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PART I

Introduction to astrophysical plasmas
I.1. What is a plasma?

Astrophysical plasmas are remarkably varied, and so it may appear difficult at first
to provide a definition of just what constitutes a “plasma”. Is it an ionized, conducting
gas? Well, the cold, molecular phase of the interstellar medium has a degree of ionization
of ≲10−6, and yet is considered a plasma. (Indeed, plenty of researchers still model
this phase using ideal magnetohydrodynamics!) Okay, so perhaps a sufficiently ionized,
conducting gas (setting aside for now what is meant precisely by “sufficiently”)? Well,
plasmas don’t necessarily have to be good conductors. Indeed, many frontier topics in
plasma astrophysics involve situations in which resistivity is fundamentally important.

Clearly, any definition of a plasma must be accompanied by qualifiers, and these
qualifiers are often cast in terms of dimensionless parameters that compare length and
time scales. Perhaps the most important dimensionless parameter in the definition of a
plasma is the plasma parameter,

Λ
.
= neλ

3
D, (I.1)

where ne is the electron number density and

λD
.
=

(
T

4πe2ne

)1/2

= 7.4

(
TeV
ncm−3

)1/2

m (I.2)

is the Debye length. We’ll derive this formula for the Debye length and discuss its
physics more in § III.1 of these notes, but for now I’ll simply state its meaning: it
is the characteristic length scale on which the Coulomb potential of an individual
charged particle is exponentially attenuated (“screened”) by the preferential accumulation
(exclusion) of oppositely- (like-) charged particles into (from) its vicinity.1 Thus, Λ reflects
the number of electrons in a Debye sphere. Its dependence upon the temperature T
suggests an alternative interpretation of Λ:

Λ =
T

4πe2/λD
∼ kinetic energy

potential energy
. (I.3)

Indeed, if the plasma is in thermodynamic equilibrium with a heat bath at temperature
T , then the concentration of discrete charges follows the Boltzmann distribution,

nα(r) = nα exp

(
−qαϕ(r)

T

)
, (I.4)

where nα is the mean number density of species α, qα is its electric charge, and ϕ(r) is
the Coulomb potential. In the limit Λ→ ∞, the distribution of charges becomes uniform,
i.e., the plasma is said to be quasi-neutral, with equal amounts of positive and negative
charge within a Debye sphere.

Debye shielding is fundamentally due to the polarization of the plasma and the
associated redistribution of space charge, and is an example of how a plasma behaves as a
dielectric medium. The hotter plasma, the more kinetic energy, the less bound individual
electrons are to the protons. When Λ≫ 1, collective electrostatic interactions are much
more important than binary particle–particle collisions, and the plasma is said to be

1In this course, sometimes temperature will be measured in Kelvin, and sometimes temperature
will be measured in energy units (eV) after a hidden multiplication by Boltzmann’s constant kB.
An energy of 1 eV corresponds to a temperature of ∼104 K (more precisely, ≃1.16× 104 K).
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weakly coupled. These are the types of plasmas that we will focus on in this course (e.g.,
the intracluster medium of galaxy clusters has Λ ∼ 1015).

Shown below is a rogue’s gallery of astrophysical and space plasmas in the T–n plane,
with the Λ = 1 line indicating a divide between quasi-neutral plasmas (to the left) and
metals (to the right):

Clearly, there is a lot of parameter space here and so, to classify these plasmas further,
we require additional dimensionless parameters.

I.2. Fundamental length and time scales
Another useful dividing line between different types of astrophysical and space plasmas

is whether they are collisional or collisionless. In other words, is the mean free path
between particle–particle collisions, λmfp, larger or smaller than the macroscopic length
scales of interest, L. If λmfp ≪ L, then the plasma is said to behave as a fluid, and various
hydrodynamic and magnetohydrodynamic (MHD) equations can be used to describe its
evolution. If, on the other hand, the mean free path is comparable to (or perhaps even
larger than) the macroscopic length scales of interest, the plasma cannot be considered
to be in local thermodynamic equilibrium, and the full six-dimensional phase space (3
spatial coordinates, 3 velocity coordinates) through which the constituent particles move
must be retained in the description. Written in terms of the thermal speed of species α,

vthα
.
=

(
2Tα
mα

)1/2

, (I.5)

and the collision timescale τα, the collisional mean free path is

λmfp,α
.
= vthατα. (I.6)
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For electron–ion collisions,

τei =
3
√
meT

3/2
e

4
√
2πneλeZ2e4

≃ 3.4× 105
(

T
3/2
eV

ncm−3λeZ2

)
s, (I.7)

where Ze is the ion charge and λe is the electron Coulomb logarithm; for ion–ion collisions,

τii =
3
√
miT

3/2
i

4
√
πniλiZ4e4

≃ 2.1× 107
(

T
3/2
eV

ncm−3λiZ4

)
s, (I.8)

where λi is the ion Coulomb logarithm. Note that the resulting λmfp,e and λmfp,i differ
only by a factor of order unity:

λmfp,e =
3

4
√
π

T 2
e

neλeZ2e4
, λmfp,i =

3
√
2

4
√
π

T 2
i

niλiZ4e4
,

and so one often drops the species subscript on λmfp. With these definitions, it becomes
clear that the plasma parameter (I.1) also reflects the ratio of the mean free path to the
Debye length:

Λ
.
=
neλ

4
D

λD
∼ T 2

e /ne/e
4

λD
∼ λmfp

λD
; (I.9)

again, a measure of the relative importance of collective effects (λD) and binary collisions
(λmfp).

Independent of whether a given astrophysical plasma is collisional or collisionless,
nearly all such plasmas host magnetic fields, either inherited from the cosmic background
in which they reside or produced in situ by a dynamo mechanism. There are two ways in
which the strength of the magnetic field is quantified. First, the plasma beta parameter:

βα
.
=

8πnαTα
B2

, (I.10)

which reflects the relative energy densities of the thermal motions of the plasma particles
and of the magnetic field. Note that

βα =
2Tα
mα

× 4πmαnα
B2

=
v2thα
v2Aα

, (I.11)

where

vAα
.
=

B√
4πmαnα

(I.12)

is the Alfvén speed for species α.2 Second, the plasma magnetization, ρα/L, where

ρα
.
=
vthα
Ωα

(I.13)

is the Larmor radius of species α and

Ωα ≡ qαB

mαc
(I.14)

is the gyro- (or cyclotron, or Larmor) frequency. What distinguishes many astrophysical
plasmas from their terrestrial laboratory counterparts is that the former can have β ≫ 1
even though ρ/L≪ 1.3 In other words, a magnetized astrophysical plasma need not have

2Usually, a single Alfvén speed, vA
.
= B/

√
4πϱ, is given for a plasma with mass density ϱ.

3The ∼5 keV intracluster medium of galaxy clusters can be magnetized by a magnetic field as
weak as ∼10−18 G.
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an energetically important magnetic field, and β ≫ 1 does not preclude the magnetic
field from having dynamical consequences. You’ve been warned.

