How I Learned to use the Skyserver

Robert Lupton

I like to access the skyserver using my emacs-lisp mode; the latest version is $v1_10$ and is available from

http://www.astro.princeton.edu/~rhl/skyserver

There's even a manual. Warning: older versions don't support the full use of @variables.

You may prefer to use some other interface; in particular Jim Gray and Alex Szalay like the *Microsoft Query Analyser* which supports full Transact-SQL.

A Simple Query

```
select distinct
    run, rerun,
    field0, field0 + nfields - 1,
    photoVersion
from Segment
```

```
run rerun field0 photoVersion

94 7 104 544 v5_2_21
125 7 11 451 v5_2_21
752 8 11 617 v5_2_5
756 8 196 802 v5_2_6
1336 2 11 95 v5_2_12
1339 2 11 95 v5_2_12
1356 2 20 113 v5_2_12
1359 3 19 113 v5_2_12
```

Note the ugly formatting, and that the last field (the one calculated as field0 + nfields - 1) has no column heading.

A Formatted Simple Query

```
select distinct
   str(run, 4) as run, str(rerun, 3) as rerun,
   str(field0,3) as field0, str(field0 + nfields - 1,4) as field1,
   photoVersion
from Segment
order by run
```

Prettier and field1 is no longer anonymous. We've made the ordering by run explicit.

A Simple Egocentric Query

```
-- What's loaded in skyserver?

declare @database char set @database = Robert

select distinct
    str(run, 4) as run, str(rerun, 3) as rerun,
    str(field0,3) as field0, str(field0 + nfields - 1,4) as field1,
    photoVersion

from @database..Segment
order by run
```

```
run rerun field0 field1 photoVersion

745 672 514 514 v5_3_31
756 672 796 796 v5_3_31
1336 14 93 93 v5_3_31
1339 14 92 92 v5_3_31
```

The same as before, except that this time I wanted to know what was loaded in my database.

An Almost-as-Simple Query

```
-- What's loaded in skyserver?

declare @database char set @database =

select distinct top 2

str(run, 4) as run, str(rerun, 3) as rerun,

str(field0,3) as field0, str(field0 + nfields - 1,4) as field1,

photoVersion

from @database..Segment

where
 run != 745

order by run
```

Omit run 745, and only show the first two rows found by the query. We're interrogating the main (non-Robert) database this time.

The Galaxy Target Selection Algorithm

```
declare @database char
               set @database =
declare Opi float set Opi = 3.141592654
set @BRIGHT = dbo.fPhotoFlags('BRIGHT')
declare @BRIGHT int
set @NODEBLEND = dbo.fPhotoFlags('NODEBLEND')
declare @NODEBLEND int
declare @maglim float     set @maglim = 17.77
select top 10
-- Standard fields
run, rerun, camCol, field,
str(rowc,6,1) as rowc, str(colc,6,1) as colc,
str(dbo.f0bjFrom0bjID(0bjId), 4) as id,
"; as ";",
-- Scientific output
str(ra,9,4) as ra, str(dec,8,4) as dec
from
```

```
@database..PhotoPrimary
where
    -- Our star-galaxy separation and target selection
    psfMag_r - modelMag_r >= @delta_psf_model and
    petroMag_r - reddening_r <= @maglim and
    petroMag_r - 2.5*log10(2*@pi*petroR50_r*petroR50_r) < @SBlim and
    -- Check flags
    (flags & @bad_flags) = 0 and
    (((flags & @BLENDED) = 0) or ((flags & @NODEBLEND) != 0))</pre>
```

```
run rerun camCol field rowc colc : ra dec
                      1635.3
1336
               187.4
                                   251.2860
                                               64.2985
          11
1336
           11
               379.6
                        716.0
                                   251.0971
                                               64.2357
      \bar{2}
1336
        1
           11
                                      .0266
                                                  2010
      2
               661.3
1336
           11
                                     1.0098
                                               64.1830
1336
               873.6
1336
           11
               250.6
1336
           11
               261
                       1540.5
                                                 .2382
1336
           11
                        653.6
     \bar{2}
               338.3
                                               64.2558
1336
           11
                       1052.6
                                       1693
                       1749.8
                                   251.3346
                                               64.2836
1336
           11
               392.4
```

