger

density contours & velocity vectors

3 known NS-NS binaries in MW will merge in a Hubble time

 $\dot{N}_{
m merge} \simeq 10^{-5} - 3 \times 10^{-4} \, {
m yr}^{-1} \, {
m per} \, {
m MW} \, {
m galaxy}$ (Kalogera et al. 2004)

short grb rate ~ 10⁻⁶ yr⁻¹per MW

 \Rightarrow emission beamed

(or not all mergers \Rightarrow GRB)

EM counterpart to GW detection unlikely GRB; need ~ isotropic emission

The Evolution of the Remnant Disk

ang momentum conservation \rightarrow disk spreads (& cools)

ID time-dependent Models (α-viscosity; realistic v-microphysics)

The Little Bang: Late-time Disk Winds

Initially T ~ few MeV; disk mostly free neutrons After ~ sec, R ~ 500 km & T \leq 0.5 MeV free n & p recombine to He fusion (~ 7 Mev/nucl) unbinds disk

Ejected Mass ~ 1/2 Initial Disk ~ 10^{-2} M_o, at v ~ 0.1 c Neutron-rich matter (Y_e ~ 0.3)

Dynamical Ejecta in NS Tidal Tails

10⁻³-10⁻² M_☉ unbound during early dynamical phases of merger eg., Rosswog 2007; Goriely+ 2011 ...

Luminosity of Ejecta (Dynamical & Disk) Depends on Heating

> Initial thermal energy lost to adiabatic expansion

emission peaks when $t_{diff} \leq t_{exp}$ t ~ I day for NS ejecta

Rosswog 2007

Nucleosynthesis in NS Debris

Atomic Mass

Atomic Mass

Heating of NS Debris in Compact Object Mergers

R-process produces significant heating (~ Ni) at ≤ day

largely β -decays & fission (some γ -rays)

thermalization ~ 50% (Coulomb scattering)

Power-law htg ∝t^{-1.2} ~ identical to that of radioactive waste from fission reactors (Cottingham & Greenwood 2001)

R-process calcs by Almudena Arcones & Gabriel Martinez-Pinedo

R-process Powered Transient

Observational Diagnostics

few day "kilonova": L ~ 3 10⁴¹ ergs s⁻¹ (M_V ~ -15)

 $T \sim 10^4$ K at peak: **optical**

spectroscopic: all n-rich elements (no Ni, Fe, C, O, He, Si, H, Ca, ...)

colors, etc. hard to predict bec. insufficient atomic line info for relevant nuclei!

The EM Counterpart Challenge

NS-NS/BH Mergers:

Large FOV ~ many deg²
rapid cadence ≤ day
sensitivity to sources
30 x fainter than SNe
reasonably matched to
optical imaging surveys:
PTF, LSST, ...

EM Counterparts to kHz GW Sources

Prediction: NS-NS/BH Mergers

few day "kilonova": L ~ 3 10⁴¹ ergs s⁻¹ (M_v ~ -15)

spectroscopic: all n-rich elements (no Ni, Fe, C, O, He, Si, H, Ca, ...) **Observational Requirements:**

- Large FOV ~ many deg²
 - rapid cadence ≤ day
 - sensitivity to sources
 - \sim 30 x fainter than SNe

feasible w/ optical imaging surveys: PTF, LSST, ...

"There are more things in Heaven and Earth, Horatio, than are dreamt of in your philosophy" (Hamlet)

The Biermann Lectures: Adventures in Theoretical Astrophysics

- work on a range of problems: 'model building' & studying key processes
 - Compact Object Astrophysics
 - gamma-ray bursts, transients, accretion theory, the Galactic Center
 - Galaxy Formation
 - massive black hole growth, galactic winds, 'feedback', star formation in galaxies
 - Plasma Astrophysics
 - plasma instabilities (disks, galaxy clusters, ...), plasma turbulence (incl solar wind)
 - Stellar Astrophysics

Thanks for your hospitality!

• stellar seismology, tides