There are two more kinetic scales worth mentioning at this point, which we will come
to later in this course: the plasma frequency,

ωpα =

(
4πnαe

2

mα

)1/2

, (I.15)

and the skin depth (or inertial length),

dα
.
=

c

ωpα
=

(
mαc

2

4πnαe2

)1/2

. (I.16)

The former is the characteristic frequency at which a plasma oscillates when one sign of
charge carriers is displaced from the other sign by a small amount (see § III.2). Indeed,
the factor (4πnαe

2) should look familiar from the definition of the Debye length (see
(I.2)). The latter is the characteristic scale below which the inertia of species α precludes
the propagation of (certain) electromagnetic waves. For example, the ion skin depth is
the scale at which the ions decouple from the electrons and any fluctuations in which the
electrons are taking part (e.g., whistler waves). The following relationship between the
skin depth and the Larmor radius may one day come in handy:

dα =
vA,α
Ωα

=
ρα

β
1/2
α

. (I.17)

I.3. Examples of astrophysical and space plasmas
This part is given as a keynote presentation. Here I simply provide a chart of useful

numbers on the next page (ICM = intracluster medium; JET = Joint European Torus,
a nuclear fusion experiment; ISM = interstellar medium). For quick reference, the Earth
has a ∼0.5 G magnetic field, 1 eV ∼ 104 K, 1 au ≈ 1.5 × 1013 cm, 1 pc ≈ 3 × 1018 cm,
1 pc Myr−1 ≃ 1 km s−1.
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PART II

Fundamentals of hydrodynamics
Unfortunately, fluid dynamics has all but disappeared from the US undergraduate cur-
riculum, as physics departments have made way for quantum mechanics and condensed
matter.4 This is a shame – yes, it’s classical physics and thus draws less ‘oohs’ and ‘aahs’
from the student (and professorial, for that matter) crowd. But there are many good
reasons to study it. First, it forms the bedrock of fascinating and modern topics like
non-equilibrium statistical mechanics, including the kinetic theory of gases and particles.
Second, it is mathematically rich without being physically opaque. The more you really
understand the mathematics, the more you really understand physically what is going
on; the same cannot be said for many branches of modern physics. Third, nonlinear
dynamics and chaos, burgeoning fields in their own right, are central to arguably the
most important unsolved problem in classical physics: fluid turbulence. Solve that, and
your solution would have immediate impact and practical benefits to society. Finally,
follow in the footsteps of greatness: on Feynman’s chalkboard at the time of his death
was the remit ‘to learn . . . nonlinear classical hydro’. With that, let’s begin.

4An excellent textbook from which to learn elementary fluid dynamics is Acheson’s Elementary
Fluid Dynamics. It provides an engaging mix of history, physical insight, and transparent
mathematics. I recommend it.
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II.1. The equations of ideal hydrodynamics
The equations of hydrodynamics and MHD may be obtained rigorously by taking

velocity-space moments of the Boltzmann and Vlasov–Landau kinetic equations. What?
Okay, we’ll get to that soon enough. For now, let’s begin with things that you already
know: mass is conserved, Newon’s second law (force equals mass times acceleration), and
the first law of thermodynamics (energy is conserved).

II.1.1. Mass is conserved: The continuity equation
We describe our gaseous fluid by a mass density ρ, which in general is a function of

time t and position r.5 Imagine an arbitrary volume V enclosing some of that fluid. The
mass inside of the volume is simply

M =

∫
V
dV ρ. (II.1)

Now let’s mathematize our intuition: within this fixed volume, the only way the enclosed
mass can change is by material flowing in or out of its surface S:

dM

dt

.
=

∫
V
dV

∂ρ

∂t
= −

∫
S
dS · ρu, (II.2)

where u is the flow velocity.

Gauss’ theorem may be applied to rewrite the right-hand side of this equation as follows:∫
S
dS · ρu =

∫
V
dV ∇· (ρu). (II.3)

Because the volume under consideration is arbitrary, the integrands of the volume
integrals in (II.2) and (II.3) must be the same. Therefore,

∂ρ

∂t
+∇· (ρu) = 0 (II.4)

This is the continuity equation; it’s the differential form of mass conservation.

Exercise. Go to the bathroom and turn on the sink slowly to get a nice, laminar stream flowing
down from the faucet. Go on, I’ll wait. If you followed instructions, then you’ll see that the
stream becomes more narrow as it descends. Knowing that the density of water is very nearly
constant, use the continuity equation to show that the cross-sectional area of the stream A(z)
as a function of distance from the faucet z is

A(z) =
A0√

1 + 2gz/v20
,

5I sometimes denote the mass density by ϱ to avoid confusion with the Larmor radius ρ. But,
given that ρ is standard notation in hydrodynamics for the mass density, and ρ is standard
notation in plasma physics for the Larmor radius, you should learn to tell the difference based
on the context.
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where A0 is the cross-sectional area of the stream upon exiting the faucet with velocity v0 and
g is the gravitational acceleration. If you turn the faucet to make the water flow faster, what
happens to the tapering of the stream?

II.1.2. Newton’s second law: The momentum equation
So far we have an equation for the evolution of the mass density ρ expressed in terms

of the fluid velocity u. How does the latter evolve? Newton’s second law provides the
answer: simply add up the accelerations, divide by the mass (density), and you’ve got
the time rate of change of the velocity. But there is a subtlety here: there is a difference
between the time rate of change of the velocity in the lab frame and the time rate of
change of the velocity in the fluid frame. So which time derivative of u do we take? The
key is in how the accelerations are expressed. Are these accelerations acting on a fixed
point in space, or are they acting on an element of our fluid? It is much easier (and
more physical) to think of these accelerations in the latter sense: given a deformable
patch of the fluid – large enough in extent to contain a very large number of atoms but
small enough that all the macroscopic variables such as density, velocity, and pressure
have a unique value over the dimensions of the patch – what forces are acting on that
patch? These are relatively simple to catalog, and we will do so in short order. But first,
let’s answer our original question: which time derivative of u do we take? Since we have
committed to expressing the forces in the frame of the fluid element, the acceleration
must likewise be expressed in this frame. The acceleration is not

∂u

∂t
. (II.5)

Remember what a partial derivative means: something is being fixed! Here, it is the
instantaneous position r of the fluid element. Equation (II.5) is the answer to the
question, ‘how does the fluid velocity evolve at a fixed point in space?’ Instead, we
wish to fix our sights on the fluid element itself, which is moving. The acceleration we
calculate must account for this frame transformation:

a =
∂u

∂t
+

dr

dt
·∇u, (II.6)

where dr/dt is the rate of change of the position of the fluid element, i.e., the velocity
u(t, r). This combination of derivatives is so important that it has its own notation:

D

Dt

.
=

∂

∂t
+ u ·∇. (II.7)

It is variously referred to as the Lagrangian derivative, or comoving derivative, or
convective derivative. By contrast, the expression given by (II.5) is the Eulerian deriative.
Note that the continuity equation (II.4) may be expressed using the Lagrangian derivative
as

D ln ρ

Dt
= −∇·u, (II.8)

which states that incompressible flow corresponds to ∇·u = 0.
So, given some force F per unit volume that is acting on our fluid element, we now

know how the fluid velocity evolves: force (per unit volume) equals mass (per unit volume)
times acceleration (in the frame of the fluid element):

F = ρ
Du

Dt
. (II.9)

Now we need only catalog the relevant forces. This could be, say, gravity: ρg = −ρ∇Φ.
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Or, if the fluid element is conducting, electromagnetic forces (which we’ll get to later in
the course). But the most deserving of discussion at this point is the pressure force due
to the internal thermal motions of the particles comprising the gas. For an ideal gas, the
equation of state is