Query both the Spectroscopy and Photometry

```
/*
* Galaxy target selection with spectroscopic redshifts
*/
declare Opi float set Opi = 3.141592654
declare @BRIGHT int
            set @BRIGHT = dbo.fPhotoFlags('BRIGHT')
declare @NODEBLEND int
              set @NODEBLEND = dbo.fPhotoFlags('NODEBLEND')
select top 10
str(gal.ra,9,4) as ra, str(gal.dec,8,4) as dec,
'|' as '|', cast(spec.type as char (9)) as type,
str(spec.z,7,4) as Z,
dbo.fSpecZStatusN(spec.zStatus) as status,
dbo.fGetUrlSpecImg(spec.specObjID) as Spectra
from
```

```
@database..PhotoPrimary as gal,
    @database..specObj as spec
where
    gal.objID = spec.objID and
    -- Our star-galaxy separation and target selection
    psfMag_r - modelMag_r >= @delta_psf_model and
    petroMag_r - reddening_r <= @maglim and
    petroMag_r - 2.5*log10(2*@pi*petroR50_r*petroR50_r) < @SBlim and
    -- Check flags
    (flags & @bad_flags) = 0 and
    (((flags & @BLENDED) = 0) or ((flags & @NODEBLEND) != 0))</pre>
```

```
ra dec | type Z status Spectra
 251.3749
          64.1473 |
                     GALAXY
                                0.0689 XCORR_EMLINE http:...
          64.0215 |
                                0.0677 XCORR_EMLINE http:...
 251.2649
                    GALAXY
 251.5386 63.8977 | GALAXY
                                0.0695 XCORR_EMLINE http:...
                               -0.0001 XCORR_EMLINE http:...
 251.5323 63.7413 l
                     STAR_BHB
                                0.1048 XCORR_HIC http:...
 251.6382 63.6581 | GALAXY
                                0.0333 XCORR_HIC http:...
 252.0256 63.5788 | GALAXY
                                0.0967 INCONSISTENT http:...
 251.8941
          63.4230 L
                    GALAXY
 252.3079 63.1463 | GALAXY
                                0.1045 INCONSISTENT http:...
 252.6909
          62.8880 l
                                0.0681 XCORR_HIC http:...
                     GALAXY
                                0.0366 XCORR_EMLINE http:...
 252.4744
          62.8420 l
                    GALAXY
```

There's a problem with this query; it doesn't return the objects which passed galaxy target selection but for which we have no spectrum.

There are Two Ways to write that Query

Our star-galaxy separation and target selection

gal.objID = spec.objID

where

The two are exactly equivalent; one uses join ... on whereas the other prefers to put the on condition into the where clause. We're about to use a generalisation of this join syntax to include non-targetted galaxies in our outputs.

```
* Galaxy target selection including spectroscopic redshifts where available
*/
declare Opi float set Opi = 3.141592654
declare @BRIGHT int
                  set @BRIGHT = dbo.fPhotoFlags('BRIGHT')
                set @EDGE = dbo.fPhotoFlags('EDGE')
declare @EDGE int
declare @NODEBLEND int
                    set @NODEBLEND = dbo.fPhotoFlags('NODEBLEND')
declare @maglim float     set @maglim = 17.77
declare @SBlim float set @SBlim = 24.5
declare @delta_psf_model float set @delta_psf_model = 0.3
select top 10
str(gal.ra,9,4) as ra, str(gal.dec,8,4) as dec,
'|' as '|', cast(ISNULL(spec.type, 'NULL ') as char (9)) as type,
ISNULL(str(spec.z,7,4), 'NULL') as Z,
ISNULL(dbo.fSpecZStatusN(spec.zStatus), 'NULL ') as status,
ISNULL(dbo.fGetUrlSpecImg(spec.specObjID), 'NULL') as Spectra
from
```

```
@database..PhotoPrimary as gal
left outer join
    @database..specObj as spec
on
    gal.objID = spec.objID

where
    -- Our star-galaxy separation and target selection
    psfMag_r - modelMag_r >= @delta_psf_model and
    petroMag_r - reddening_r <= @maglim and
    petroMag_r - 2.5*log10(2*@pi*petroR50_r*petroR50_r) < @SBlim and
    -- Check flags
    (flags & @bad_flags) = 0 and
    (((flags & @BLENDED) = 0) or ((flags & @NODEBLEND) != 0))</pre>
```

