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ABSTRACT

A description of the SDSS image processing package, Photo.
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1. Introduction

The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey of the sky
(York et al. 2000) using a dedicated wide-field 2.5m telescope (Gunn et al. 2005) at Apache Point
Observatory, New Mexico. Imaging is carried out in Time Delay Integrate (TDI; also known as
drift-scan) mode using a dedicated camera containing 30 2048×2048 SITe CCDs (Gunn et al. 1998)
which gathers data in five broad bands, u g r i z, spanning the range from 300 to 1000 nm (Fukugita
et al. 2004), on moonless photometric (Hogg et al. 2001) nights of good seeing. The images are
processed using the specialized software, Photo, described in this paper, and are astrometrically
calibrated (Pier et al. 2003) using the UCAC catalog (Zacharias et al. 2000), and photometrically
(Tucker et al. 2005) calibrated using observations of a set of primary standard stars (Smith et al.
2002) on a neighboring 20-inch telescope (see also Appendix E). The median seeing of the imaging
data is 1.4 arcsec in the r band, and the 95% completeness limit in the r band is 22.2. An overview
of the SDSS data processing is given in Stoughton et al. (2002).

The SDSS camera generates data at about 4.6Mby/s, covering about 98.9 deg2/hr (but only
19.8 deg2/hr per band) with an exposure time per band of about 55s. The camera’s footprint
consists of 6 long strips, each 13.5 arcmin wide and up to 120◦ long. The sky is scanned past the
filters in the order r, i, u, z, g1, taking 4.9 minutes to pass from the center of the r to the center
of the g detector. These strips are cut into a set of frames of size 2048 × 13612 pixels (the plate
scale is 0.396arcsec/pixel, so a frame is 13.5× 9 arcmin2), and the frames taken of the same patch
of sky in the five bands are assembled to form a frame.

This paper describes the SDSS pipelines PSP and Frames, collectively referred to as Photo.
The SSC pipeline runs before PSP to pre-process the raw data into a more convenient form,
and to provide lists of objects for PSP. PSP is responsible for all tasks that require more than
a single field of data (e.g. scattered light corrections and PSF determination). We then run the
astrometric pipeline, Astrom (Pier et al. 2003), to provide absolute, and, more importantly in
this context, relative astrometry between objects detected in the 5 SDSS photometric bands. We
then run Frames, which removes the instrumental signature; detects objects in each band and
merges the detections into objects; deblends the objects, and produces a catalog of objects with
well-measured parameters, in instrumental units (pixels; data-numbers; angles relative to the scan
direction). Finally, additional pipelines (Tucker et al. 2005) are run after Photo has finished to
provide calibrated quantities (e.g. magnitudes; positions in (α, δ), and angles East of North).

(XXX Do we want a pretty colour picture of a piece of the sky? )

1Mnemonic: Robert Is Under Ze Gunn (Pier 1998)

2The strange number 1361 is set by the physical layout of the SDSS camera; the distance between the serial

registers of two successive CCDs is 65.3mm, which corresponds to 2× 1361 pixels
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In the early 1990s, when the SDSS was conceived, the data rate of 16 Gb/hr was intimidating3

and the total data volumes were far beyond the disk capacity available even at large computing
facilities. We accordingly spent considerable effort optimising the SDSS data processing in ways
which would not make sense if we were starting the task today; in particular we took pains to
minimise the total number of times that we’d process each pixel; the number of floating-point
operations per pixel, and the total memory footprint of the codes. Our goal was to be able to
process all of the imaging data within a lunation, and we thought that the Frames processing
would dominate the compute budget. Figure Fig. 1 shows the performance of Frames on about
400s of data from one dewar on a single 3GHz Xeon processor. It will be seen that we’d be able to
keep up with the Frames processing all of our data in realtime using only 8 processors. In reality,
the PSP processing takes a similar time, but we are still easily able to keep up with the data flow
using very modest computing resources.4

All of the SDSS imaging software5 is built using a infrastructure package called Dervish (Kent
et al. 1995)6 written in portable C, and using TCL as a command language. Dervish provides
standard data structures such as linked lists and vectors; a sophisticated memory manager with
debugging facilities; a set of astronomical data structures (such as 2-dimensional images and n-
dimensional tables); FITS (Wells et al. 2001) reading and writing; and utilities to parse C include
(‘.h’) files and provide access to the schema of the C data structures from TCL.

In this paper we make no sharp distinction between algorithms and duties implemented in
PSP and Frames. For those interested, Sec. 2 and Sec. 3 are principally concerned with PSP, and
the rest of the paper Frames.

Although some aspects of the SDSS data are encoded in the pipeline’s source code (for example,
the flat fields were taken to be 1-dimensional as we knew that the data would be taken in TDI; the
data is taken to be well sampled, as we knew the plate scale and thought that we knew the seeing),
much of the processing is specified via input parameter files; for example, the order and number
of photometric bands may be freely changed. Appendix A provides a few more details on these
parameters, and also the input files used to specify where inputs and outputs should be found and
placed, and how we specify the properties of the camera and CCDs.

3A 20MHz Motorola 68020 delivered about 3MIPS, and 150Mby of RAM was conceivable.

4The situation is rather different in crowded fields where Frames slows down dramatically; see Sec. 15

5But not the spectroscopic pipelines (Schlegel et al. 2005; Subbarao et al. 2005)

6Né Shiva; Kent et al. (1995).
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Fig. 1.— The amount of memory used while processing 11 fields of SDSS data (a total of 320Mby)
on a 3GHz Xeon processor, taking 66s per field. The red line shows the amount of memory being
used, while the cyan line shows how much memory is currently unused, but has been used while
processing the field; the black dashed line shows the sum of the cyan and red lines. The top green
line shows the total amount requested from the system. Each ‘bump’ in the cyan line corresponds
to processing a single field, after which inactive memory is released. About 75% of the total
processing time (the downward sloping segments of the red line) is spent measuring the properties
of the objects.
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1.1. Book-keeping information; Flags and Masks

It is as important to know when processing has failed as to produce accurate positions and
fluxes for well-behaved isolated objects. Photo accordingly associates a set of status bits with each
pixel, and another set of flag bits with each object in each band. A list of these bits is given in
Stoughton et al. (2002); a slightly updated listversion is given in Table 1.

Name Bit Description
CANONICAL CENTER 1 Measure Objects used canonical centre, not

the one determined in this band
BRIGHT 2 Object’s properties were measured in

BRIGHT pass
EDGE 3 Object is too close to edge of frame to be mea-

sured
BLENDED 4 Object is a blend
CHILD 5 Object is a child
PEAKCENTER 6 The quoted center is the position of the peak

pixel
NODEBLEND 7 No deblending was attempted
NOPROFILE 8 Object was too small to estimate a profile
NOPETRO 9 No Petrosian radius could be measured
MANYPETRO 10 Object has more than one Petrosian radius
NOPETRO BIG 11 No Petrosian radius could be estimated as ob-

ject is too big
DEBLEND TOO MANY PEAKS 12 Object has too many peaks to deblend
CR 13 Object’s footprint contains at least one CR

pixel
MANYR50 13 Object has more than one Petrosian 50% ra-

dius
MANYR90 15 Object has more than one Petrosian 90% ra-

dius
BAD RADIAL 16 Radial profile includes some low S/N points
INCOMPLETE PROFILE 17 Object is within the Petrosian radius of the

edge of the frame
INTERP 18 Object contains interpolated pixels
SATUR 19 Object contains saturated pixels
NOTCHECKED 20 Object contains NOTCHECKED pixels
SUBTRACTED 21 Object had wings subtracted
NOSTOKES 22 Object has no measured ‘stokes’ shape param-

eters
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Name Bit Description
BADSKY 23 The sky level at the position of the object that

the object’s peak pixel is negative
PETROFAINT 24 The surface brightness at the position of at

least one candidate Petrosian radius was too
low

TOO LARGE 25 Object is too large to be processed
DEBLENDED AS PSF 26 Object was deblended as a PSF
DEBLEND PRUNED 27 Deblender pruned the list of candidate chil-

dren
ELLIPFAINT 28 The center’s fainter than the desired elliptical

isophote
BINNED1 29 Object was detected in the smoothed 1 × 1

binned image
BINNED2 30 Object was detected in the smoothed 2 × 2

binned image
BINNED4 31 Object was detected in the smoothed 4 × 4

binned image
MOVED 32 Object may have moved (but probably didn’t;

see DEBLENDED AS MOVING)
DEBLENDED AS MOVING 33 Object was deblended as a moving object
NODEBLEND MOVING 34 Object is a rejected candidate to be deblended

as moving
TOO FEW DETECTIONS 35 Object has too few detections to deblend as

moving
BAD MOVING FIT 36 Object’s centroids as a function of time were

inconsistent with moving at a constant veloc-
ity

STATIONARY 37 The object’s measured velocity is consistent
with zero

PEAKS TOO CLOSE 38 At least some peaks were too close, and thus
merged

BINNED CENTER 39 Object was found to be more extended than
a PSF while centroiding, and the image
was thus binned to use a more appropriate
smoothing scale

LOCAL EDGE 40 Object’s center in at least on band was too
near the edge of the frame

BAD COUNTS ERROR 41 The PSF or fiber magnitude’s error is bad or
unknown
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Name Bit Description
BAD MOVING FIT CHILD 42 A potential child’s fit as a moving object was

poor, and the child was thus taken to be sta-
tionary

DEBLEND UNASSIGNED FLUX 43 A significant part of the total flux was di-
vided among the children using the special
algorithm for handling otherwise unassigned
flux

SATUR CENTER 44 Object’s center’s is very near (or includes) sat-
urated pixels

INTERP CENTER 45 Object’s center’s is very near (or includes) in-
terpolated pixels

DEBLENDED AT EDGE 46 Object’s too close to the edge to apply the de-
blending algorithm cleanly, but was deblended
anyway

DEBLEND NOPEAK 47 Object had no detected peak in this band
PSF FLUX INTERP 48 A significant amount of object’s PSF flux is

interpolated
TOO FEW GOOD DETECTIONS 49 Object has too few good detections to be de-

blended as moving
CENTER OFF AIMAGE 50 Object contained at least one peak whose cen-

ter lay off the atlas image in some band
DEBLEND DEGENERATE 51 At least one potential child has been pruned

as being too similar to some other template
BRIGHTEST GALAXY CHILD 52 Object is the brightest child galaxy in a blend
CANONICAL BAND 53 This band was primary (usually r)
AMOMENT UNWEIGHTED 54 Object’s ‘adaptive’ moments are actually un-

weighted
AMOMENT SHIFT 55 Object’s center moved too far while determin-

ing adaptive moments
AMOMENT MAXITER 56 Too many iterations while determining adap-

tive moments
MAYBE CR 57 Object may be a cosmic ray
MAYBE EGHOST 58 Object may be an electronics ghost
NOTCHECKED CENTER 59 Object’s center is NOTCHECKED
HAS SATUR DN 60 Object’s counts include DN in bleed trails
DEBLEND PEEPHOLE 61 Deblend was modified by optimiser
SPARE3 62 Unused
SPARE2 63 Unused
SPARE1 64 Unused
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Name Bit Description
Table 1:: Photo’s bit flags which capture the processing car-
ried out on an object.

The per-pixel information identifies pixels that have been interplated over (Sec. 4.2); that were
saturated (Sec. 4.1); that were parts of cosmic rays (Sec. 4.3); that were not checked for objects,
part of a BRIGHT object, or part of any object (Sec. 5.2); and which had flux subtracted as part of
bright object subtraction (Sec. 5.1).

(XXX EDGE objects)

1.2. Choice of data type

In common with almost all CCD controllers, the SDSS raw data consists of 16-bit unsigned
numbers. In view of the scary (for 1993) data rates of 4.6Mby/s, and the high cost of memory,
Photo processes the data as unsigned short ints (‘U16’) rather than converting to float. While
this leads to significant added complexity in the code, it does mean that Photo’s memory footprint
while processing a 30Mby frame is only around 100Mby, that we gain a factor of two in D-cache
efficiency, and that we avoid much floating point arithmetic (an important consideration for some
ancient processors).