P =
ρkBT

m

.
= ρC2, (II.10)

where T is the temperature in Kelvin, kB is the Boltzmann constant, m is the mass
per particle, and C is the speed of sound in an isothermal gas. Plasma physicists often
drop Boltzmann’s constant and register temperature in energy units (e.g., eV), and I will
henceforth do the same in these notes. How does gas pressure due to microscopic particle
motions exert a macroscopic force on a fluid element? First, the pressure must be spatially
non-uniform: there must be more or less energetic content in the thermal motions of the
particles in one region versus another, whether it be because the gas temperature varies
in space or because there are more particles in one location as opposed to another. For
example, the pressure force in the x direction in a slab of thickness dx and cross-sectional
area dy dz is [

P (t, x− dx/2, y, z)− P (t, x+ dx/2, y, z)
]
dy dz = −∂P

∂x
dV. (II.11)

Unless the thermal motions of the particles are not sufficiently randomized to be isotropic
(e.g., if the collisional mean free path of the plasma is so long that inter-particle collisions
cannot drive the system quickly enough towards local thermodynamic equilibrium), there
is nothing particularly special about the x direction, and so the pressure force force acting
on some differential volume dV is just −∇P dV .

Assembling the lessons we’ve learned here, we have the following force equation for our
fluid:

ρ
Du

Dt

.
= ρ

(
∂

∂t
+ u ·∇

)
u = −∇P − ρ∇Φ (II.12)

This equation is colloquially known as the momentum equation, even though it evolves
the fluid velocity rather than its momentum density. To obtain an equation for the latter,
the continuity equation (II.4) may be used to move the mass density into the time and
space derivatives:

∂(ρu)

∂t
+∇· (ρuu) = ∂ρ

∂t
u+ ρ

∂u

∂t
+ ρu ·∇u+∇· (ρu)u

=

[
∂ρ

∂t
+∇· (ρu)

]
u+ ρ

(
∂

∂t
+ u ·∇

)
u

=

[
0

]
u+ ρ

Du

Dt
= F . (II.13)

Thus, an equation for the momentum density:

∂(ρu)

∂t
+∇· (ρuu) = −∇P − ρ∇Φ (II.14)

This form is particularly useful for deriving an evolution equation for the kinetic energy
density. Dotting (II.14) with u and grouping terms,

∂

∂t

(
1

2
ρu2
)
+∇·

(
1

2
ρu2u

)
= −u ·∇P − ρu ·∇Φ, (II.15)
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which is a statement that the kinetic energy of a fluid element changes as work is done
by the forces.

Now, how to we know the pressure P? There’s an equation for that. . .

II.1.3. First law of thermodynamics: The internal energy equation
There are several ways to go about obtaining an evolution equation for the pressure.

One way is to introduce the internal energy,

e
.
=

P

γ − 1
(II.16)

and use the first law of thermodynamics to argue that e is conserved but for P dV work:

∂e

∂t
+∇· (eu) = −P∇·u (II.17)

This is the internal energy equation.
Equation (II.17) may be used to derive a total (kinetic + internal + potential) energy

equation for the fluid as follows. Do (II.15) + (II.17):

∂

∂t

(
1

2
ρu2 + e

)
+∇·

[(
1

2
ρu2 + e

)
u

]
= −∇· (Pu)− ρu ·∇Φ,

= −(γ − 1)∇· (eu)− ρu ·∇Φ

=⇒ ∂

∂t

(
1

2
ρu2 + e

)
+∇·

[(
1

2
ρu2 + γe

)
u

]
= −ρu ·∇Φ. (II.18)

Now use the continuity equation (II.4) to write

∂(ρΦ)

∂t
+∇· (ρΦu) = ρu ·∇Φ+ ρ

∂Φ

∂t
. (II.19)

Adding this equation to (II.18) yields the desired result:

∂

∂t

(
1

2
ρu2 + e+ ρΦ

)
+∇·

[(
1

2
ρu2 + γe+ ρΦ

)
u

]
= ρ

∂Φ

∂t
(II.20)

The first term in parentheses under the time derivative is sometimes denoted by E .
Yet another way of expressing the internal energy equation (II.17) is to write e =

ρT/m(γ − 1) and use the continuity equation (II.4) to eliminate the derivatives of the
mass density. The result is

D lnT

Dt
= −(γ − 1)∇·u, (II.21)

which states that the temperature of a fluid element is constant in an incompressible
fluid (viz., one with ∇·u = 0). If this seems intuitively unfamiliar to you, consider this:
the hydrodynamic entropy of a fluid element is given by

s
.
=

1

γ − 1
lnPρ−γ =

1

γ − 1
lnTρ1−γ . (II.22)

Taking the Lagrangian time derivative of the entropy along the path of a fluid element
yields

Ds

Dt
=

D lnT

Dt
− (γ − 1)

D ln ρ

Dt
. (II.23)
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It is then just a short trip back to (II.8) to see that (II.21) is, in fact, the second law of
thermodynamics – entropy is conserved in the absence of sources or dissipative sinks:

Ds

Dt
= 0 (II.24)

II.2. Summary: Adiabatic equations of hydrodynamics
The adiabatic equations of hydrodynamics, written in conservative form, are:

∂ρ

∂t
+∇· (ρu) = 0, (II.25a)

∂(ρu)

∂t
+∇· (ρuu) = −∇P − ρ∇Φ, (II.25b)

∂e

∂t
+∇· (eu) = −P∇·u. (II.25c)

The left-hand sides of these equations express advection of, respectively, the mass density,
the momentum density, and the internal energy density by the fluid velocity; the right-
hand sides represents sources and sinks. If the gravitational potential is due to self-gravity,
then one must additionally solve the Poisson equation,

∇2Φ = 4πGρ. (II.26)

where G is Newton’s gravitational constant.
If we instead write these equations in terms of the density, fluid velocity, and entropy

and make use of the Lagrangian derivative (II.7), we have

Dρ

Dt
= −ρ∇·u, (II.27a)

Du

Dt
= −1

ρ
∇P −∇Φ, (II.27b)

Ds

Dt
= 0, (II.27c)

where s .
= (γ − 1)−1 lnPρ−γ . The limit γ → ∞, often of utility for describing liquids,

corresponds to Dρ/Dt = 0, i.e., incompressibility.

Exercise. Show that the gravitational force on a self-gravitating fluid element may be written as

−ρ∇Φ = −∇·
(

gg

4πG
− g2

8πG
I
)
, (II.28)

where g = −∇Φ, g2 = g · g, and I is the unit dyadic. The quantity inside the divergence operator
is known as the gravitational stress tensor. Because it’s written in the form of a divergence, it
represents the flux of total momentum through a surface due to gravitational forces.
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II.3. Mathematical matters
II.3.1. Vector identities

As a start to this section, let me advise you to brush up on your vector calculus. . .

A · (B×C) = B · (C×A) = C · (A×B),

A× (B×C) = B(A ·C)−C(A ·B),

∇· (A×B) = B · (∇×A)−A · (∇×B),

∇× (A×B) = (B ·∇)A− (A ·∇)B −B(∇·A) +A(∇·B),

A× (∇×B) +B× (∇×A) = ∇(A ·B)− (A ·∇)B − (B ·∇)A,

. . .