Here the left outer join includes rows for which no spectrum is available, returning NULL. The select has to handle these NULLs.

```
The phrase
```

```
ISNULL(str(spec.z,7,4), 'NULL')
```

isn't actually legal ANSI SQL (it's a SQL-server extension); the legal version is the rather wordier

(case when spec.z is NULL then 'NULL' else str(spec.z,7,4) end)

```
ra dec | type Z status Spectra
           64.2985
 251.2860
                      NULL
                                NULL NULL NULL
 251.0971
           64.2357
                      NULL
                                NULL NULL NULL
 251.3141
           63.9971
                      NULL
                                NULL NULL NULL
 251.3144
           63.9881
                      NULL
                                NULL NULL NULL
 251.3085
           63.9892
                      NULL
                                NULL NULL NULL
 251.5633
           64.0398
                      NULL
                                NULL NULL NULL
                                 0.0689 XCORR_EMLINE http:...
 251.3749
                      GALAXY
           64.1473
                                 0.0677 XCORR_EMLINE http:...
 251.2649
           64.0215
                      GALAXY
 251.4962
           64.0124 |
                      NULL
                                NULL NULL NULL
 251.3497
           63.9756 L
                      NULL
                                NULL NULL NULL
```

A Query that (Implicitly) Creates a Temporary Table

run rerun nobj
1336 14 581747
1339 14 608460
745 672 887579
756 672 907579

Make a temporary table (called tmpTable) and select its contents. This isn't actually exactly a temporary table in the usual SQL-server sense, but I find it helpful to think of it that way.

The count(*) as nobj says return the total number of rows in the @database..photoObj table; the group by run, rerun says that the counting should be done separately for each pair of values (run, rerun).

Another version of "What's Loaded"

```
-- What's loaded in skyserver?
declare @database char set @database = Robert
select distinct
    str(seg.run, 4) as run, str(seg.rerun, 3) as rerun,
    str(field0,3) as field0, str(field0 + nfields - 1,4) as field1,
    str(nobj, 7) as nobj,
    photoVersion
from
    @database..Segment as seg,
    (select
        count (*) as nobj, run, rerun
    from
        @database..photoObj
    group by run, rerun
    ) as "fieldSummary"
where
    seg.run = fieldSummary.run and seg.rerun = fieldSummary.rerun
order by run
```

```
run rerun field0 field1 nobj photoVersion

745 672 514 514 887579 v5_3_31
756 672 796 796 907579 v5_3_31
1336 14 93 93 581747 v5_3_31
1339 14 92 92 608460 v5_3_31
```

We've included the number of objects in each run in the output.

Fix the field1 Values Using Another Temporary Table

```
-- What's loaded in skyserver?
declare @database char set @database = Robert
select distinct
    str(seg.run, 4) as run, str(seg.rerun, 3) as rerun,
    -- str(field0,3) as field0, str(field0 + nfields - 1,4) as field1,
    str(field0_rhl,3) as field0,
    str(field1_rhl,3) as field1,
    photoVersion
from
    Odatabase...Segment as seg,
    (select
        min (field) as field0_rhl,
        max (field) as field1_rhl,
run, rerun
    from
        @database..field
    group by run, rerun
    ) as "runSummarv"
where
    seg.run = runSummary.run and seg.rerun = runSummary.rerun
order by run
```

```
run rerun field0 field1 photoVersion

745 672 395 514 v5_3_31
756 672 680 796 v5_3_31
1336 14 11 93 v5_3_31
1339 14 11 92 v5_3_31
```