Operationally, operating on U16 data has a number of consequences. One is that we add a ‘soft
bias’ of 1000DN (‘Data Numbers’) to the data during debiasing, to prevent it becoming negative
after sky subtraction. Furthermore, when carrying out operations that change the dynamic range
of the data (e.g. smoothing) we have to scale up the data by some number of bits to preserve
precision. Finally, when carrying out operations that can generate a floating point result (e.g. flat
fielding; sky subtraction) we have to be sure to convert back to U16 by adding a uniform random
number in the [0, 1] 7

2. The Point Spread Function

Photo makes extensive use of knowledge of the telescope’s Point Spread Function (PSF), and
it also assumes that the PSF is well sampled by the pixels. Appendix C describes image formation,
and also discusses exactly what is meant by the value of a pixel.

7These numbers are in fact pre-computed and generated inline so there is no significant efficiency hit from this

requirement. The added noise, 1/12 added in quadrature, is negligible even at u, our quietest band.
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2.1. Is SDSS Data Band Limited?

Fig. 2 shows the Fourier power at the Nyquist frequency (Press et al. 1992; Bracewell 2000),
(f = 1/2 with our convention) as a function of the PSF’s FWHM; curves are shown for the full
Kolmogorov-Fried PSF (Eq. C2), a 2-Gaussian approximation to it, and a single-Gaussian of the
same FWHM. In 1” seeing (assuming 0.4 arcsec pixels) the single Gaussian’s amplitude at the
band limit is only 0.39% (or 0.56% for a Kolmogorov-Fried PSF); for a FWHM of 0.8” (the best
images that the optics can deliver, for which the PSF is admittedly non-Gaussian), the band limit
amplitude is still only 2.84% (2.78% for the Kolmogorov-Fried PSF); when the seeing is worse than
an arcsecond, the situation only improves.

2.2. Modelling the Point Spread Function

Even in the absence of atmospheric inhomogeneities the SDSS telescope delivers images whose
FWHMs vary by up to 15% from one side of a CCD to the other (Gunn et al. 2005); the worst
effects are seen in the chips furthest from the optical axis. There is also a small amount of fourth-
order astigmatism, so the delivered images depend somewhat upon the focus. (XXX JEG: Is all
this correct? )

As the data is taken in Time Delay Integrate (TDI) mode, temporal variation of the PSF leads
to spatial variation of the observed image quality.

If the seeing were constant in time one might hope to understand these effects ab initio (the
focus is accurately controlled using a closed-loop servo (Gunn et al. 2005)), but when coupled with
time-variable seeing the delivered image quality is a complex two-dimensional function and we chose
to model it heuristically using a Karhunen-Loève (KL) transform (Hotelling 1933; Karhunen 1947;
Loève 1948); this approach is introducted in Lupton et al. (2001).

2.3. The Selection of PSF Stars

The selection of PSF stars is done in two steps. A simple object-finder is used to find a list
of candidates brigher than roughly 19-20th magnitude, and in the first crude step objects that are
clearly not good candidates to be isolated stars are rejected based on their individual properties
(i.e. without considering the overall sample properties). This category includes objects that are too
faint, those with saturated or cosmic ray pixels, objects with very close neighbors, and significantly
elongated objects (more sophisticated star/galaxy information is not yet available at this stage in
the processing).

In the second step, the distribution of image size and ellipticity is used to reject stars that
deviate significantly (∼ 3σ or more) from the median. Typically about 50% of the initial objects
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Fig. 2.— The amplitude of the PSF at the Nyquist limit for a PSF normalised to unit flux. The
bottom axis is in pixels; the top axis is in arcsec, assuming 0.4 arcsec/pixel.
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brighter than 19th magnitude survive both rejection steps.

(XXX Željko: I think that we need rather more detail here. Isn’t there some profile clipping?
Comparison between bands for non-star? )

2.4. KL Expansion of the PSF

We use these stars to form a KL basis, retaining the first n terms of the expansion:

P(i)(u, v) =
r=n∑
r=1

ar
(i)Br(u, v) (1)

where P(i) is the ith PSF star, the Br are the KL basis functions, and u, v are pixel coordinates
relative to the origin of the basis functions. In determining the Br, the P(i) are normalised to have
equal peak value, to avoid uncertainties in the baseline level (Szokoly 1999).

Once we know the Br we can write

ar
(i) ≈

l+m≤N∑
l=m=0

br
lmxl

(i)y
m
(i) (2)

where x, y are the coordinates of the centre of the ith star, N determines the highest power of x or
y to include in the expansion, and the br

lm are determined by minimising

∑
i

(
P(i)(u, v)−

r=n∑
r=1

ar
(i)Br(u, v)

)2

; (3)

note that all stars are given equal weight as we are interested in determining the spatial variation
of the PSF, and do not want to tailor our fit to the chance positions of bright stars. An alternative
way to achieve this would have been to weight each star by σ2 + Υ2 where σ is a measure of the
uncertainty in the star’s flux, and Υ is a floor designed to prevent bright stars from dominating the
fit; in the limit Υ →∞ we would recover the equal-weights scheme that we in fact adopted.

2.4.1. Application to SDSS data

For each CCD, in each band, there are typically 15-25 stars in a frame that we can use to
determine the PSF Sec. 2.3; we usually take n = 3 and N = 2 (i.e. the PSF spatial variation is
quadratic). We need to estimate n KL basis images, and a total of n(N +1)(N +2)/2 b coefficients,
and at first sight the problem might seem underconstrained. Fortunately we have many pixels in
each of the P(i), and thus only the number of spatial terms ((N + 1)(N + 2)/2, i.e. 6 for N = 2)
need be compared with the number of stars available.
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Fig. 3.— The KL basis images for frame 756-z6-700, using a histogram-equalised stretch.
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Fig. 4.— The estimated PSF for 35 positions in frame 756-z6-700, using a linear stretch. This is
early SDSS data, and for one of the CCDs with worst image quality, and the astigmatism is clearly
seen. The first component of Fig. 3 includes this astigmatism, although it is not obvious with the
stretch used for that figure.
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In fact, rather than use only the stars from a single frame to determine that frame’s PSF, we
include stars from both proceeding and succeeding frames in the fit. This has the advantage that
the spatial variation is better constrained at the leading and trailing edges of the frame; that the
PSF variation is smoother from frame to frame; and that we have more stars available to determine
the PSF. The 4 KL basis images from an early SDSS run are shown in Fig. 3 and the resulting
reconstructed PSFs at 35 points within the frame are shown in Fig. 4; this was early data, and the
images are clearly astigmatic, with the astigmatism varying as a function of position.

In practice we use a range of ±2 frames to determine the KL basis functions Br and ±1/2
frame to follow the spatial variation of the PSF. If we try to use a larger window we find that
variation of the ar coefficients is not well described by the polynomials that we have assumed. We
have not tried using a different set of expansion functions (e.g. a smoothing spline, or Fourier
series).

Additionally, we force the KL basis images with n > 0 to have 0 mean in their outermost pixels,
those more than approximately 7” from the center of the star (7” is approximately the radius of
the region used to determine the KL PSF) 8. This doesn’t force the PSF to be zero in its outermost
parts, but it does mean that the PSF is taken to be constant at 7”.

This modification to the basis functions means that they are no longer strictly orthogonal, but
it makes the PSF determination significantly more robust to errors in the background level.

Consider the case that all stars have identical PSFs beyond 7” from their centres, while their
cores vary. The 0th KL basis image is the mean of all the input stars, and (in the absence of noise)
all of the stars are perfectly described by this image, and all higher basis images must be exactly
zero at the edge. What happens if the stars’ fluxes or background level are not perfectly measured?
This leads to basis images (with n > 0, i.e. not just the mean input star) with non-zero background
level, as well as a structure near the centre of the star that describes some part of the PSF’s true
variability. Let’s assume that most of this non-zero background appears in the rth basis image.
When we come to estimate the PSF at some point in the frame where the PSF’s core has significant
variation described by this rth image, then the background level of the estimated PSF can be badly
off — the initial small error in the sky can be amplified by the need to match the core.

The information about the PSF is written out to psField files; see Appendix G for information
on how to reconstruct the PSF given these files.

2.4.2. Gauging the Success of the KL Expansion

The success of the KL expansion is gauged by comparing the PSF photometry based on
the modeled KL PSFs, to the aperture photometry for the same (bright) stars. The width of the

8This was introduced in version v5 4 20; some older reductions may still be available.
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distribution of these differences is typically 1% or less, and indicates an upper limit on the accuracy
of the PSF photometry. Without accounting for the spatial variation of the PSF across the image,
the photometric errors would be as high as 15%.

(XXX Reducing the order of the expansion/expanding the window in case of difficulty)

Each band has an associated status, and a summary status is provided for each field; the
interpretation of these values is discussed in Appendix G.1.

An example of the instantaneous image quality across the imaging camera is shown in Fig.
5, where each rectangle represents one chip. The stretch is histogram equalized and the dynamic
range is from 1.4 arcsec to 2.0 arcsec (FWHM). (XXX Do we have a more recent version of this? )

2.5. Other Uses for Point Sources Detected by the PSP

In addition to the stars employed to characterize the PSF, PSP also detects and processes
‘wing’ and ‘frame’ stars. These are stars bright enough to be saturated, either mildly in the case of
wing stars, or dramatically in the case of frame stars. The frame stars were intended to be used to
characterise the very outermost parts of the PSF, but are not currently exploited. The wing stars
are used, in concert with the unsaturated stars used to determine the KL expansion of the PSF, to
determine a composite radial profile over a wide range of radii; this is used in determining aperture
corrections; see Sec. 10.3.3. The composite profile is a non-parametric maximum-likelihood model,
which patches together a set of overlapping pieces of profiles from different stars.

(XXX More details? A figure? )

3. Determining Bias Vectors, Scattered Light, and Flatfields

3.1. The Scattered Light Correction and Flatfield Determination

An initial attempt to derive flatfield vectors by assuming a flat sky background failed because
of the significant scattered light contribution. This scattered skylight presumably comes from solid
angles on the sky in very close proximity to the area being imaged, and can have amplitudes as
large as 10% of the background intensity (for u chips close to the chip edges, in other bands it
is typically several times smaller). This variation then propagates with the same amplitude to
photometric errors when flatfield is determined using sky background. Instead, the flatfield vectors
are determined externally and provided as input to image processing pipelines. We use provided
flatfield vectors and measured background to derive the scattered light correction. This additive
correction is defined as the background excess over its minimum and formally treated as a bias
contribution in subsequent processing.

(XXX Smoothing/averaging lengths. Use of overscan/extended registers)
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Fig. 5.— The instantaneous second moment (width) of the point spread function as a function of
position in the camera. Each square represents one of the photometric CCDs. The width variation
is due to time variability during the 54 s integration, plus effects in the telescope optics. The stretch
is linear, from 1.4 to 2 arcsec.
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3.2. External Determination of Flatfield Vectors

The external (in sense that it is not part of regular run-by-run processing) determination of
flatfields is an iterative procedure that utilizes two different constraints. It is iterative because it is
based on successive corrections to adopted flatfield vectors until the difference between measured
stellar magnitudes and their “true” values becomes uncorrelated with chip column. Ideally, the
“true” values would be provided by an external catalog. However, due to faint levels probed by
SDSS, its large sky coverage and high photometric accuracy requirement, such a catalog does not
yet exist. A partial solution is to use measurements of photometric calibration stars provided by
the Photometric Telescope (Tucker et al. 2005). However, the number density of these stars on
the sky is insufficient to constrain flatfield variation with required spatial resolution across chips,
especially in the u band. Additional constraints come from a requirement that the mean position
of the stellar locus in a four-dimensional color space is not correlated with chip column. This
position is reproducible across the sky to better than 0.01 mag. (for details see Ivezić et al. (2004))
and provides a powerful method to constrain flatfield vectors. Since it is a color-based method, it
provides one contrain fewer than needed, and the system is closed by using PT measurements in
the g, r and i bands. These measurements are used in an equally-weighted linear combination to
increase the signal-to-noise ratio.

3.3. Flatfield “Seasons”

It was an unpleasant discovery that flatfield vectors vary abruptly with time: they are constant
within the measurement noise (typically a fraction of percent) for many months and then change
by several percent, most strongly in the u band. These abrupt changes are illustrated in Fig. 6
and correspond to changes in the vacuum state of the camera due to regular maintenance (XXX
I’d ask Jim to read this). Flatfield corrections due to such temporal variations are constrained
and applied separately for each season. After only one flatfield iteration, the residual systematic
photometric (color) errors do not exceed a few tenths of a percent, as illustrated in Fig. 7.