Fluid dynamics is full of these things, and you should either (i) commit them to memory,
(ii) carry your NRL formulary with you everywhere, or (iii) know how to quickly derive
them using things like

ϵkijϵkℓm = δiℓδjm − δimδjℓ,

where δij is the Kronecker delta and ϵijk is the Levi–Civita symbol.

II.3.2. Leibniz’s rule and the Lagrangian derivative of integrals

In the proofs of many conservation laws, a Lagrangian time derivative is taken of a
surface or volume integral whose integration limits are time-dependent. In this case, D/Dt
does not commute with the integral sign. The trick to dealing with these situations is
related to Leibniz’s rule:

d

dt

∫ b(t)

a(t)

dx f(t, x) =

∫ b(t)

a(t)

dx
∂

∂t
f(t, x) + f(t, b(t))

db

dt
− f(t, a(t))

da

dt
. (II.29)

In three dimensions, if we’re taking the time derivative of a volume integral whose
integration limits V(t) are time-dependent, the generalization of the above is

d

dt

∫
V(t)

dV f(t, r) =
∫
V(t)

dV ∂

∂t
f(t, r) +

∮
∂V(t)

dS ·
[
f(t, r)ub(t, r)

]
, (II.30)

where ub is the velocity of the bounding surface ∂V(t). This is known as the Reynolds
transport theorem. In words, the time rate-of-change of a quantity positioned within a
moving volume is a combination of the lab-frame rate-of-change of that quantity (i.e., the
time derivative at fixed position r – note the partial derivative) and how much of that
quantity flowed through the surface. When the velocity of the bounding surface equals
the fluid velocity, ub = u(t, r), so that each moving volume corresponds to that of a fluid
element, we may replace d/dt in (II.30) with the Lagrangian derivative D/Dt:

D

Dt

∫
V(t)

dV f(t, r) =
∫
V(t)

dV ∂

∂t
f(t, r) +

∮
∂V(t)

dS ·
[
f(t, r)u(t, r)

]
(II.31)

You’ve already encountered an example of this – mass conservation, in which the volume
was a “material volume” moving with the fluid element itself:

0 =
DM

Dt

.
=

D

Dt

∫
V(t)

dV ρ =

∫
V(t)

dV ∂ρ

∂t
+

∮
∂V(t)

dS ·
(
ρu
)
.
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Using the divergence theorem on the final (surface-integral) term gives

0 =

∫
V(t)

dV
[
∂ρ

∂t
+∇·

(
ρu
)]
,

which provides us with our continuity equation.
A similar rule to (II.31) is needed for time derivatives of surface integrals whose

integration limits S(t) are time-dependent. For a vector field F = F (t, r) and a bounding
surface S(t) whose contour ∂S(t) moves with the fluid velocity u = u(t, r), this is given
by

D

Dt

∫
S(t)

dS ·F =

∫
S(t)

dS ·
[
∂F

∂t
+ (∇·F )u

]
−
∮
∂S(t)

dℓ · (u×F ) (II.32)

(By convention, the contour is taken in the counter-clockwise direction.) Note that
−dℓ · (u×F ) = F · (u×dℓ). In words, the comoving change of the differential surface
element dS equals the amount of area swept out in a time dt via the advection of a
differential line element dℓ on ∂S by a distance udt :

iyrl qñlrtfr? ,g,
¥ÑH=uTrtÑ) - ñcr )

ñ =s%Iñ

E- ñdtxde

*¥¥€.Friedt\
,
-
lnezslttdt)

Equation (II.32) can be used to prove conservation of magnetic flux (§IV.1.1) and
conservation of fluid vorticity (§II.4).

II.3.3. u ·∇u and curvilinear coordinates
Finally, the nonlinear combination u ·∇u that features prominently in the Lagrangian

time derivative can be complicated, particularly in curvilinear coordinates where the
gradient operator within it acts on the unit vectors within u. For example, in cylindrical
coordinates (R,φ, z),

u ·∇u = u ·∇
(
uRR̂+ uφφ̂+ uzẑ)

= (u ·∇uR)R̂+ (u ·∇uφ)φ̂+ (u ·∇uz)ẑ +
u2φ
R

∂φ̂

∂φ
+
uRuφ
R

∂R̂

∂φ

= (u ·∇ui)êi −
u2φ
R

R̂+
uRuφ
R

φ̂, (II.33)

where, to obtain the final equality, we have used ∂φ̂/∂φ = −R̂ and ∂R̂/∂φ = φ̂;
summation over the repeated index i is implied in the first term in the final line.

Exercise. Follow a similar procedure to show that, in spherical coordinates (r, θ, φ),

u ·∇u =

(
ur

∂

∂r
+

uθ

r

∂

∂θ
+

uφ

r sin θ

∂

∂φ

)(
urr̂ + uθθ̂ + uφφ̂

)
= (u ·∇ui)êi −

u2
θ + u2

φ

r
r̂ +

(
uruθ

r
−

u2
φ cot θ

r

)
θ̂ +

(
uθuφ cot θ

r
+

uruφ

r

)
φ̂.
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The last two terms in the cylindrical u ·∇u, equation (II.33), might look familiar to
you from working in rotating frames. Indeed, let us write u = v +RΩ(R, z)φ̂, where Ω
is an angular velocity, and substitute this decomposition into (II.33):

u ·∇u =
[
(v +RΩφ̂) ·∇vi

]
êi +

[
(v +RΩφ̂) ·∇(RΩ)

]
φ̂

− (vφ +RΩ)2

R
R̂+

vR(vφ +RΩ)

R
φ̂

=

[(
v ·∇+Ω

∂

∂φ

)
vi

]
êi +

[
2Ωẑ×v −RΩ2R̂+Rφ̂(v ·∇)Ω

]
+

[
vRvφ
R

φ̂−
v2φ
R

R̂

]
. (II.34)

Each of these terms has a straightforward physical interpretation. The first term in
brackets represents advection by the flow and the rotation. The second term in brackets
contains the Coriolis force, the centrifugal force, and ‘tidal’ terms due to the differential
rotation, in that order. (The ‘tidal’ terms can be thought of the fictitious acceleration
required for a fluid element to maintain its presence in the local rotating frame as it is
displaced radially or vertically. They come from Taylor expanding the angular velocity
about a point in the disk.) The third and final term in brackets captures curvature effects
due to the cylindrical geometry.

Exercise. Show that the Rφ-component in cylindrical coordinates of the rate-of-strain tensor

Wij
.
=

∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

is given by

WRφ =
1

R

∂uR

∂φ
+R

∂

∂R

uφ

R
.

Hint: ∂ui/∂xj = [(êj ·∇)u] · êi is coordinate invariant.

II.4. Vorticity and Kelvin’s circulation theorem
With some vector identities in hand, let’s take the curl of the force equation (II.27b):

∇×
(
Du

Dt
= −1

ρ
∇P −∇Φ

)
.

The potential term vanishes, since the curl of a gradient is zero. Likewise, the pressure
term becomes

−∇1

ρ
×∇P =

1

ρ2
∇ρ×∇P.

As for the left-hand side, the gradient operator commutes with ∂/∂t, but not with u ·∇.
Instead,

∇×
[
(u ·∇)u

]
= ∇×

[
1

2
∇u2 − u× (∇×u)

]
= −∇× (u×ω),

where

ω
.
= ∇×u (II.35)
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is the fluid vorticity. The vorticity measures how much rotation a velocity field has (and
its direction). Note that it is divergence free, which means that vortex lines cannot end
within the fluid – they must either close on themselves (like a smoke ring) or intersect
a boundary (like a tornado). Any fresh vortex lines that are made must be created as
continuous curves that grow out of points or lines where the vorticity vanishes.