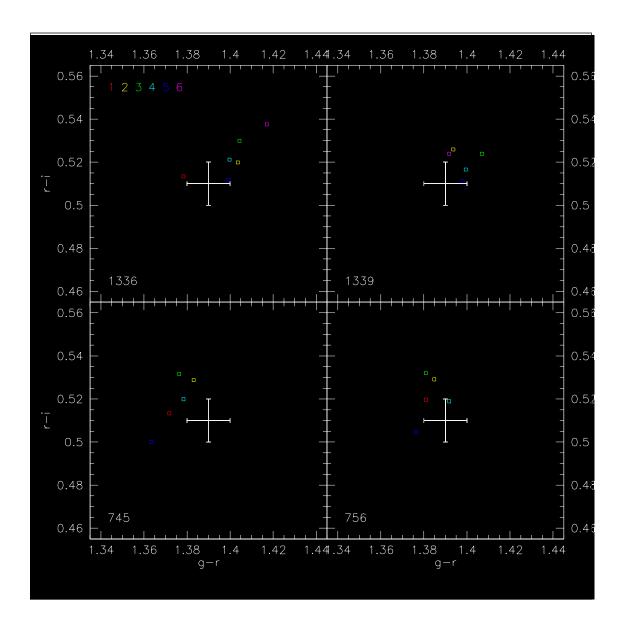
```
-- Calculate the žhed point from the skyserver data
declare @database char set @database = Robert
set @bad_flags = (dbo.fPhotoFlags('SATURATED') | \
declare @bad_flags int
          dbo.fPhotoFlags('BRIGHT') | dbo.fPhotoFlags('EDGE'))
-- Possible restriction on runs to be processed
declare @select_run char set @select_run = -- run == 745 and
-- Our Query
select
field.pspStatus,
blue.run, blue.camCol, blue.field,
N,
gr as zhed_gr,
CO + gr*C1 as zhed_ri,
CO, C1
from
```

```
Odatabase...field as field,
(select
                    -- Fit straight line
    run as run, camCol as camCol, field as field, fieldId, N,
    (-sum_x*sum_xy + sum_xx*sum_y)/(n*sum_xx - sum_x*sum_x) as CO,
    (N*sum_xv - sum_x*sum_v)/(n*sum_xx - sum_x*sum_x) as C1
from
(select
                    -- Blue part of locus
    run as run, camCol as camCol, field as field, fieldId,
    count (*) as N,
    sum (g - r) as sum_x,
    sum ((g - r)*(g - r)) as sum_xx,
    sum (r - i) as sum_y,
    sum ((g - r)*(r - i)) as sum_xy
from
    (select
        run, camCol, field, fieldId,
        (psfMag_g - reddening_g) as g,
        (psfMag_r - reddening_r) as r,
        (psfMag_i - reddening_i) as i
    from @database..PhotoPrimary
    where
        @select run
        (flags & @bad_flags) = 0 and nchild = 0 and
        type = @star and
        -- Not too faint
        psfMag_i < @maglim
    ) as "obj1"
where
    -- Choose stars in nearly horizontal part of g-r-i diagram
    g - r between 0.3 and 1.1 and
    r - i between -0.1 and 0.6
group by run, camCol, field, fieldId
) as "_blue"
 as "blue",
```

```
select
                    -- Red part of locus
        fieldId,
        avg(g - r) as gr-- I'd prefer the median
    from
        (select
            fieldId,
            (psfMag_g - reddening_g) as g,
            (psfMag_r - reddening_r) as r,
            (psfMag_i - reddening_i) as i
        from @database..PhotoPrimary
        where
            @select run
            (flags & @bad_flags) = 0 and nchild = 0 and
            type = @star and
            -- Not too faint
            psfMag_i < @maglim
        ) as "obj2"
    where
        -- Choose stars in vertical part of g-r-i diagram
        g - r between 1.1 and 1.6 and
        r - i between 0.8 and 1.4
    group by fieldId
    ) as "red"
where
    blue.fieldId = red.fieldId and
    blue.fieldId = field.fieldId
order by blue.run, blue.camCol, blue.field
```

```
pspStatus run camCol field N zhed_gr zhed_ri CO C1

0 745 1 395 22 1.364067 0.549448 0.003595 0.400166
0 745 1 396 33 1.381796 0.469429 0.001625 0.338548
0 745 1 397 40 1.329576 0.499432 -0.009701 0.382928
0 745 1 398 37 1.434749 0.538586 0.003014 0.373286
0 745 1 399 26 1.380334 0.509576 -0.023451 0.386158
0 745 1 400 36 1.361475 0.513623 -0.011265 0.385528
...
```