4. Removing the Instrumental Signature

TDI data differs from staring-mode CCD data only in so much as the flat-fields and biases
are 1-dimensional, averaged over the height of the CCD, and this washes out most small scale
structure.9

9This averaging also effectively removes all traces of fringing, and we accordingly don’t have to remove a fringe

frame, even in the i band (we employ thick CCDs at z).
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Fig. 6.— The position of the stellar locus as a function of time and chip column. This mosaic
contains 24 panels: 6 groups of four horizontally arranged images for each camera column, with
columns 1 and 4 in the top row, 2 and 5 in the middle row, and 3 and 6 in the bottom row. The
four panels in each group correspond to four principal colors (s, w, x and y, as described by Ivezić
et al. (2004)). Each panel displays the deviation of the principal color from the mean for the whole
chip as a function of chip column position (x axis) for ∼100 runs sorted by time (y axis), on a
linear scale with ±1% stretch corresponding to blue/yellow colors (the bar on the top of each panel
is stretched from -2% to 2%). The strong abrupt changes of the structure in the y direction at the
level of a few percent are evident and correspond to the boundaries of flatfield “seasons”.
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Fig. 7.— Analogous to Fig. 6, except that here a corrected flatfield vector for each flatfield “season”
visible in Fig. 6 was used to process the data. The residual systematic photometric (color) errors
do not exceed a few tenths of a percent.
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4.1. Flat Fielding, Bias Subtraction, and Linearization

A 512×412 region of an SDSS image is shown in Fig. 4.1, and displays most of the characteristic
problems associated with CCDs. (XXX Where does the description of this figure belong? )

Before bias-subtraction and flatfielding, we run an object detection algorithm looking for sat-
uration (bleed) trails. We detect all pixels over a given threshold (which is different for each CCD,
and for each half of the CCDs that have two working amplifiers). The resulting set of pixels is
grown out by one pixel 10 to allow for the pixels affected by bleeding at the top and bottom of the
trails, and for bad charge transfer efficiency (CTE) in the serial register.

The total number of counts within each trail is stored, along with the list of affected pixels.11

These counts are included in the flux of some, but not all, saturated objects — see Sec. 10.5.

The known ‘hot’ columns (see Sec. A.1) are removed from the list of saturated pixels (although
they are, naturally, included in the list of bad columns to be interpolated over).

We then correct for non-linear response of the amplifiers using a 16-bit lookup table; as de-
scribed in Doi (2005) we measure the response of each amplifier to varying light levels, and find
that it is well described by a function of the form:

D = d +
{

0 if d < T ;
c (lg(d)− lg(T )) otherwise.

where d is the raw value and D the corrected value of a pixel. c and T are coefficients that are read
from one of Photo’s parameter files (Sec. A).

4.2. Interpolation over CCD Defects and Bleed Trails

Photo uses linear prediction (e.g. Press et al. (1992); Press (1993)) to interpolate over missing
data, which comes in three flavours: bad columns (whose positions we know a priori)), bleed trails,
and cosmic rays. We merge the lists of saturated pixels with the list of known bad columns in
the CCD (see Appendix B) before interpolating over them as part of the process of removing the
instrumental signature; cosmic rays are interpolated over later.

The number of bad columns per CCD varies from 2 to 44, with a mean of 15. The majority
of these have identified traps, with a sprinkling of depressed and noisy columns. The median
separation between bad columns is about 75 pixels, although each CCD has on average a couple
of adjacent bad columns, which are harder to interpolate over satisfactorily. As mentioned in Sec.

10i.e. the set of saturated pixels is augmented by every pixel which has a saturated neighbor, horizontally, vertically,

or diagonally.

11the data structure employed actually stores sets of row; column0, column1 triples rather then each pixel
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Fig. 8.— A 512 × 512 region of an SDSS image, showing a bright star. The left hand panel is of
the raw data, showing cosmic rays, and the star’s diffraction spikes, bleed trails, ghosts, and serial
register artifact. The split between the CCD’s two amplifiers is visible to the right of the star. The
right hand panel shows the corrected version of the same image. The data is taken in the i band,
which is why the star has such an extensive halo (see Sec. 5.1).
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4.3, there are of order 150 cosmic rays hits in each frame (and therefore about 500 contaminated
pixels), with the exception of the g band CCD with about 330 CR hits.

Given a stationary process,
yi ≡ si + ni

where si is the signal, and ni the noise, we may predict the value of the signal sp at some point p

as
s̃p =

∑
j

Dpjyj ; (4)

it is clear that the estimator is unbiased if
∑

j Dpj = 1.

Let us choose the Dpj to minimise the expectation value of the error (sp − s̃p)2 subject to the
constraint that

∑
j Dpj = 1; that is we wish to minimise

〈(sp −
∑

j

Dpjyj)2〉 − 2λ
∑

Dpj .

Differentiating with respect to Dpj and noting that 〈sn〉 = 0, this becomes

D|i=p = (S + N)−1 (S|i=p − λE) (5)

where we have written 〈sisj〉 and 〈ninj〉 as the symmetric matrices S and N , 〈spsj〉 and Dpj as
the vectors S|i=p and D|i=p, and defined E as the vector with all components equal to one. The
Lagrange multiplier λ is determined by the condition

∑
Dpj = 1, i.e.

λ =
ET (S + N)−1S|i=p − 1

ET (S + N)−1E
(6)

4.2.1. Application to Seeing-convolved Data

Let us apply this theory to interpolation over defects in images, so p will be the index for a
bad pixel. We shall assume that the images consist purely of point sources, so the signal s is given
by

s(x) = P ⊗
∑

l

(B + δ(x− xl))

where B is the background, P is the PSF, ⊗ signifies a convolution, and the xl are the positions
of the sources. Setting B = 0 (which will not affect D as our estimator is unbiased), and assuming
that the sources are scattered randomly,

S ≡ 〈sisj〉 = 〈PiPj〉 = 〈P (xi)P (xj)〉 = 〈P (0)P (xi − xj)〉
S|i=p ≡ 〈spsj〉 = 〈P (0)P (xp − xj)〉.

We may take the noise to be uncorrelated, so that N is diagonal.
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In order to apply this to interpolation, let us set the noise to be infinitely larger in the bad
columns than the good. Consider the case of infinite signal-to-noise ratio; Eq. 5 shows, unsurpris-
ingly, that if there are no bad columns the best estimate of yj is yj itself (N = 0, so λ = 0 and
D = S−1S = I). Let us now take the PSF P to be a Gaussian G(α) (Eq. C1), i.e.

S(xi − xj) = exp(−|xi − xj)|2/(4α2)),

and restrict ourselves to only 2M + 1 terms (centred on the bad column) in estimating the D|p=i.
Table 2 shows the results for a variety of values of M , for α = 1 and considering only one-dimensional
interpolation; Fig. 9 shows the result of applying the M = 2 coefficients to simulated SDSS data in
slightly worse seeing (1.03” FWHM, i.e. α = 1.1 pixels). The image is the sum of a wide Gaussian
and two PSFs separated by 1.75 FWHM. Fig. 10 shows the effect of trying to interpolate over
two bad columns, and Fig. 11 shows the effect of decreasing the pixel size by about 27% (or,
equivalently, making the seeing 27% worse).

In addition to the coefficients, the table gives the values of
∑

D2
i , the variance in the inter-

polated value in units of the variance of the good pixels. By choosing M suitably it is possible to
tune the variance of the interpolated pixels, although whether this is worthwhile is not clear.

The coefficients in Table 2 were calculated on the assumption of infinite signal-to-noise; Table
3 gives the coefficients for interpolating over one bad column as a function of the S/N ratio.

In the limit of zero S/N the interpolated values are all equal to the mean of the end points
(as there is no information in the signal, the best estimate of sp is simply the background, and the
best estimate of that is the mean of the available data).

4.3. Cosmic Ray Rejection

For most of the area covered, the SDSS has only one image in each band, making the traditional
technique for rejecting cosmic rays (comparing two or more images) inapplicable. Even when
we have multiple images, they were taken at different epochs and variability would significantly
complicate a cosmic ray rejection scheme based upon comparing repeated images. (XXX Need

M
∑

D2
i D|i=p

1 0.500 0.500 0 0.500
2 1.347 -0.274 0.774 0 0.774 -0.274
3 2.004 0.166 -0.510 0.844 0 0.844 -0.510 0.166
4 2.717 -0.108 0.351 -0.643 0.900 0 0.900 -0.643 0.351 -0.108

Table 2: Interplation coefficients for a single bad column, infinite signal-to-noise, and various values
of M Also listed are the values of

∑
D2

i , which give the variance in the interpolated pixels (in units
of the variance of the good pixels).
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Fig. 9.— Interpolating over a single bad column in 1.03′′ FWHM Gaussian seeing with 0.396”
pixels (i.e. α = 1.1 pixel). The bottom left panel shows the model in dotted magenta, a pair of
PSFs and a wider “galaxy”. The ‘good’ pixels are shown a open squares, and the interpolated
values are shown as a red star. The missing data point is shifted one pixel to the right in each
successive panel.
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Fig. 10.— Interpolating over two bad columns, otherwise the simulation is identical to Fig. 9; note
that the recovery of the missing values is worse.
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Fig. 11.— Interpolating over two bad columns with 0.311” pixels (α = 1.4 pixel), otherwise the
simulation is identical to Fig. 9; note that the recovery of the missing values is significantly better
than in Fig. 10.
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literature search).

Photo looks for cosmic rays in two different ways. Firstly, during the removal of the instru-
mental signature (Sec. 4.1) we search every image looking for ‘easy’ cosmic rays which we record
(by setting the CR flag bit) and interpolate over. We then proceed with the image processing on
the assumption that there are no surviving cosmic rays. Then, while classifying each detected
object, we ask the question, ‘Is this object consistent with being a cosmic ray?’; if the answer is
‘Yes’ we set a flag bit MAYBE CR. The motivation for this two-stage approach is that we have found
it impossible to tune the first algorithm to be perfect, finding all true cosmic rays with no false
detections. The consequences of a false detection are severe, as interpolating over a ‘cosmic ray’
compromises the photometry of any neighbouring real objects. We shall discuss the second pass as
part of the discussion of star-galaxy classification (Sec. 11.1).

4.3.1. Cosmic Ray Rejection: pass I

The first-pass algorithm is to search for all pixels which satisfy a series of conditions:

1. That the candidate bad pixel p not be adjacent to a saturated pixel.

2. That p’s intensity I exceed the locally-determined background (actually the mean of pairs of
neighbouring pixels) by nσ where σ2 is the sky variance. We have usually taken n = 6.

3. That the gradients near the pixel not exceed that band-limit imposed by the PSF; specifically
we require that no pixel be part of a peak which is sharper than the centre of a star centred
in a pixel. Allowing for noise, this condition becomes

I − c ∗N(I) > P (d)
(
Ī + cN(Ī))

)
(7)

where c is a constant, N(I) is the standard deviation of I, P (d) is the value of the PSF at a
distance d from the centre of a star, Ī is the average of two pixels a distance d away from our

S/N
∑

D2
i D|i=p

∞ 1.347 -0.274 0.774 0 0.774 -0.274
500 1.333 -0.270 0.770 0 0.770 -0.270
100 1.279 -0.257 0.757 0 0.757 -0.257
50 1.218 -0.242 0.742 0 0.742 -0.242
10 0.876 -0.146 0.646 0 0.646 -0.146
5 0.654 -0.068 0.568 0 0.568 -0.068
2 0.410 0.050 0.450 0 0.450 0.050
1 0.311 0.126 0.374 0 0.374 0.126
0 0.250 0.250 0.250 0 0.250 0.250

Table 3: The interpolation coefficients for a single column defect as a function of S/N.
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pixel. We have found that in practice we must multiply P (d) by some fiddle factor, c2 < 1,
to avoid flagging the cores of stars as ‘cosmic rays’. We have found that the values c = 3.0,
c2 = 0.8 work well in practice.

These conditions are applied sequentially to the pixel being studied using the four pairs of
neighbouring pixels (NS, EW, NW-SE, and NE-SW, d = 1, 1,

√
2,
√

2). The candidate cosmic ray
must exceed condition 2 for all four pairs of neighbours, and condition 3 for at least one pair.

The thinking behind this choice is that while most cosmic rays contaminate more than one
pixel, they pass through the CCD in a straight line so almost all pixels have at least one pair of
uncontaminated neighbours.

Once a cosmic ray contaminated pixel is identified, its location is noted and its value is replaced
by an interpolation based on the pair of pixels that triggered condition 3; the interpolation algorithm
used is the same as that used for fixing bad columns (Sec. 4.1). This removal of contaminated
pixels as they are found makes it easier to find other pixels affected by the same cosmic ray hit.