Assembling the above gives the vorticity equation,

∂ω

∂t
−∇× (u×ω) =

1

ρ2
∇ρ×∇P. (II.36)

Note that the right-hand side of this equation vanishes if the pressure is barotropic, i.e.,
if P = P (ρ), so that surfaces of constant density and constant pressure coincide. If these
surfaces do not coincide, then the fluid is said to have “baroclinicity” or to be “baroclinic”.
I’ll demonstrate below using mathematics what (II.36) means physically, but you already
know what the right-hand side means if you pay attention to the weather: areas of high
atmospheric baroclinicity have frequent hurricanes and cyclones. In the parlance of fluid
dynamics, this is called “baroclinic forcing”. Now back to the math. . .

Dot (II.36) into a differential surface element dS normal to the surface S of a fluid
element, integrate over that surface, and use Stokes’ theorem to replace the surface
integral of a curl with a line integral over the surface boundary ∂S:∫

S

∂ω

∂t
·dS −

∮
∂S

(u×ω) · dℓ =

∮
∂S

(
−1

ρ
∇P

)
· dℓ = −

∮
∂S

dP

ρ
.

Using (II.32) to replace the left-hand side by the Lagrangian time derivative of ω · dS
yields

D

Dt

∫
S
ω · dS = −

∮
∂S

dP

ρ
. (II.37)

The surface integral on the left-hand side of this equation may be expressed using Stokes’
theorem as the circulation Γ : ∫

S
ω · dS =

∮
∂S

u · dℓ .
= Γ. (II.38)

The circulation around the boundary ∂S can be thought of as the number of vortex
lines that thread the enclosed area S. Equation (II.37) then states that the circulation is
conserved if the fluid is barotropic – Kelvin’s circulation theorem:6

DΓ

Dt
= −

∮
∂S

dP

ρ
= 0 if P = P (ρ) (II.39)

The figure below illustrates how baroclinic forcing generates vorticity.

6The above manipulations require that the surface is simply connected – that is, the region must
be such that we can shrink the contour to a point without leaving the region. A region with a
hole (like a bathtub drain) is not simply connected.
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Another approach to proving (II.39) is to work with Γ =
∮
∂S

u · dℓ rather than
∫
S
ω · dS

and use the following for how an advected line element of ∂S changes in time:

iyrl qñlrtfr? ,g,
¥ÑH=uTrtÑ) - ñcr )

ñ =s%Iñ

E- ñdtxde

*¥¥€.Friedt\
,
-
lnezslttdt)

Exercise. The helicity of a region of fluid is defined to be H .
=

∫
ω ·u dV, where the integral

is taken over the volume of that region. Assume that Γ = const and that ω · n̂ vanishes when
integrated over the surface bounding V, where n̂ is the unit normal to that surface. Prove that
the helicity H is conserved in a frame moving with the fluid, viz. DH/Dt = 0. Note that the
fluid need not be incompressible for this property to hold.

The calculation leading to (II.39) can be repeated in a reference frame rotating at a
constant angular velocity Ω, in which the fluid velocity is measured to be v = u−Ω× r
(here, u is the fluid velocity in the inertial frame; see §II.3). The associated vorticity in
this rotating frame is

ωrot = ω−∇× (Ω× r) = ω−Ω(∇· r) + (Ω ·∇)r = ω− 3Ω +Ω = ω− 2Ω, (II.40)

where ω = ∇×u. The circulation in the rotating reference frame is then given by

Γrot =

∫
S
ωrot · dS =

∫
S

(
ω − 2Ω

)
· dS

=

∮
∂S

u · dℓ−
∫
S
2Ω · dS

= Γ −
∫
S
2Ω · dS. (II.41)

Kelvin’s circulation theorem in this rotating frame is therefore

DΓrot

Dt
= −

∮
∂S

dP

ρ
− 2Ω

DSn

Dt
, (II.42)

where Sn is component of the surface area oriented normally to Ω. In words, if the
projected area of the vortex tube in the plane perpendicular to the rotation vector
changes, then the circulation in the rotating frame must change to compensate. This
is the origin of Rossby waves, something that will be discussed further in §II.5.2.
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II.5. Rotating reference frames
The final calculation in the preceding section provides a natural segue into a discussion

of fluid dynamics in rotating reference frames. To begin this discussion, let us first
recall equation (II.34), in which the nonlinearity u ·∇u was written out in cylindrical
coordinates for a fluid velocity u consisting of a cylindrical rotation RΩφ̂ with angular
velocity Ω = Ω(R, z) and a residual velocity v

.
= u−RΩφ̂:

u ·∇u =

[(
v ·∇+Ω

∂

∂φ

)
vi

]
êi +

[
2Ωẑ×v −RΩ2R̂+Rφ̂(v ·∇)Ω

]
+

[
vRvφ
R

φ̂−
v2φ
R

R̂

]
.

When this expansion was introduced in §II.3, each of its components were described
physically: ‘The first term in brackets represents advection by the flow and the rotation.
The second term in brackets contains the Coriolis force, the centrifugal force, and “tidal”
terms due to the differential rotation. . . The third and final term in brackets captures
curvature effects due to the cylindrical geometry.’ Let’s see these terms in action.

Using (II.34), we may express the equations of hydrodynamics (II.27) in cylindrical
coordinates in a frame co-moving with the differential rotation. With

D

Dt
→ ∂

∂t
+ v ·∇+Ω

∂

∂φ
(II.43)

to include advection by the rotation, we have

Dρ

Dt
= −ρ∇·v, (II.44a)

DvR
Dt

= fR + 2Ωvφ +RΩ2 +
v2φ
R
, (II.44b)

Dvφ
Dt

= fφ − κ2

2Ω
vR −R

∂Ω

∂Z
vz −

vRvφ
R

, (II.44c)

Dvz
Dt

= fz, (II.44d)

Ds

Dt
= 0, (II.44e)

where

f = −1

ρ
∇P −∇Φ (II.45)

and the combination

κ2
.
= 4Ω2 +

∂Ω2

∂ lnR
=

1

R3

∂(R4Ω2)

∂R
(II.46)

is known as the (square of the) epicyclic frequency. Note that R4Ω2 = ℓ2, the square
of the specific angular momentum ℓ, and so κ2 measures how much the specific angular
momentum associated with the rotation increases or decreases outwards. For Keplerian
rotation, κ2 = Ω2.