But what if I want an average for each run/camCol? Ask and ye shall receive...

```
-- Calculate the zhed point from the skyserver data
declare @Nmin int set @Nmin = 0 -- Minimum number of stars/field
declare @bad_flags int
                     set @bad_flags = (dbo.fPhotoFlags('SATURATED') |
| dbo.fPhotoFlags('EDGE'))
declare @good char set @good = (1=1 or field.pspStatus = 0) and blue.N > @Nmin
-- Possible restriction on runs to be processed
declare Oselect _run char set Oselect _run = -- run = 1339 and camCol = 1 and
-- Our Query
select
blue.run, blue.camCol,
sum (case when @good then blue.N else 0 end ) as N,
avg(case when @good then gr else NULL end ) as zhed_gr,
avg(case when @good then CO + gr*C1 else NULL end ) as zhed_ri
from
```

dì

```
Odatabase...field as field,
(select
                    -- Fit straight line
    run as run, camCol as camCol, field as field, fieldId, N,
    (-sum _x*sum _xy + sum _xx*sum _y)/(n*sum _xx - sum _x*sum _x) as CO,
    (N*sum _xv - sum _x*sum _v)/(n*sum _xx - sum _x*sum _x) as C1
from
(select
                    -- Blue part of locus
    run as run, camCol as camCol, field as field, fieldId,
    count (*) as N,
    sum (g - r) as sum _x,
    sum ((g - r)*(g - r)) as sum _xx,
    sum (r - i) as sum _y,
    sum ((g - r)*(r - i)) as sum _xy
from
    (select
        run, camCol, field, fieldId,
        (psfMag_g - reddening_g) as g,
        (psfMag_r - reddening_r) as r,
        (psfMag_i - reddening_i) as i
    from @database..PhotoPrimary
    where
        Oselect run
        (flags & @bad_flags) = 0 and nchild = 0 and
        type = @star and
        -- Not too faint
        psfMag_i < @maglim
    ) as "obj1"
where
    -- Choose stars in nearly horizontal part of g-r-i diagram
    g - r between 0.3 and 1.1 and
    r - i between -0.1 and 0.6
group by run, camCol, field, fieldId
) as "_blue"
 as "blue",
```

```
select
                     -- Red part of locus
        fieldId,
        avg(g - r) as gr-- I'd prefer the median
    from
        (select
            fieldId,
             (psfMag_g - reddening_g) as g,
             (psfMag_r - reddening_r) as r,
             (psfMag_i - reddening_i) as i
        from @database..PhotoPrimary
        where
            Oselect run
             (flags & @bad_flags) = 0 and nchild = 0 and
            type = Ostar and
            -- Not too faint
            psfMag_i < @maglim
        ) as "obj2"
    where
        -- Choose stars in vertical part of g-r-i diagram
        g - r between 1.1 and 1.6 and
        r - i between 0.8 and 1.4
    group by fieldId
    ) as "red"
where
    blue.fieldId = red.fieldId and
blue.fieldId = field.fieldId
group by blue.run, blue.camCol
order by blue.run, blue.camCol
```


The results of the žhed query. The white cross is the canonical cosmic žhed point, with $\pm 1\%$ error bars.