Once the entire frame has been processed, the pixels identified individually as being contami-
nated by cosmic rays are assembled into cosmic ray ‘events’ of contiguous pixels. Each such event
must contain more than a minimum number of electrons (not DN); we have adopted a threshold
of 150e−.

We then go through the frame again, looking at pixels adjacent to these cosmic ray events.
Processing is identical, except that we set c2 = 0 for these extra contaminated pixels.

We find about 160 cosmic rays per field in all bands except g, where we find about 330
(presumably due to radioactivity in the filter) and z where there are about 135; in total we thus
find about as many cosmic rays as objects in the 5 frames that make up a field.

4.4. Serial register artifacts

The serial registers in the SITe CCDs used in the SDSS camera (Gunn et al. 1998) are light-
sensitive. Because the SDSS data is taken in TDI mode, every object deposits a small amount of
charge as it crosses the serial register (the fraction would be 1/2048 for our 2048 × 2048 CCDs if
the serial register were the same width as a row of the CCD, in fact the fraction is rather larger).
Because the serial register is being clocked as objects move across it, the charge is smeared out
across the entire width of the detector, or half the width if two amplifiers are being used; see Fig.
4.1.
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5. Sky Subtraction and Object Detection

5.1. Sky Subtraction

This describes the v5 4 sky subtraction algorithms. The v5 3 algorithms differ in two ways:

• No debiasing is applied; it’s assumed that the mean ∼ median for Poisson variables in the
large µ limit

• The radial profiles (see Sec. 9.2) are clipped at 2.326σ, not 4.0σ.

These changes largely, but not entirely, cancel out

It is quite clear what astronomers mean by ‘sky’: the mean value of all pixels in an image
which are not explicitly identified as part of any detected object. It is this quantity which, when
multiplied by the effective number of pixels in an object, tells us how much of the measured flux is
not in fact associated with the object of interest. Unfortunately, means are not very robust, and
the identification of pixels ... not explicitly identified as part of any detected object is fraught with
difficulties.

There are two main strategies employed to avoid these difficulties: the use of clipped means,
and the use of rank statistics such as the median. Appendix F discusses some of the issues to which
these approaches lead when applied to data with a Poisson error distribution.

Photo performs two levels of sky subtraction; when first processing each frame it estimates a
global sky level, and then, while searching for and measuring faint objects, if re-estimates the sky
level locally (but not individually for every object).

The intial sky estimate is taken from the median value of every pixel in the image (more
precisely, every fourth pixel in the image), clipped at 2.32634σ. This estimate of sky is corrected
for the bias introduced by using a median, and a clipped one at that. The statistical error in this
value is then estimated from the values of sky determined separately from the four quadrants of
the image.

Using this initial sky estimation, Photo proceeds to find all the bright objects (typically those
with more than 60σ detections). Among these are any saturated stars present on the frame, and
Photo is designed to remove the scattering wings from at least the brighter of these — this should
include the scattering due to the atomosphere, and also that due to scattering within the CCD
membrane, which is especially a problem in the i band. In fact, we have chosen not to aggressively
subtract the wings of stars, partly because of the difficulty of handling the wings of stars that do
not fall on the frame, and partly due to our lack of a robust understanding of the outer parts of
the PSF (XXX Discuss further? ). With the parameters employed, only the very cores of the stars
(out to 20 pixels) are ever subtracted, and this has a negligible influence on the data. Information
about star-subtraction is recorded in the fpBIN files, in HDU 4.
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Once the BRIGHT detections have been processed, Photo proceeds with a more local sky esti-
mate. This is carried out by finding the same clipped median, but now in 256 × 256 pixel boxes,
centered every 128 pixels. These values are again debiased.

This estimate of the sky is then subtracted from the data, using linear interpolation between
these values spaced 128 pixels apart; the interpolation is done using a variant of the well-known
Bresenham algorithm (Bresenham 1965) usually employed to draw lines on pixellated displays.

This sky image, sampled every 128× 128 pixels is written out to the fpBIN file in HDU 2; the
estimated uncertainties in the sky (as estimated from the interquartile range and converted to a
standard deviation taking due account of clipping) is stored in HDU 3. The value of sky in each
band and its error, as interpolated to the centre of the object, are written to the fpObjc files along
with all other measured quantities. In the case of blended objects, there are other contributions to
the sky value associated with each objects; see Sec. 8

After all objects have been detected and removed (as described below), Photo has the option
of redetermining the sky using the same 256 × 256 pixel boxes; in practice this has not proved to
significantly affect the photometry.

5.2. Object Detection

(XXX Needs more work. What’s in the EDR? At least this discusses atlas images)

Consider the problem of fitting a model PSF to a faint star in an image; The log-likelihood of
the fit is proportional to

∑
i(Oi − fPi)2 where Oi are the measured pixel intensities (with the sky

subtracted), Pi is the form of the PSF, the sum is over all the pixels in the image, and the noise is
taken to be the same in all pixels (i.e. the sky noise dominates). If we expand this out, the only
term that depends on the position of the star is

∑
i OiPi, i.e. the convolution12 of the PSF with

the data. Furthermore, the flux in the star is also proportional to
∑

i OiPi, so the PSF-convolved
image is proportional to the signal-to-noise ratio for a stellar detection at any point in the image.

MLE estimates are known to be optimal in the large-sample limit (e.g. Lupton (1993)), so the
best way to find objects of known profile in an image is to smooth with that profile, and then find
all pixels above a threshold level; that threshold is directly related to the desired signal-to-noise
ratio threshold. Moreover, a single pixel detection is perfectly acceptable, it’s simply an object
close to the detection threshold.

As the area in the smoothed image tells us more about significance than extent, how should we
decide which pixels belong to a detected object? As the detection algorithm assumes that we know
the object’s profile, the answer’s immediate: the object’s consists of all pixels where the profile is

12actually the correlation, which is equivalent to correlation with the mirror-image of the PSF. The distinction is

only important if the PSF lacks a centre of symmetry
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non-zero, centred at the highest point in the smoothed image.

In more detail Photo’s algorithm is:

• Smooth with the PSF

• Detect groups of connected pixels above a threshold; these are known as ‘objects’.

• Grow each object approximately isotropically by an amount equal to approximately the
FWHM of the PSF. For a single pixel detection this results in an area approximately equal
to the seeing disk; for more extended objects it merely enlarges the detected region a little.
If objects overlap during this operation they are merged.

We then replace any pixel in an object by the background level (with suitable noise added),
bin the image 2× 2 13, repeat this operation (using the original PSF parameters, i.e. we’re using a
filter twice as large as the true PSF), and merge the original set of objects with those detected in
this pass. Then bin 2× 2 once more and repeat the whole procedure.

This operation is carried out independently in the 5 SDSS bands, and the objects detected in
each band are also merged together.

(XXX Describe BRIGHT v. faint processing)

One of the SDSS data products is the ‘atlas images’ which contain all detected pixels, and
another is the 4 × 4 binned image with all detected pixels removed. Each pixel in this image
corresponds to a 4 × 4 ‘superpixel’ in the unbinned image. To produce the atlas images we take
the merged objects and grow their boundaries out to the edges of the superpixels; this means that
either a superpixel contains no pixels assigned to an object, or else the entire superpixel is included
in an object. These objects, the union of all groups of detected pixels (as isotropically grown),
detected either unbinned or binned in any band, and expanded to superpixel boundaries, define
the pixels included in the atlas images.

(XXX Known objects? ) (XXX Sky objects) (XXX Merge objects)

6. Determining the Centres of Objects

6.1. Introduction

A brief introduction to Photo’s centering algorithm is given in Pier et al. (2003).

As discussed in Sec. C, the real PSF is the combination of a Kolmogorov term and the effects
of aberrations and telescope misalignment. In this section we shall generally approximate the PSF

13as all data regions are represented as integers, we also scale up by a factor of 2 to preserve signal-to-noise
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as a single Gaussian G(α) (Eq. C1) and occasionally comment upon the consequences of a second
Gaussian component. Sec. 6.3 discusses how we deal with the errors resulting from PSFs that are
not only non-Gaussian, but are also skewed.

For a star much brighter than the sky, the optimal way to estimate its position is to simply
calculate the centroid of its light, that is its center of ‘gravity’; after all, that is what you mean
by its true position (see Appendix D for a discussion of how to actually calculate this centroid for
pixellated data). Unfortunately, this is a very noisy estimate for most objects in the sky, and we
are forced to use other algorithms. We shall return to true centroids in Sec. 6.3.

As discussed in Sec. 5.2 if you want to estimate the position of a faint star, you should smooth
the frame with the PSF14 and look for the position of the maximum in that smoothed image.

6.2. Astrometric Centering: Gaussian Quartic Interpolation Schemes

Independent of the question of the optimal choice of smoothing filter, we must also find a good
estimate of the centre of objects in the smoothed, pixellated, image. A common approach is to fit a
parabola to the central few pixels of the object, and take the peak of that parabola (or paraboloid)
to be the centre. Unfortunately, this approach leads to systematic positional errors as the true
centre of the object moves relative to the pixel grid. For critically sampled images, we find effects
of order of 0.025− 0.04 pixels (10− 15 mas for the SDSS’s 0.400 arcsecond pixels).

While random errors of this sort are barely acceptable for the measurements of individual
objects (we expect at best to have 30 mas errors from atomospheric effects) they are not acceptable
for either the secondary or primary astrometric standards, which define the coordinate system. The
next section presents an interpolation scheme that essentially removes these systematics.

6.2.1. Finding an Object’s Center in One Dimension

Let us start by looking at the problem in one dimension. Consider a function f(x) sampled at
x = 0,±1,±2, · · ·; let us take the point x = 0 to be a local maximum of our sampled function, and
consider how to estimate the position x of the maximum of f itself. We know f0 ≡ f(x = 0), and
f± ≡ f(x = ±1) where f0 is at least as large as the other two.

If f is a Gaussian G(β) (e.g. for a PSF G(α) smoothed with itself, β2 = 2α2), we have

f0 = A exp
(
− x2

2β2

)
= A

(
1− x2

2β2 + x4

8β4 + · · ·
)

14actually, the PSF inverted through its centre
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and similar equations for f±. Neglecting the terms above fourth order, we see that

β2 (2f0 − (f+ + f−))
A

= 1− 1+6x2

4β2 (8)

and
β2(f+ − f−)

2A
= x− x(1+x2)

2β2 . (9)

Dropping the last term on the right hand sides of these equations we arrive at the standard quadratic
estimates for A, x, and β:

A = f0 + s2

2d ,

β2 = A
d , (10)

x = s
d .

where s ≡ (f+−f−)/2 is the mean slope across the object and d ≡ 2f0− (f+ +f−) is the curvature.

Substituting these expressions into Eq. 8 leads to an improved estimate of β2:

β2 =
A

d
− 1 + 6 (s/d)2

4
;

substituting this expression for β2 on the left hand side of Eq. 9 leads to

x = s
d + s

4A

(
1− 4x2

)
≡ s

d

(
1 + d

4A

(
1− 4(s/d)2

))
(11)

Note that the correction term has the correct ‘symmetry’ properties vanishing at x = 0 (s = 0)
and x = ±1/2 (s = ±d/2).

Now, in reality, the PSF is not exactly Gaussian, and for the parameters of interest (α2 ≈ 1;
β2 ≈ 2) the fourth-order and higher terms are not so small, so the amplitude of the correction term
for best results may not be exactly what this simple development would predict. In fact, a series
of simulations suggest that one needs a term about a third larger to produce the best astrometric
results; i.e.

x =
s

d

(
1 + k

d

4A

(
1− 4(s/d)2

))
(12)

with k ≈ 4/3. This correction arises because the second-order estimate for β2 (Eq. 10) is too
large by about this factor. Some of this is due to the fact that the amplitude A one measures is
contaminated by the much flatter large Gaussian component of our assumed two-component PSF,
so its effective value is about 20 percent smaller than the whole amplitude; this effect would lead to
a value k ≈ 1.2. The remaining ∆k ≈ 0.15 is presumably due to the breakdown of our expansions.
The correction term has a maximum value of 0.024k/β2, so changing k from 1 to 4/3 changes the
correction by only about 3 − 4 mas for a pixel size of 0.4” and α ≈ 1; although this is almost
neglibly small we have adopted a value of k = 1.33 for the SDSS reductions.
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6.2.2. Extension to Two Dimensions

The extension of this interpolator to two-dimensional images is not completely straightforward.
In those cases in which the images are round or elongated in such a manner that the major axes of
the elongation are along the coordinate axes, a simple extension of the technique using either the
x and y stripes through the maximum pixel in the smoothed image or suitably interpolated stripes
to better ‘center’ the data on the supposed real center works satisfactorily. In general, however,
this condition is not met for imperfect images, and they are elongated at some arbitrary angle to
the axes. The ad hoc cross-stripe methods fail quite badly for these images, incurring errors of up
to 15 mas or so; the errors can easily exceed the quadratic ones, even for images which are quite
accurately Gaussian near the peak.