In §VI.9, these equations will be modified for the presence and evolution of magnetic
fields and used to look at linear waves and instabilities that rely on differential rotation. In
the meantime, I’ll close this portion of the notes by remarking on two useful applications
of what you’ve learned here: the thermal wind equation (§II.5.1) and Rossby waves
(§II.5.2).
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II.5.1. Thermal wind equation
In steady state with v = 0, equations (II.44b) and (II.44d) become

0 = −1

ρ

∂P

∂R
− ∂Φ

∂R
+RΩ2 and 0 = −1

ρ

∂P

∂z
− ∂Φ

∂z
. (II.47)

Taking ∂/∂z of the first equation, using the second equation, and rearranging yields

R
∂Ω2

∂z
=

φ̂

ρ2
·
(
∇P ×∇ρ

)
. (II.48)

This is the φ̂ component of the vorticity equation. Note that, if ρ is constant or if
P = P (ρ), then the angular velocity Ω must be constant on cylinders (this is related to
von Zeippel’s theorem). Now, let us recall the definition of the hydrodynamic entropy,
s = (γ − 1)−1 lnPρ−γ and use it to replace ∇ ln ρ. The result is

R
∂Ω2

∂z
=
γ − 1

γ
φ̂ ·
(
∇s× 1

ρ
∇P

)
= φ̂ ·

(
1

ρ
∇P ×∇ lnT

)
. (II.49)

In the Sun, g = (1/ρ)∇P is an excellent approximation, with only a tiny angular com-
ponent due to centrifugal effects. Adopting this simplification and working in spherical
coordinates (r, θ, φ), equation (II.49) becomes

R
∂Ω2

∂z
=
γ − 1

γ

g

r

∂s

∂θ
(II.50)

where g = GM/r2. [The right-hand side of (II.50) can also be written as −(g/r)∂ lnT/∂θ.]
Equation (II.50) is known as the thermal wind equation. It is used often in geophysical
applications (e.g., longitudinal entropy gradients driven by temperature differences cause
wind shear) and to understand the rotation profile in the convection zone of the Sun.

II.5.2. Rossby waves
Consider a two-dimensional, incompressible fluid on the surface of uniformly rotating

sphere (e.g., a planetary atmosphere). For a constant density or a barotropic equation of
state, equation (II.42) becomes

D

Dt

(
Γrot + 2ΩS cos θ

)
= 0, (II.51)

where θ is the angle between the rotation vector and the surface oriented normal to the
fluid element. (Note that incompressibility assures S = const.) This equation states that,
as a fluid element makes its way from the equator northwards (viz., from θ = π/2 towards
θ = 0), its circulation as measured in the rotating frame must decrease. This means that
the element must then rotate in the clockwise direction. Likewise, a fluid element that
starts at the north pole and moves southwards towards the equator (viz., from θ = 0
towards θ = π/2) increases its relative vorticity and thus rotates in the counterclockwise
direction.

With this behavior in mind, let’s now imagine a small-amplitude, wave-like disturbance
at constant latitude (see diagram below). Northward displacements in this wave acquire
negative relative vorticity and rotate clockwise; southward displacements acquire positive
relative vorticity and rotate counterclockwise. These changes in the velocity of the
disturbance actually feed back on the wave itself to make it travel westward; in effect,
the wave is advecting itself to the west.
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The relationship between the frequency ω and wavevector k for this wave – the dispersion
relation – is given by

ω = − ky
k2x + k2y

2Ω sin θ

r
, (II.52)

where x denotes the local poloidal direction (pointing southward), y denotes the local
azimuthal direction (pointing eastward), and r the spherical radial distance. With Ω > 0
and ky > 0, the phase velocity of the wave ω/ky < 0, i.e., the wave travels westward. Note
that the group velocity, ∂ω/∂ky, can be either positive or negative; in general, shorter
wavelengths (higher k) have an eastward group velocity and longer wavelengths (smaller
k) have a westward group velocity.

These waves are named after the meteorologist Carl Rossby, who derived the mathe-
matics governing this phenomenon in 1939 while at MIT (after which he became assistant
director of research at the U.S. Weather Bureau and then moved to University of Chicago
as Chair of the Department of Meteorology).7

PART III

Fundamentals of plasmas
Now that we have the fluid equations under our belts, let us discuss why we might
expect them to apply to a plasma (instead of the more familiar fluid). There are three
concepts to cover in this regard: Debye shielding and quasi-neutrality, plasma oscillations,
and collisional relaxation of the plasma to take on a Maxwell–Boltzmann distribution of
particle velocities.

III.1. Debye shielding and quasi-neutrality
In § I.1, we mentioned the concept of the Debye length and explained its importance in

the definition of a plasma. Here we actually derive it from first principles. This derivation
starts by recalling that a large plasma parameter Λ ≫ 1 implies that the kinetic energy
of the plasma particles is much greater than the potential energy due to Coulomb
interactions amongst binary pairs of particles. In this case, the plasma temperature T is
much bigger than the Coulomb energy eϕ ∼ e2/∆r ∼ e2n1/3, where ϕ is the electrostatic
potential, ∆r ∼ n−1/3 is the typical interparticle distance, and n is the number density
of the particles. Assuming a plasma in local thermodynamic equilibrium, the number
density of species α′ with charge qα′ sitting in the potential ϕα of one ‘central’ particle

7See https://elischolar.library.yale.edu/journal_of_marine_research/516.

https://elischolar.library.yale.edu/journal_of_marine_research/516
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of species α ought to satisfy the Boltzmann relation

nα′(r) = nα′ exp

(
−qαϕα(r)

T

)
≈ nα′

(
1− qα′ϕα(r)

T

)
, (III.1)

where the potential ϕα(r) depends on the distance r from the ‘central’ particle. To obtain
the approximate equality, we have used the assumption T ≫ eϕα to Taylor expand the
Boltzmann factor in its small argument. Inserting (III.1) into the Gauss–Poisson law for
the electric field E = −∇ϕα, we have

∇·E = −∇2ϕα = 4πqαδ(r) + 4π
∑
α′

qα′nα′

≈ 4πqαδ(r) + 4π
∑
α′

qα′nα′ −

(∑
α′

4πnα′q2α′

T

)
︸ ︷︷ ︸

.
= λ−2

D

ϕα. (III.2)

The first term in (III.2) is the point-like charge of the ‘central’ particle located at r = 0.
The second term is the sum over all charges in the plasma, and equals zero if the plasma
is overall charge-neutral (as it should be). The final term introduces the Debye length
(see (I.2)), which is the only characteristic scale in (III.2). Note further that this equation
has no preferred direction, and so we may exploit its spherical symmetry to recast it as
follows:

1

r2
∂

∂r
r2
∂ϕα
∂r

− 1

λ2D
ϕα = 4πqαδ(r). (III.3)

The solution to this equation that asymptotes to the Coulomb potential ϕα → qα/r as
r → 0 and to zero as r → ∞ is

ϕα =
qα
r

exp

(
− r

λD

)
(III.4)

This equation states that the bare potential of the ‘central’ charge is exponentially
attenuated (‘shielded’) on typical distances ∼λD. This is Debye shielding, and the sphere
of neutralizing charge accompanying the ‘central’ charge is referred to as the Debye
sphere (or cloud). Debye shielding of an ion by preferential accumulation of electrons in
its vicinity is sketched below:

Note that the electric field due to the polarization of the plasma in response to the ion’s
bare Coulomb potential acts in the opposite direction to the unshielded electric field.

Now, there was nothing particularly special about the charge that we singled out as
our ‘central’ charge. Indeed, we could have performed the above integration for any
charge in the plasma. This leads us to the fundamental tenet in the statistical mechanics
of a weakly coupled plasma with Λ ≫ 1: every charge simultaneously hosts its own
Debye sphere while being a member of another charge’s Debye sphere. The key points
are that, by involving a huge number of particles in the small-scale electrostatics of the
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plasma, these Coulomb-mediated relations (i) make the plasma ‘quasi-neutral’ on scales
≫λD and (ii) make collective effects in the plasma much more important than individual
binary effects due to particle-particle pairings. The latter is what makes a plasma very
different from a neutral gas, in which particle-particle interactions occur through hard-
body collisions on scales comparable to the mean particle size.

One consequence of Debye shielding is that the electric fields that act on large scales
due to the self-consistent collective interactions between ∼Λ Debye clouds are smoothly
varying in space and time. As a result, when we write down Maxwell’s equations
for our quasi-neutral plasma, the fields that appear are these smooth, coarse-grained
fields whose spatial structure resides far above the Debye length. Mathematically, we
average the Maxwell equations over the microscopic (i.e., Debye) scales, and what
remains are the collective macroscopic fields that ultimately make their way into the
magnetohydrodynamics of the plasma ‘fluid’.

III.2. Plasma oscillations
In the previous section, we spoke of a characteristic length scale below which particle-

particle interactions are important and above which they are supplanted by collective
effects between a large number of quasi-neutral Debye spheres. Is there a corresponding
characteristic time scale? The answer is yes, and it may be obtained simply by dimensional
analysis: take our Debye length and divide by a velocity to get time. The only velocity in
our plasma thus far is the thermal speed, vthα =

√
2T/mα, and so that must be it. . . we

have obtained the plasma frequency of species α,

ωpα
.
=

√
4πq2αnα
mα

∼ λD
vthα

. (III.5)

Of particular importance, given the smallness of the electron mass, is the electron plasma
frequency ωpe, which is ∼

√
mi/me larger than the ion plasma frequency and is generally

the largest frequency in a weakly coupled plasma.
Fine. Dimensional analysis works. But what does this frequency actually mean? Go

back to our picture of Debye shielding. That was a static picture, in that we waited long
enough for the plasma to settle down into charge distributions governed by Boltzmann
relations. What if we didn’t wait? Surely there was some transient process whereby the
particles moved around to configure themselves into these nice equilibrated Debye clouds.
There was, and this transient process is referred to as a plasma oscillation, and it has a
characteristic frequency of (you guessed it) ωpe. Let’s show this.

Imagine a spatially uniform, quasi-neutral plasma with well-equilibrated Debye clouds.
Shift all of the electrons slightly to the right by a distance ξ, as shown in the figure below:

The offset between the electrons and the ions will cause an electric field pointing from
the ions to the displaced electrons, given by E = 4πeneξ. The equation of motion for the
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electrons is then

me
d2ξ

dt2
= −eE = −4πe2neξ = −meω

2
peξ =⇒ d2ξ

dt2
= −ω2

peξ. (III.6)

This is just the equation for a simple harmonic oscillator with frequency ωpe. So,
small displacements between oppositely charged species result in plasma oscillations
(or ‘Langmuir oscillations’), a collective process that occurs as the plasma attempts to
restore quasi-neutrality in response to some disturbance. Retaining the effects of electron
pressure makes these oscillations propagate dispersively with a non-zero group velocity;
these Langmuir waves have the dispersion relation ω2 ≈ ω2

pe(1 + 3k2λ2De), where k is the
wavenumber of the perturbation. More on that later.

III.3. Collisional relaxation and the Maxwell–Boltzmann distribution
In order for the plasma particles to move freely as plasma oscillations attempt to set up

equilibrated Debye clouds, the mean free path between particle–particle collisions must
be larger than the Debye length. We may estimate the former in term of the collision
cross-section σ,

λmfp ∼ 1

nσ
∼ T 2

ne4
,

where the cross-section σ = πb2 is given by a balance between the Coulomb potential
energy, ∼e2/b, across some typical impact parameter b and the kinetic energy of the
particles, ∼T . Comparing this mean free path to the Debye length (I.2), we find

λmfp

λD
∼ T 2

ne4

(
ne2

T

)1/2

∼ nλ3D
.
= Λ≫ 1.

Thus, a particle can travel a long distance and experience the macroscopic fields exerted
by the collective electrodynamics of the plasma before being deflected by much the
shorter-range, microscopic electric fields generated by another individual particle (recall
(I.9)).

The scale separation between the collisional mean free path and the Debye length due
to the enormity of the plasma parameter in a weakly coupled plasma says something
very important about the statistical mechanics of the plasma. Because λmfp/λD ∼
ωpeτei ≫ 1, the particle motions are randomized and the velocity distribution of the
plasma particles relaxes to a local Maxwell–Boltzmann distribution on (collisional)
timescales that are much longer than the timescale on which particle correlations are
established and Coulomb potentials are shielded. As a result, collisions in the plasma
occur between partially equilibrated Debye clouds instead of between individual particles,
the mathematical result being that the ratio λmfp/λD is attenuated by a factor ∼ lnΛ ≈
10–40. Thus, the logarithmic factors in the collision times (I.7) and (I.8).

Now, about this collisional relaxation. This school isn’t the place to go through all the
details of how collision operators are derived, but we need to establish a few facts. First,
because of Debye shielding, the vast majority of scatterings that a particle experiences
as it moves through a plasma are small-angle scatterings, with each event changing the
trajectory of a particle by a small amount. These accumulate like a random walk in angle
away from the original trajectory of the particle, with an average deflection angle ⟨θ⟩ = 0
but with a mean-square deflection angle ⟨θ2⟩ proportional to the number of scattering
events. For a typical electron scattering off a sea of Debye-shielded ions of charge Ze and
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density n, this angle satisfies

⟨θ2⟩ ≈ 8πnLZ2e4

m2
ev

4
the

lnΛ (III.7)

after the electron has traversed a distance L. A large deflection angle, i.e. ⟨θ2⟩ ∼ 1, is
reached once this distance

L ∼ m2
ev

4
the

8πnZ2e4
1

lnΛ
∼ vtheτei

.
= λmfp,e, (III.8)

the collisional mean free path (recall the definition of the electron–ion collision time,
equation (I.7)). Noting that the impact parameter for a single 90-degree scattering
is ∼Ze2/T , we find the ratio of the cross-section for many small-angle scatterings to
accumulate a 90-degree deflection, σmulti,90◦ ∼ 1/nL using (III.8), to the cross-section
for a single 90-degree scattering, σsingle,90◦ = πb2 with b ∼ Ze2/T , is

σmulti,90◦

σsingle,90◦
∼ lnΛ≫ 1. (III.9)

Thus, in a weakly coupled plasma, multiple small-angle scatterings are more important
than a single large-scale scattering. Visually,

This is the physical origin of the lnΛ reduction in collision time mentioned in the prior
paragraph.