It is the case, however, that a two-dimensional Gaussian of arbitrary ellipticity and inclination
has the property that any one-dimensional cut through it is also a Gaussian, which leads imme-
diately to a two- dimensional extension which works very well indeed. Consider a point which is
a maximum in the smoothed image and its eight neighbors. We may apply the algorithm of the
previous section to each row of this 3× 3 region (since they are approximately three values of some
Gaussian) to find three maxima: mx−, mx0, and mx+; likewise the maxima of the three columns
are my− ,my0, and my+. The mx’s lie on a curve along which the two-dimensional maximum must
lie, as do the my’s, and the desired maximum must lie at the intersection of those curves. In simu-
lated SDSS images we found that the sets of three maxima lay essentially on straight lines (which
is strictly the case for a real two-dimensional Gaussian), and one could either use the least-squares
straight line and find the intersection analytically, or, as we chose to do, allow the three points to
define a quadratic and use a simple iteration to find the intersection.

6.2.3. Error Estimates

We can now proceed to estimate the statistical errors in our quartic estimator for the object’s
center (Eq. 11). Linearising the expression with respect to d and s (and therefore implicitly
assuming that their errors are small enough that higher terms in the expansion are irrelevant), we
can find x’s variance in terms of the variances of d and s (it is easily shown that their covariance
vanishes):

var(x) = var(s)
(

1
d

+
k

4A

(
1− 12s2

d2

))2

+ var(d)
(

s

d2
− k

4A

8s2

d3

)2

(13)

The next two sections deal with the calculation of these variances in the two limits of objects
much fainter than, and much brighter than, the sky. These two contributions are independent, and
may simply be added together to arrive at the total variance for any given object.
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Objects much fainter than the sky

Let us assume that the original picture has pixel values pi; the subscript i is of course a two-
dimensional object (x, y). We assume that the noise in the image is such that the noise in distinct
pixels is independent. The smoothed image in which one searches for maxima is given by

Pi =
∑

wi−j × pj.

We assume that the weights are normalized so that
∑

wi = 1; in that case if we adopt a G(α)
smoothing filter, we have

var(Pi) = n2
∑

(wk)2 =
n2

4πα2
,

where n is the per pixel RMS noise (cf. Eq. 10.3.1). We shall initially assume that this is constant
— i.e. that we are dealing with images sufficiently faint that the background noise dominates the
photon noise from the object. We will deal with the case that the noise is dominated by photons
from the star in Sec. 6.2.3. We consider the errors in one dimension at a time, and assume
that the center has been arrived at by the single quartic interpolation of Sec. 6.2. The full two-
dimensional analysis is complex, and our Monte-Carlo simulations (Sec. 6.2.4) indicate that this
simple treatment is adequate.

The Pk are, of course, not independent;

cov(Pi, Pk) =
n2

4πα2
exp

(
−(i− k)2

4α2

)
(14)

Thus the variances of the key quantities are

var(s) ≡ var((f+ − f−)/2) = n2

8πα2

(
1− e−1/α2

)
, (15)

var(d) ≡ var(2f0 − (f+ + f−)) = n2

2πα2

(
3− 4e−1/4α2

+ e−1/α2
)

. (16)

The relative importance of these terms is shown in Fig. 12, where a Monte-Carlo simulation
of the 1-dimensional centering algorithm is illustrated. The top panel shows the bias, the bottom
the various terms contributing to the variance; in both cases the simulation is show as a set of open
squares.

It is instructive to consider the case of stars (i.e. β2 = 2α2) in the quadratic approximation
of Eq. 10 (i.e. A = dβ2, and k = 0 in Eq. 13). In this approximation, we may write the center’s
variance in terms of the the signal-to-noise ratio ΣF ≡ A

√
4πα/n of the total flux;

var(x) =
2α4

Σ2
F

((
1− e−1/α2

)
+ 4

(s

d

)2 (
3− 4e−1/4α2

+ e−1/α2
))

for α = 1 (a FWHM of about 1arcsec for the SDSS 0.400 arcsecond pixels),

var(x) =
1

Σ2
F

(
1.122 + 1.422x2

)
where |x ≡ s/d| ≤ 0.5
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Fig. 12.— The results of 1000 1-dimensional Monte-Carlo realisations are shown as open (cyan)
squares. The object was a pure Gaussian G(α = 1), and the smoothing kernel was also taken to
be a α = 1 Gaussian. The noise was Normal with a constant variance. The top panel shows the
bias in millipixels, using the quartic formula of Eq. 13 with k = 1.2. The bottom panel shows the
variance, scaled by A/(n

√
α). The two lines drawn with long dashes are

√
var(s)/d2 (red; non-zero

at the origin) and
√

(s/d)2(var(d)/d2) (green; zero at the origin). The dotted (blue) line is the
error of the quadratic approximation (i.e. the RMS sum of the two preceeding lines), while the
solid line is the estimated error of the quartic formula.
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Objects brighter than the Sky

Bright objects no longer have the convenient property that each pixel’s variance is simply n2, rather
it’s equal to the total flux in the pixel. If the unsmoothed object is a G(τ) Gaussian, the simple
expression Eq. 14 for the covariance of the smoothed image is replaced by

cov(Pi, Pk) =
aτ2

2πα2(α2 + 2τ2)
exp

(
−(i2 + k2)(α2 + τ2)− 2τ2ik

2(α2 + 2τ2)

)
.

For the case τ = α, this reduces to:

cov(Pi, Pk) =
a

6πα2
exp

(
− i2 + k2 − ik

3α2

)
(17)

where a is the amplitude of the unsmoothed image. While it would be possible to calculate errors
based upon the actual position of an object relative to the pixel boundaries and keeping track of τ

and α separately, the Monte-Carlo simulations of Sec. 6.2.4 show that this is unnecessary.

For an object centred in a pixel, d and s’s variances are:

var(s) ≡ var((f+ − f−)/2) = a
12πα2

(
e−1/3α2 − e−1/α2

)
, (18)

var(d) ≡ var(2f0 − (f+ + f−)) = a
3πα2

(
2− 3e−1/3α2

+ e−1/α2
)

. (19)

These are, of course, to be added to the variances given by Eq. 16 and Eq. 15.

6.2.4. Monte-Carlo Simulations

We carried out a set of Monte-Carlo simulations to test the 2-dimensional centering algorithm
of Sec. 6.2.2. Each test was repeated 2500 times, for stars of the form I0/1.1× (G(τ) + 0.1G(3τ))
randomly positioned within the pixels; the noise was Gaussian with variance equal to the pixel
intensity. Each simulation used a N(α) smoothing filter. The other properties of simulations are
given in Table 6.2.4; it will be seen that we we probe both the sky- and object-dominated regimes.

The table shows that the biases are small (a maximum of 0.014 pixels), and that the variances
given by the sum of Eqns. 15 and 18 are reasonable accurate; very accurate if the correct smoothing
scale is chosen (i.e. α = τ).

(XXX Do we need to discuss α 6= τ further? )

6.3. Correcting for non-Gaussian, Asymmetrical, PSFs

In reality, the combination of time-varying seeing and non-perfect optics delivers a PSF that
varies with position on the CCD; this variation of the PSF causes astrometric offsets of order
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Test sky I0 τ α bias
row

bias
col

χ
rms, row

χ
rms, col

RA0 100 10000 1.0 1.0 -0.000 -0.000 1.05 (1.06) 1.06 (1.04)
RA2 100 10000 1.0 0.0 -0.000 -0.000 0.98 (0.98) 0.97 (0.98)
RA3 100 1000 1.0 1.0 -0.000 -0.000 0.93 (0.99) 1.01 (1.01)
RA4 100 100 1.0 1.0 -0.000 0.000 0.95 (0.96) 0.96 (0.97)
RA5 400 100 1.0 1.0 -0.009 0.002 1.00 (1.00) 0.95 (0.97)
RA6 900 100 1.0 1.0 0.007 -0.002 1.04 (1.07) 1.01 (1.02)
RA7 1600 100 1.0 1.0 -0.013 -0.013 1.07 (1.12) 1.02 (1.12)
RA8 4000 1000 1.0 1.0 0.000 0.001 0.99 (0.97) 1.01 (0.98)
RA9 100 10000 1.0 1.2 -0.000 -0.000 1.12 (1.13) 1.07 (1.07)
RA10 100 10000 1.0 1.5 -0.000 -0.000 1.15 (1.14) 1.08 (1.09)
RE0 100 10000 2.0 2.0 0.000 0.000 1.01 (1.03) 1.06 (1.03)
RE7 1600 100 2.0 2.0 -0.007 0.014 1.04 (1.01) 0.97 (1.00)
RE9 100 10000 2.0 2.4 0.000 -0.000 1.06 (1.06) 1.07 (1.07)
RE10 100 10000 2.0 3.0 -0.000 -0.000 1.04 (1.06) 1.06 (1.05)

Table 4: The results of Monte-Carlo tests of the 2-dimensional centering algorithm. The bias (in
pixels) is the difference between the true position and the measured position. Two values are
quoted for the RMS value of χ (i.e. the ratio of the measured error to the estimated error) in
pixels. The first value is estimated from the semi-interquartile range (and converted to an RMS on
the assumption of Gaussianity); the second is a true RMS.
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Fig. 13.— Histograms of the astrometric biases in the column centroid in each of the 30 CCDs of
the SDSS camera, sampled every hour from all the data in DR4 (Adelman et al. 2005).
Each panel is normalised to unit height, and the seeing is divided into four seeing bins (red: > 1.7,
yellow: 1.7− 1.5, green: 1.5− 1.25, blue: < 1.25).
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100mas. Some of these offsets result in apparent field distortions which can be removed during
standard astrometric processing, but some are of higher order and are best handled by explicit
modelling.

As discussed in Sec. 2.2, Photo knows the PSF at the position of each star, and we can use
this to correct for these biases. The estimate of the PSF has a sufficiently high signal-to-noise ratio
that we can simply calculate its centroid; we can then apply the theory of Sec. 6.2.2 to arrive
at a second, in general different, estimate of its centre. The difference between the two gives an
estimate of the bias in the center due both the limitations of the quartic theory presented here and
to departures of the PSF from the assumed form. This estimate of the needed correction is then
applied to the measured center of the, much fainter, real object and the debiased position reported.
The histograms of the applied column corrections, sampled every hour and at 12 positions across
each CCD, for all the SDSS photometric CCDs are given in Fig. 13 (The corresponding figure for
row centroids is similar).

Comparing the amplitudes of the colored histograms shows that the seeing is significantly
worse in the u than in other bands, and that the image quality degrades away from the camera
center. Close inspection will reveal that the poor-seeing data has bias corrections systematically
offset from the better data, as would be expected as the atmospheric- and optical-contributions to
the image quality varied in relative importance.

7. Merging per-band detections

(XXX Write me)

8. Deblending Overlapping Objects

(XXX Refer to (Lupton 2005))

9. Extracting Radial Profiles

(XXX Intro to measure objects)
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10 0.004 0.003 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 -0.007 -0.004 0.004 0.000 -0.001 0.000 0.000 -0.001 0.000 0.000
8 0.012 0.007 -0.007 0.000 0.001 -0.001 0.001 0.000 -0.001 0.000
7 -0.019 -0.011 0.013 0.001 -0.001 0.000 -0.001 0.001 0.000 -0.001
6 0.032 0.018 -0.020 -0.001 0.002 -0.001 0.000 -0.001 0.001 0.000
5 -0.063 -0.035 0.032 0.001 -0.004 0.002 -0.001 0.000 -0.001 0.000
4 0.260 0.142 -0.060 -0.005 0.005 -0.004 0.002 -0.001 0.001 -0.001
3 1.042 1.011 0.637 0.017 -0.005 0.001 -0.001 0.001 0.000 0.000
2 1.009 0.947 1.146 0.637 -0.060 0.032 -0.020 0.013 -0.007 0.004
1 1.019 1.016 0.947 1.011 0.142 -0.035 0.018 -0.011 0.007 -0.004
0 0.956 1.019 1.009 1.042 0.260 -0.063 0.032 -0.019 0.012 -0.007

0 1 2 3 4 5 6 7 8 9

Table 5: Weights for an R = 3.75 pixel circular aperture.

9 0.04 0.04 0.03 -0.02 -0.01 0.01 0.00 0.00 0.00 0.00 0.00
8 -0.09 -0.08 -0.06 0.02 0.02 -0.01 0.01 0.00 0.00 0.00 0.00
7 0.49 0.42 0.22 -0.03 -0.05 0.02 -0.01 0.00 0.00 0.00 0.00
6 1.09 1.10 1.03 0.81 0.23 -0.06 0.02 -0.01 0.01 0.00 0.00
5 0.96 0.93 0.99 1.03 1.08 0.37 -0.06 0.02 -0.01 0.01 -0.01
4 1.03 1.05 1.01 0.98 0.96 1.08 0.23 -0.05 0.02 -0.01 0.01
3 0.94 0.99 0.95 1.06 0.98 1.03 0.81 -0.03 0.02 -0.02 0.01
2 1.05 1.01 1.04 0.95 1.01 0.99 1.03 0.22 -0.06 0.03 -0.02
1 0.99 0.95 1.01 0.99 1.05 0.93 1.10 0.42 -0.08 0.04 -0.02
0 1.06 0.99 1.05 0.94 1.03 0.96 1.09 0.50 -0.09 0.04 -0.03

0 1 2 3 4 5 6 7 8 9 10

Table 6: Weights for an R = 7.0 pixel circular aperture.
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Fig. 14.— The coefficients for exact integration over a set of four circular apertures, with radii
R = 1, R = 3.75 (see Table 5), R = 7 (see Table 6), and an annulus 3.5 < R < 7; all radii are in
pixels.
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9.1. Photometry

If our data is band limited we can use the very well-known sinc interpolation formula (e.g.
Bracewell (2000)) to evaluate the (pixel-convolved) intensity at any point in the image:

f(ξ) =
∞∑

i=−∞
f(i)

sin((ξ − i)π)
(ξ − i)π

. (20)

We can then use this result to evaluate the intensity on a grid with the object’s center at some
desired point, say (0, 0); i.e. we can shift the image to be centered on a pixel. After this operation
let us write the intensity at pixel i, j as fij ≡ f(i, j).

This process is exact. We can then evaluate the total flux F within an aperture of radius R as

F =
∫

x2+y2<R2

f(x, y)dxdy (21)

=
∫

x2+y2<R2

∑
ij

fij
sin((x− i)π)

(x− i)π
× sin((y − j)π)

(y − j)π
dxdy

=
∑
ij

fij

∫
x2+y2<R2

sin((x− i)π) sin((y − j)π)
(x− i)π(y − j)π

dxdy

≡
∑
ij

fijCij (22)

where
Cij ≡

∫
x2+y2<R2

sin((x− i)π) sin((y − j)π)
(x− i)π(y − j)π

dxdy. (23)

The integral defining Cij cannot be evaluated analytically, but it is independent of the image being
measured, so it can be evaluated numerically and then tabulated. Tables 5 and 6 give the values
of Cij in the first quadrant for R = 3.75 (the SDSS 3” aperture) and R = 7; these weights are
illustrated in Fig. 14.

9.2. Measuring Surface Brightnesses

Photo measures the radial profile of every object by measuring the flux in a set of annuli,
spaced approximately exponentially (successive radii are larger by approximately 1.25/0.8); the
outer radii and areas are given in Table 9.2. Each annulus is divided into 12 30◦ cells. For the
inner 6 annuli (to a radius of about 4.6asec) the flux in each cell is calculated by exact integration
over the pixel-convolved image after shifting the object by sinc-interpolation (Sec. 9) so that its
centre lies in the centre of a pixel;15 for larger radii the cells are defined by a list of the pixels

15We actually use a cosine-bell to taper the sinc coefficients, i.e. we multiple Eq. 20 by (1 + cos(π(ξ − i)/L))/2

for |ξ − i| < L and 0 otherwise; we have adopted L = 6. This is similar in spirit to Lanczos filters, which taper the



– 47 –

which fall within their limits (these lists are predetermined, based on the sub-pixel centre of the
object rounded to 1/32 of a pixel). Usually the straight mean of the pixel values is used, but for
cells with more than 2048 pixels a very mild clip is applied (only data from the first percentile to
the point 4.0σ above the median is used). This clipping produces a negligible shift in the mean
for Poisson data, but guards against wildly non-Gaussian outliers such as unrecognised cosmic rays
and fragments of bleed trails.

One might worry about the noise properties of the pixel-centered image; after all, noise is
uncorrelated from pixel to pixel, and thus can have features that are sharper than the PSF — i.e.
it breaks the band limit (Sec. 2.1). Remarkably, if the noise per pixel is constant (as is the case for
objects with surface brightness appreciably lower than the sky), the noise in the sinc-interpolated
image has the same variance as in the input image, and the noise is uncorrelated from pixel to
pixel; for Gaussian noise, this implies that the noise in each pixel is independent.

9.3. Radial Profiles

Given a set of cells, Photo can measure the radial profile. If the mean flux within each of the
cells in an annulus are Mj(j = 1, · · · , 12), it calculates a point on the profile (‘profMean’) as

Pi =
1
12

j=12∑
j=1

Mj

The error of this quantity (‘profErr’) is a little trickier. If we knew that the object had circular
symmetry, we would estimate it as the variance of the Mj divided by

√
12. Unfortunately, in general

the variation among the Mj is due to both noise and the radial profile and flattening of the object.
To mitigate this problem, we estimate the variance as

VarPi =
4
9
× 1

12

j=12∑
j=1

(Mj − 0.5 ∗ (Mj−1 + Mj+1))2 (24)

where obviously we interpret ‘j±1’ modulo 12, and where the factor 4/9 would be correct if all the
〈Mj〉 were equal. This use of a local mean takes out linear trends in the profile around the annulus,
and results in an estimate of the uncertainty in the profile that is a little conservative, but which
includes all effects. If for some reason you wanted to know the error due to photon noise alone,
this could be calculated from the Pi and the known gain of the CCD.

In practice, Photo doesn’t extract the profile beyond the first point that the surface brightness
within an annulus falls to (or below) zero; if any points do fall below zero, the BAD RADIAL flag bit
is set (Sec. 1.1).

coefficients with sinc functions rather than cosines.
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10. Photo’s Flux Measures

(XXX luptitudes and (non-)procedure for upper limits)

(XXX Calibration)

10.1. Fiber Magnitudes

The SDSS spectrographs are fed with 3” optical fibers (York et al. 2000), and there one of the
Photo outputs is therefore the flux within a 1.5” aperture. This is calculated in the way described
in Sec. 9, and the fiber magnitude coefficients are given in Table 5 and Fig. 14.

This flux is naturally strongly dependent on the seeing, and we therefore convolve the im-
age to a canonical value before measuring the fiber magnitude (we use 2.0”, but it is in fact
adjustable for each photometric bands; Sec. A.3). This is done by estimating the per-object see-
ing as

√
(M rr ccpsf/2) (see Sec. 12.2), and if this exceeds 2.0, convolving the image with a

G′(
√

(22 −M rr ccpsf/2)) Gaussian.

Unlike all other Photo flux measures, the fiber magnitude for a child object does not reflect
our best estimate of the properties of the child. Rather, it is calculated from the non-deblended
image, at the position of the child. This allows its use in estimating the total flux that would be
expected to fall down the fiber, and to allow us to avoid taking spectra of faint objects detected
near very bright stars.

10.2. The Calculation of Petrosian Quantities by Photo

Details of Photo’s calculation of Petrosian quantities are given in Appendix A of Strauss et.
al. (2002).

10.2.1. Errors in Petrosian Quantities

A comparison on objects imaged more than once allows us to discover how realistic these error
estimates are; Table 10.2.1 lists the RMS value of χ, the ratio of the measured differences between
the two values and the RMS sum of their quoted errors. In each case, only objects with no PETRO

flags set, and with the relevant errors available in each run (see Sec. 1.1 for a discussion of Photo’s
flags). (XXX Need more discussion).
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10.3. PSF magnitudes

10.3.1. Introduction

As is well known, the Maximum Likelihood Estimator (MLE) for an object’s flux is given by
a sum over the pixels in the image:

fMLE ≡
∑

i PiOi/σ2
i∑

i P
2
i /σ2

i

(25)

where the Pi are the object’s true profile (normalised to have unit sum); the Oi are the observed
intensities, with the sky background subtracted; and the σ2

i are the errors in Oi. (XXX There’s
overlap with Sec. 5.2)

Unfortunately, in reality, we never know even a star’s profile exactly, so the expectation value
of fMLE is not exactly equal to the total flux in the object. For studies of stars this might appear
not to matter, as we’re only interested in relative photometry, but in fact the inclusion of σ2 in
Eq. 25 means that we will make brightness-dependent errors. For very bright stars σ2 ∝ P , while
for very faint stars σ2 is a constant, so systematic discrepancies between Pi and Oi are weighted
differently for different stars.

Fortunately we can easily avoid this problem by always setting σ2 ≡ n2 where n2 is the per-
pixel variance of empty parts of the frame (a combination of read noise, dark current, and photon
noise from the sky). For bright stars the loss of efficiency due to using an incorrect noise model is
irrelevant as the flux errors will be dominated by systematics, and for faint objects the per-pixel
variance is indeed constant. We should thus modify our MLE magnitude to

fMLE′ ≡
∑

i PiOi∑
i P

2
i

(26)

For stars, P is of course the point spread function, so these MLE fluxes are often referred to
as PSF fluxes. For a Gaussian PSF G(α) the PSF flux has variance

4πα2n2

if the noise due to the object itself can be neglected; in other words it has the same noise as an
aperture of radius 2α or only about 0.8 arcsec in 1 arcsecond seeing. Furthermore, Eq. 26 is an
optimal measure of an object’s flux, so errors in the Pi only increase fMLE′ ’s variance by amounts
that are second order in the errors in the assumed profile.

10.3.2. Calibrating TDI Data

TDI data is different from pointed data in two ways: the spatial variation of the PSF is usually
considerably greater, and the photometric standard stars don’t appear on the same images as the
objects being calibrated.
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This asynchronous calibration means that we have to take great care to remove all seeing-
dependent terms from the measured PSF magnitudes, as terms that would normally have no effect
can be important.

10.3.3. PSF Magnitudes in Photo

As explained in Sec. 9.2, Photo has available the central part of every object’s image centred
on a pixel, so we need only calculate the Pi for a centred PSF. We noted in Sec. 10.3.1 that
it’s not important that the Pi be exactly equal to the true PSF, and we therefore adopt a single
double-Gaussian model of the Pi for an entire frame.

Adopting a constant variance for each pixel removed magnitude-dependent biases, but in reality
the PSF varies with position and time. We may correct for this by employing the PSF model from
Sec. 2.2: At the position of each object we reconstruct the PSF from our KL expansion, and
measure its PSF flux fMLE′,KL using that frame’s set of Pis. We then measure some large aperture
flux faper,KL for the reconstructed PSF. The reconstructed PSF is determined from a number of
bright stars so both fMLE′,KL and faper,KL are essentially noise-free, so we may estimate our real
object’s ‘PSF’ magnitude as

fPSF ≡ fMLE′ ×
faper,KL

fMLE′,KL
. (27)

This composite flux has the noise properties of an MLE estimate, combined with an aperture flux’s
insensitivity to PSF variation. In practice, we have used ‘aperture 5’ of Sec. 9.2, with a radius of
7.5 pixels, 3 arcsec.

For sufficiently poor seeing (worse than around 2 arcseconds) we found that even this procedure
doesn’t completely remove the effects of seeing from our photometry, as the apertures available from
our KL expansion are not large enough to enclose all the variation in the PSF’s wings. To cover
this case, we use the composite profile determined in Sec. 2.5 to further correct the magnitude
of the previous paragraph to an even larger radius, ‘aperture 7’ of Sec. 9.2, with a radius of 18.6
pixels, 7.4 arcsec.

(XXX Željko (or someone — me?) wrote the following. Is it correct? How does it match the
previous paragraph that RHL just wrote)

(XXX Studies of stars measured twice under different conditions showed that the corrections
required were well described by a simple function of the observed FWHM, and applying such a
correction removed any remaining dependencies of the photometry on the seeing. )
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10.4. Fitting Models to Detected Objects

Photo fits a number of model profiles to each detected object in each band; these models are
used in star/galaxy separation, and also in the morphological classification of galaxies. There is
a considerable literature on fitting one- and two-dimensional profiles to galaxies, both in terms
of bulge/disk decomposition and the choice of radial profile. For example, a spiral galaxy may
be decomposed into a deVaucouleurs bulge and an exponential disk; or a sum of two exponential
components; or maybe a a Sérsic profile I ∼ r1/n is to be preferred (Sérsic 1968).

In the interests of computional efficiency, and because most objects observed in the SDSS don’t
have sufficient signal-to-noise and resolution to justify more detailed modelling, we have restricted
ourselves to fitting three models: a PSF, a pure exponential disk (truncated beyond 3 re in such
a way that the profile goes to zero with zero derivative at 4 re) convolved with the PSF, and
a deVaucouleurs profile (truncated beyond 7 re in such a way that the profile goes to zero with
zero derivative at 8 re) convolved with the PSF. Each of these galaxy models is specified by four
parameters: the central intensity I0, the effective radius re, the axis ratio a/b, and the position
angle of the major axis, φ.

In Sec. 10.4.2 we discuss a surrogate for a full-up Sérsic model fit.

10.4.1. Model Fitting

Fitting these models is a straightforward χ2 minimisation problem, which we solve using the
standard Levenberg-Marquardt (Marquardt 1963) algorithm. (XXX Discuss why using a contin-
uum method for data given on a grid may not be a smart idea. Discuss better alternatives (v5 5 ( 6?)
etc.)) Unfortunately, even when restricted to fitting pure exponential or deVaucouleurs profiles,
the computational task is not trivial. Finding the minimum χ2 requires solving a three-dimensional
non-linear optimisation problem (solving for the overall intensity I0, once (re, a/b, φ) are known, is
a linear problem). Each function evaluation requires building a model galaxy; convolving with the
PSF at that point in the frame; and finally determining the value of χ2 for that model by summing
over all the pixels in the object.

If this were implemented näıvely it would be impractically slow 16. We take a number of steps
to improve performance:

• Rather that work directly in pixel space, we fit the models to the extracted cell profile (see
Sec. 9). Furthermore, as all of our models have a two-fold axis of symmetry, we only need
consider the average of pairs of cells placed symmetrically about the object’s centre.

16The total time available for processing an object, including detection and measurement of all parameters as well

as e.g. flatfielding the data and writing output files, is around 16ms on an 1GHz Pentium III.
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• We model the PSF as a sum of Gaussians and a residual table R:

PSF = αG(σ) + β (G(τ) + bG(cτ)) + R (28)

where b and c are fixed (we adopt 0.1 and 3 respectively(XXX cf Moffat)).

• We compute galaxy models of each type for a range of (re, a/b, φ), convolve each with a set
of PSFs of the forms G(σ) and G(τ) + bG(cτ) for a set of values of σ and τ , extract their
profiles, and save the results to disk. A total of 3 coefficients determine our PSF model (it’s
the linear combination of 4 terms, but the overall normalisation is unimportant).

• All of our models have two planes of symmetry, so only 3 of the 12 cells within each annulus
have distinct values. We can exploit this by writing the pre-extracted model profiles as Fourier
series in which only the cos(2rθ) terms are non-zero. It is in fact these Fourier coefficients
(for r = 0 · · · 5) that are stored in the pre-calculated profiles. In calculating these Fourier
series we use extracted profiles for models with φ = 0 and φ = π/6 in order to overcome the
undersampling in angle of the cell profiles; note that using these pairs of models produces 6
model intensities within the π/2 that we are sampling, corresponding to our choice of keeping
6 terms in the Fourier series.

With this Fourier expansion in hand, the profiles are a smooth function of φ, and we can
therefore use standard efficient techniques such as Brent’s algorithm (Brent 1973; Forsythe
et al. 1977) to find the optimal value of φ for a given (re, a/b); this essentially reduces the
dimensionality of the non-linear optimisation from three to two.

In Sec. 2.2 we discussed how we determine an accurate PSF at each point in the frame using
a KL expansion. In order to use this information in fitting models (where the form of the PSF
is of crucial importance), at the position of each object we determine the best representation of
that KL PSF in the form of Eq. 28, where the σ and τ are restricted to the values present in the
pre-computed model tables: PSFKL = PSFtable + R. We may then write

model = model0 ⊗ PSFKL (29)

≈ model0 ⊗ PSFtable + R (30)

where model0 is the model galaxy above the atmosphere and model is that model after convolution
with the PSF. In other words, we assume that the residual table R is only of importance to the
core of the model, and that that core is adequately represented by a delta function. Note that this
prescription is exact for a star, where the model0 is also a delta function and Eq. 30 reduces to
model = PSFKL.

Choosing the best model of the form Eq. 28 is not entirely straightforward, as there are no
meaningful errors associated with our KL estimate of the PSF, Eq. 1. Not only is the ratio of the
per-pixel errors due to photon noise in the object to those due to sky photons a function of a star’s
brightness, but the dominant error may be due to the approximations made in our KL approach.
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We have chosen to only neglect the sky noise, and to regularise the fit with term dependent on the
difference between the width of the true (actually KL) PSF, and the best represention in terms of
sums of Gaussians; that is, we minimise the value of

X2 =
∑

i
1

vari

(
PSFKL,i − PSFtable,i

)2
+ Λ

(
τ2
KL − τ2

table

)2

≡
∑

i
1

vari

(
PSFKL,i −

∑
r w(r)M

(r)
i

)2
+ Λ

(
τ2
KL −

P
r w(r)τ2

(r)P
r w(r)

)
(31)

where vari is the variance of the ith pixel, τ is an estimate of the PSF’s width, and the sum in r

runs over the PSF models M (r) (with weights w(r) and widths τ(r)). Even this is not as simple as
it looks, as the term τ2

table is nonlinear in the weights of the constituent models. Eq. 31 may be
rewritten as

X2 =
∑

i

1
vari

(
PSFKL,i −

∑
r

w(r)M
(r)
i

)2

+ Λ′
(∑

r

w(r)
(
τ2
KL − τ2

(r)

))2

(32)

where Λ′ ≡ Λ/
∑

r w(r); if we take the weights w(r) to be known the problem is linear. In practice
we iterate a few times, each time using the previous values of the w(r). There remains the question
of the value of Λ; we have found that setting it equal to X2

∣∣
Λ=0

produces satisfactory results.

The specification of the effective variance in each profile cell also requires some care. In addition
to the photon noise from the object and sky, the model and data will differ due to errors in our
understanding of the PSF, errors in the object’s centre, ringing introduced by the sinc-shifting used
to extract the central parts of the profile (Sec. 9.2), and features in real galaxies not included in our
simplistic models (e.g. bulges, spiral arms, HII regions, and dust lanes). We accordingly increase
the photon noise by terms intended to compensate for centering and sinc errors, and additionally
add a term that ensures that the signal-to-noise ratio in a cell cannot exceed one hundred.

As discussed just above Eq. 26 in Sec. 10.3.1, if we used the true per-cell variance while
estimating parameters, the e.g. axis ratio measured for a galaxy would depend on the signal-to-
noise ratio; as for PSF magnitudes we therefore use only the photon noise contribution to the
variance while fitting models. When calculating the flux errors, on the other hand, we use the true
variances, augmented in the ways discussed in the previous paragraph. (XXX errors for model
magnitudes)

The goodness-of-fit is reported as a Likelihood; in Photo v5 3 and above it is also reported as a
ln-likelihood to avoid problems with underflow for poor fits. For example, ‘star L’ is the probability
that an object would have at least the measured value of χ2 if it is really well represented by a PSF;
the other L values are calculated similarly, taking into account the smaller number of degrees of
freedom.
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10.4.2. Model Magnitudes

Once (I0, re, a/b) are known for a model of a given class (PSF, exponential, or deVaucouleurs)
we can easily calculate the total flux; we refer to this as a ‘model’ flux. Unfortunately it isn’t so
easy to find the appropriate aperture correction.

If the object is a star we’d like the ‘model’ magnitude to equal that measured any other way. No
photometric measure of a star17 ever attempts to include all of the photons entering the telescope;
rather we attempt to include the same fraction of the light for all stars, and thus arrive at the
correct ratios of their brightness to some standard. Let us call this chosen measure the ‘canonical’
flux. If we wish to use the same conversion from counts to flux for model as for any other type
of magnitude, we need to apply an aperture correction to force the model flux to agree with the
canonical flux. Our KL expansion (Sec. 2.2) allows us to reconstruct the PSF at the position of
our object, and to determine the ratio of its canonical and model fluxes; multiplying our model
flux by this ratio then achieves our goal. This is of course the same procedure as discussed in Sec.
2.4.1, and results in unresolved objects having identical PSF and model magnitudes.

The SDSS has photometry in 5 bands, and two ways of calculating model magnitudes present
themselves: either using the best-fit model in each band, or using the model determined in some
fixed band to calculate the magnitude in all bands. Both approaches have their virtues.

Fitting a model in each band gives the best estimate of the total flux in that band, but does
not in general give the best estimate of the object’s colour as the flux contains errors due to both
the photon noise in the image and to uncertainties in the model parameters.

Using the model from a fixed band generates better colours, but if the structure of the object
is substantially different in different bands the magnitudes may be incorrect (of course, in this case
there must be colour gradients, so the definition of the ‘correct’ colour is tricky). Indeed, to obtain
good measures of an object’s colour the model need not be an especially good fit; even if it’s a
poor representation of reality it can still provide an efficient statistical estimator of the flux in the
object, analogous to the use of PSF magnitudes for measuring the flux of faint stars. As when
measuring PSF fluxes, the weight given to each profile cell should be independent of the brightness
of the object in order to avoid weighting different parts of the profile differently for bright and faint
objects.

Composite Model Magnitudes

We have been discussing fitting pure deVaucouleurs and exponential models to images, justifying
this limited choice in terms of the computer resources available. Fortunately, there is an inexpensive

17with the possible exception of studies of Vega or BD+17◦4708 intended to provide an absolute calibration in

Janskys
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if rather ad-hoc way to estimate the relative contribution of the two idealised profiles, and we can
use this value to estimate a total model magnitude.

Once we have models deV(I0, re, a/b) and exp(I0, re, a/b) fit to the data in any band, we can
ask for the linear combination of these two models which provides the best fit:

cmodel(I0, re, a/b) ≡ gdeV deV(I0, re, a/b) + gexpexp(I0, re, a/b).

Let us call the ratio gdeV /gexp ‘fdeV ’; I furthermore restrict it to lie in the range 0—1. This ratio
fdeV is not, of course, a true bulge–disk decomposition as both of the input models have attempted
to fit all components of the galaxy.

One application of fdeV is to estimate the total magnitude of the galaxy in a way that is less
sensitive to the departures of the true profile from either of our idealised forms:

fluxcmodel ≡ fdeV fluxdeV + (1− fdeV )fluxexp

Figure (XXX petro v. cmodel) shows that the Petrosian flux for bright galaxies is very well
correlated with the cmodel flux. (XXX Discussion and numbers).

10.5. Saturated Objects

(XXX Write me)

11. Object Classification

(XXX Mostly to be written, see S/G paper)

11.1. Cosmic Ray Rejection: pass II

The algorithm described in Sec. 4.3 deals successfully with the vast majority of cosmic rays,
but when looking for extremely rare objects with flux in only a single band, for example T-dwarfs
and very high redshift quasars, the contamination rate is still unacceptable (only about 20% are
real (Fan et al. 2001)).

Fortunately, we have more information available about the PSF than we employed in Sec. 4.3,
and we can use this to flag objects which might be cosmic rays by setting the MAYBE CR bit. Because
this is extra information which doesn’t affect other measured properties, we can afford to malign
innocent stars and allow the consumer of the data to decide upon their reality. For example, they
might choose to ignore MAYBE CR for all objects detected in more than one band.
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For every object detected by Photo we have the KL reconstruction of the PSF at that point
(Sec. 2.2), and also a copy of the image data shifted to put the centre of the object at the centre
of a pixel (Sec. 9.2). We apply a variant of the too-sharp-gradient algorithm (Eq. 7 of Sec. 4.3) to
an 11× 11 pixel region (4.4′′ × 4.4′′) about the centre of the centred object. Specifically, we count
the pixels for which

I(0)− c ∗N(I(0)) > δ (I + cN(I))

where I(0) is the object’s central intensity, δ ≡ PSFKL(0)/PSFKL, the noise N is the photon noise
with an additional 0.05I(0) added in quadrature, and c = 1.5.

If more than 3 pixels satisfy this condition, we consider the object to be a candidate cosmic
ray and set the MAYBE CR bit. We find in practice that many bright stars satisfy this condition, but
that it provides a very useful guide to the reality of single-band detections.

(XXX Discuss OBJ CR )

We have reclassified all the objects with i − z > 2.2 using the new cosmic-ray classifier. We
found that depending on the seeing of a specific run, roughly 50%—70% of the i-dropout objects
formerly classified as ”stars” are now classified as cosmic rays, while a negligible fraction of the
”real” objects (based on multiple observations and objects with confirmed spectra) are misclassified
as cosmic rays. We then visually inspect the z images of the remaining candidates and reject a
further 25% as cosmic rays and other artifacts.

So for 100 i-dropout objects classified as stars,

∼ 60% are rejected by MAYBE CR

another 10% are rejected by visual inspection of the z-band image

another 10% are rejected by further photometry

I.e. photo classifies 40% of i-band dropout objects as stars, of which about half are real.

These statements are true only for objects with S/N > 12. When S/N is worse than 10,
then the number of artifacts increases dramatically: a weak CR and weak real objects are hard to
separate in z band.

12. Measurements of Objects Shapes

12.1. ‘Stokes’ Parameters

(XXX Write me)
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12.2. Adaptive Shape Measures

(XXX Write me. Most of it’s in Bernstein et al. (2002), but Dave fixed the error analysis)

(XXX M rr cc)

12.3. Isophotal Measures

(XXX Write me)

13. Photo’s Outputs and Performance

(XXX Write me? )

14. Testing and Quality Assurance (QA)

(XXX Write me? )

15. Future Directions

(XXX Crowded fields)

(XXX Working off coadded data)

(XXX Making photo applicable to non-SDSS data)

16. Conclusions

Blah Blah Blah

(XXX Availability of code)

The source code for all of the software described in this paper is freely available (XXX Describe
how. The FNAL pserver cvs access is no more, I think). Unfortunately, in order to build Photo
requires first building Dervish (see Sec. 1) and all of it’s underpinnings, a task, which, whilst not
impossible, is inconvenient.

Despite his appearance in the author list of this paper, RHL would especially like to thank
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A. Input Parameters

A.1. Parameters Describing the Exposures, Camera, and Electronics

Four files are used to pass information about the detectors and camera into Photo:

The opCamera file which describes the layout of the CCDs within their dewars in the focal
plane, and which provides a first estimate of the astrometric distortions. This file is used by
Astrom and PSP , but not by frames.

The opConfig file which tells us which amplifiers each CCD used; the location of the extended
register, overclock, and data regions associated with each amplifier.

The opECalib file characterizes the gain, noise properties, fullwell, and nonlinearity of the
detectors.

The opBC file lists the location and type of the CCDs’ bad columns.

It will be seen that some of this information is traditionally included in the FITS headers. We
decided not to follow this precedent as we didn’t wish to have to modify files containing raw data
when our ideas about how to process it changed.
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A.2. Parameters which Control Data Processing

(XXX )

A.3. Parameters which Control Algorithms used in Processing the Data

(XXX )

B. Determining Bad Columns in the SDSS Camera

(XXX Check if this is in a Janesick paper)

One might hope that most classes of CCD defect would have almost no effect on TDI data;
for example, a trap near the top of the chip only slightly depresses the effective quantum efficiency
of the column. Unfortunately, most traps also have bad effects upon the CCD’s charge transfer
efficiency (CTE), and manifest themselves as streaks extending up the column above bright stars.

We accordingly carried out a careful search for bad CTE columns using staring mode data,
in which we deliberately clocked out more 20 rows of ‘data’ than there are physical rows in the
detector. These extra 20 rows should be at the bias level, except that columns with poor CTE
show an exponential trail into the overclock. It is a simple matter to look for such artifacts, and
to mark the columns as bad in the opBC file (see Sec. A.1). We also identify stongly depressed and
excessively noisy columns, although these defect types are usually also associated with poor CTE.

C. Image Formation

A common, although not very good, representation of a PSF is a Gaussian

G(α) ≡ exp(−r2/2α2) (C1)

n.b. G(0) = 1 rather than 1/(2πα2); we also define G′(α) ≡ G(0)/(2πα2). We shall use the
convention in which G’s Fourier transform is exp(−(2πkα)2/2) (Press et al. 1992).

For most ground-based telescopes the PSF is dominated by turbulence in the atmosphere,
producing images whose Fourier transform is given by (Fried 1966):

exp
(
−6.8839 (2πkλ/r0))

5/3 /2
)

(C2)

where
λ/r0 ≡ FWHM/0.976 (C3)
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(The 6.8839 comes from the definition of the Fried parameter r0; the 0.976 comes from a numerical
inverse Fourier transform; FWHM is the full width at half maximum [2

√
2 ln 2α for a Gaussian]).

This is not especially convenient, but fortunately this form of the PSF is well described by the
sum of two Moffat functions (Racine 1996). A sum of two Gaussians, G(α) + 0.1G(2α), is also a
convenient and reasonably accurate representation of Eq. C2

This continuous image is then sampled by the detector’s pixels, i.e. the image is convolved with
the pixel response function and multiplied by an array of δ-functions centred in each pixel. For an
ideal CCD with square pixels whose sensitivity is either 0 or 1 this corresponds to a convolution with
a rectangular top-hat function and sampling on a rectangular grid. Providing that the response
function of each pixel is the same, and that the image is properly sampled, the details of the
sensitivity variations within the CCD’s pixels are unimportant.

This PSF-and-pixel convolved image is what Photo attempts to measure as accurately as
possible. We never attempt to deconvolve the pixel response although this is theoretically possible;
the attenuation due to pixellation at the band limit is only about 64% in 1 arcsec (Gaussian) seeing.

The structure of the PSF is dominated by turbulence in the atmosphere and telescope dome,
and varies with time; if the telescope’s optics are imperfect they can produce an additional spatial
variation along with further colour terms. We do not try to correct the images for these effects,
although we do model them in an attempt to remove their signature from our measured object
parameters.

D. The Calculation of the Centroid of Properly Sampled Data

We can use an approach similar to that of Eq. 21 to find the centroid of properly sampled,
pixellated, data. As before, we can use Eq. 20 to write:

〈x〉 =
∫ ∞

−∞
xf(x, y)dx

=
∫ ∞

−∞
x
∑

i

fi
sin((x− i)π)

(x− i)π
dx

=
∑

i

ifi +
1
π

∑
i

fi

∫ ∞

−∞
sin((x− i)π)dx

=
∑

i

ifi (D1)

where the second term vanishes as it’s an odd function integrated over an even interval, admittedly
one whose limits have been permitted to become infinite.
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E. Übercalibration of SDSS Data

(XXX Write or delete me)

(XXX MAS says:) Here, I could imagine a qualitative discussion on the difficulties of *really*
good photometry, which would touch upon many of the things you mention in the main text:

Scattered light and variable flat fields;

Changing filters;

Getting PSF determination right

F. Some Statistical Properties of Poisson Distributions

(XXX Expand)

Poisson distributions have some surprising properties, in particular

mean = median + 1/6

When clipping at 2.326σ,

mediantrue = medianclipped + 0.060

When clipping at 4.0σ

meantrue = meanclipped + (XXX????)

G. Reconstructing the KL-PSF given a psField file

The PSF information is written to files known as psField files; these files are exported in a
slightly modified form as tsField files.

There is stand-alone code available at http://www.astro.princeton.edu/∼rhl/readAtlasImages
which may be used to reconstruct the PSF at a desired point in the frame.

After downloading and building the utilities, to reconstruct the z PSF (i.e. the 5th HDU) at
the position (row, col) = (500, 600) from run 1336, column 2, field 51 you’d say:

read_PSF psField-001336-2-0051.fit 5 500.0 600.0 foo.fit
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The desired PSF would appear as an unsigned short FITS file in foo.fit; the background level is
set to the standard ‘soft bias’ of 1000. If you want a floating image, change a line in the read PSF.c;
look for /* create a float region */

I don’t expect that many users will actually want to use the read PSF executable (although
it is perfectly functional). The main use of the product will probably be to link into custom built
executables that need to process PSF data. This has indeed has already happened; for example,
IDL wrappers are available at (XXX Where? ).

G.1. Interpretation of PSP status codes

Each band in each field has an associated status (status), and a summary status (psp status)
is provided for each field. These status values are defined by an enumerated type, PSP STATUS (see
Table 9), and consist of a small integer (status & STATUS MASK) and a set of bitflags (status &

∼STATUS MASK). These status values are written into HDU 6 of the psField file.

The psp status is the largest of the per-band (status & STATUS MASK) values.

For example, 65 means (PSF22: SPARSE) and 96 means (OK: EXTENDED KL SPARSE).

Name Value Description
UNKNOWN -1 This should never happen
OK 0 Everything seems OK
PSF22 1 We were forced to take the PSF to vary lin-

early across the field
PSF11 2 We were forced to take the PSF to be a con-

stant across field
NOPSF 3 We forced forced to take a default PSF
ABORTED 4 We aborted processing for this field
MISSING 5 This field was a dummy, used to replace miss-

ing data
OE TRANSIENT 6 This field includes odd/even bias level tran-

sient
STATUS MASK 31 Mask defining which bits are used for status

values; higher bits are available to be set with
extra information

EXTENDED KL 0x20 The Window for stars used to determine the
PSF’s spatial structure was extended

SPARSE 0x40 The field is only sparsely populated with PSF
stars
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Name Value Description
Table 9:: PSP ’s status values, describing how well the PSF
is determined for a field.
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Aperture Radius/pixels Radius/asec Area/pixels Area/asec2

1 0.56 0.23 1 0.16
2 1.69 0.68 8 1.28
3 2.59 1.03 12 1.92
4 4.41 1.76 40 6.40
5 7.51 3.00 116 18.56
6 11.58 4.63 244 39.04
7 18.58 7.43 664 106.24
8 28.55 11.42 1476 236.16
9 45.50 18.20 3944 631.04
10 70.51 28.20 9114 1458.24
11 110.53 44.21 22762 3641.92
12 172.49 69.00 55094 8815.04
13 269.52 107.81 134732 21557.12
14 420.51 168.20 327318 52370.88
15 652.50 261.00 782028 125124.47

Table 7: Outer radii and areas of Photo’s annuli, measured in pixels and arcseconds. Note that the
areas in pixels are exact integers, which means that the first radius is r1 ≡ 1/

√
π ≈ 0.564190
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Quantity (P ) m u g r i z

RP 18 ∼ 1.5 0.77 0.83 0.96 0.94
19 1.09 0.87 0.92 1.00 0.95
21 0.91 0.96 0.91 0.90 0.73

R50 18 ∼ 1.5 1.90 1.96 1.67 1.42
19 1.74 1.84 1.82 1.54 1.16
21 1.19 1.37 1.27 1.15 0.85

R90 18 ∼ 1.7 1.19 1.15 1.13 0.92
19 0.95 1.10 1.05 1.00 0.92
21 0.92 0.90 0.80 0.88 0.89

R90/R50a 18 0.80 0.65 0.62 0.65 0.53
19 0.60 0.66 0.60 0.62 0.51
21 0.55 0.57 0.50 0.52 0.48

R90/R50b 18 ∼ 1.3 1.25 1.09 1.17 0.90
19 1.03 1.19 1.01 1.01 0.87
21 1.30 1.25 1.09 1.17 0.90

FP 18 — 2.03 1.79 1.60 1.72
19 2.12 1.60 1.55 1.35 1.32
21 1.37 1.30 1.21 1.13 0.94

Table 8: The ratio of the empirical estimates of errors in Petrosian quantities P to Photo’s estimate
of its standard deviation, δP . The value quoted is (P1 − P2)/

√
δP 2

1 + δP 2
2 , and the subscripts

1 and 2 refer to the two runs used in the comparison, 745 and 756. The two sets of values for
the concentration parameter, R90/R50, are calculated on the assumption that covar(R90/R50) =
σR50σR90 (case a) and that covar(R90/R50) = σR50σR90 (case b).