So what do these collisions mean for treating our plasma as a fluid? If λmfp is
much less than any other macroscopic scale of dynamical interest (i.e., scales on which
hydrodynamics occurs), then the velocity distribution function f(v) of the plasma – that
is, the differential number of particles with velocities between v and v + dv – is well
described by a Maxwell–Boltzmann distribution (often simply called a ‘Maxwellian’):

fM(v)
.
=

n

π3/2v3th
exp

(
− v2

v2th

)
. (III.10)

The factor of π3/2v3th is there for normalization purposes:∫
d3v fM(v) = 4π

∫
dv v2fM(v) = n (III.11)

is the number of particles per unit volume. (Any particle distribution function should
satisfy this constraint.) Note that the Maxwellian is isotropic in velocity space, depending
only on the speed of the particles (rather than their vector velocity). If these particles
are all co-moving with some bulk velocity u, then this ‘fluid’ velocity is subtracted off to
ensure an isotropic distribution function in that ‘fluid’ frame:

fM(v)
.
=

n

π3/2v3th
exp

(
−|v − u|2

v2th

)
. (III.12)

Note that the first moment of this distribution∫
d3v vfM(v) = nu; (III.13)
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and that the (mass-weighted) second moment of this distribution∫
d3vm|v − u|2fM(v) = 3P. (III.14)

(Again, any velocity distribution function should satisfy these constraints.)
Different species collisionally relax to a Maxwellian at different rates (e.g., τee ∼

τei ∼
√
mi/me τii ∼ (mi/me)τie), and so each species may be described by their own

Maxwellians:

fM,α(v)
.
=

nα
π3/2v3thα

exp

(
−|v − uα|2

v2thα

)
. (III.15)

But, in the long-time limit, unless some process actively dis-equilibrates the species on a
timescale comparable to or smaller than these collision times, all species will take on the
same u and the same T . Their densities are, of course, the same as well, as guaranteed
by quasi-neutrality (viz., ωpeτ ≫ 1 for all collision times τ).

Note then, that when we wrote down our hydrodynamic equations for a scalar pressure
(see (II.14) and (II.17)) and didn’t affix any species labels to any quantities, we were
implicitly assuming that our hydrodynamics occurs on time scales much longer than
the collisional equilibration times, so that all species can be well described by local
Maxwellians with the same density, fluid velocity, and temperature. Not all astrophysical
systems are so cooperative, and anisotropic pressures, velocity drifts between species,
and dis-equilibration of species temperatures can often be the norm. Yes, hydrodynamics
and MHD are fairly simple, but do not let their simplicity lure you into using them when
it’s not appropriate to do so – a hard-earned lesson for many astrophysicists.

PART IV

Fundamentals of magnetohydrodynamics
IV.1. The equations of ideal magnetohydrodynamics

Ideal magnetohydrodynamics (MHD) describes the hydrodynamics of a perfectly con-
ducting fluid in the presence of electromagnetic fields. Mass is still conserved, so we still
have the continuity equation:

∂ρ

∂t
+∇· (ρu) = 0. (IV.1)

The first law of thermodynamics still holds, so we still have the internal energy equation:

∂e

∂t
+∇· (eu) = −P∇·u. (IV.2)

And Newton’s second law still governs the dynamics, so we still have the momentum
equation:

∂(ρu)

∂t
+∇· (ρuu) = f . (IV.3)

But now we must supplement the force f , which was equal to −∇P − ρ∇Φ in §II, with
the force due to the electromagnetic fields on the conducting fluid elements. To do so,
let us view our conducting fluid elements as a coherent collection of ions (with charge
qi = Ze > 0) and electrons (with charge qe = −e < 0), and ask how electric and magnetic
fields influence each of these species.

The electromagnetic force per unit volume on a collection of charges of species α is
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given by

fEM = qαnα

(
E +

uα
c

×B
)
, (IV.4)

where nα is the number density of the species and uα is that species’ bulk velocity.
You can think of this simply as the Lorentz force qα(E + v×B/c) integrated over
the ensemble of α charges in each fluid element and divided by the volume of said
fluid element. Separating (IV.3) into its charged constituent parts, we then have the
momentum equation for species α,

∂(ραuα)

∂t
+∇· (ραuαuα) = −∇Pα − ρα∇Φ+ qαnα

(
E +

uα
c

×B
)
. (IV.5)

At the moment, the trouble is that our continuity equation (IV.1) and internal energy
equation (IV.2) make reference to the total mass density ρ, the total fluid velocity u, the
total pressure P , and the total internal energy e. The obvious thing to do, then, is to sum
(IV.5) over both species,

∑
α

[
∂(ραuα)

∂t
+∇· (ραuαuα) = −∇Pα − ρα∇Φ+ qαnα

(
E +

uα
c

×B
)]
, (IV.6)

and simplify each of the sums one by one. The first term in (IV.6) becomes familiar after
introducing the center-of-mass fluid velocity,

u
.
=

1

ρ

∑
α

ραuα, where ρ
.
=
∑
α

ρα. (IV.7)

The second term in (IV.6) requires a bit more work. Write uα = u+∆uα, so that ∆uα
measures the difference between the bulk flow of species α and the center-of-mass velocity
u. Then∑

α

ραuαuα = ρuu+ u

(
���

���*
0∑

α

ρα∆uα

)
+

(
���

���*
0∑

α

ρα∆uα

)
u+

∑
α

ρα∆uα∆uα.

The first term here (ρuu) should look familiar: it’s the flux of momentum density
associated with the total fluid, the same as was seen in §II. Moving the final term of
the above expression to the right-hand side of (IV.6) and writing

∑
α Pα

.
= P , we have

a momentum equation that is starting to look more like (IV.3):

∂(ρu)

∂t
+∇· (ρuu) = −∇P−ρ∇Φ−

∑
α

ρα∆uα∆uα+
∑
α

qαnα

(
E +

uα
c

×B
)
. (IV.8)

Now, this term involving ∆uα has nothing really to do with MHD, and was in fact
implicitly discarded in §II.1.2, the reason being either that our fluid element is composed
of a single species, or that collisions between different species keep their bulk flows very
close to the center-of-mass velocity, or that the total mass density and total momentum
density are completely dominated by a single species (e.g., the ions). In any of these
cases, we may safely drop this term.

Almost there. All that remains to consider is∑
α

qαnα

(
E +

uα
c

×B
)
.

In §III.1, we showed that the densities of the positive and negative charge carriers
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surrounding a point charge Q in a weakly coupled plasma satisfies

∑
α

qαnα =

�
�
�
��>

0∑
α

qαnα − Q

4πλ3D

exp(−r/λD)
r/λD

,

and therefore is extremely close to zero well outside of that charge’s Debye sphere, i.e., the
plasma is quasi-neutral on scales r ≫ λD. MHD concerns itself with just such scales, and
so the total electric force on a fluid element in MHD vanishes under quasi-neutrality. This
leaves the magnetic term, (

∑
α qαnαuα)×B/c. The sum in parentheses is equivalent to

the current density of the plasma, j, the amount of electric current flowing per unit
cross-sectional area. We these principles implemented, our MHD momentum equation is
finally here:

∂(ρu)

∂t
+∇· (ρuu) = −∇P − ρ∇Φ+

j

c
×B (IV.9)

Another way to this of this additional term is by analogy with circuits: when a current
I flows through a wire of length ℓ in the presence of a magnetic field B, there is a force
on the wire given by Iℓ×B/c. In the fluid context, the ‘wire’ is the conducting fluid
element through which electrons and ions move differentially.

We now have our continuity equation, internal energy equation, and MHD momentum
equation. However, in deriving the latter, we have introduced two new variables, j and B.
The remaining tasks are then to express the current density j in terms of the magnetic
field B (since by summing over the momentum equations of each species, we’ve lost
information about each species’ bulk flow), and to provide an equation for how the
magnetic field evolves. Both of these tasks are solved by Maxwell’s equations:

∂B

∂t
= −c∇×E, ∇·B = 0,

∂E

∂t
= c∇×B − 4πj, ∇·E = 4π

∑
α

qαnα,

with the important caveat that the final equation in red (Gauss’ law) is rendered
completely useless by the quasi-neutrality assumption,

∑
α qαnα ≈ 0. The other equations

are (from left to right) Faraday’s law of induction, Gauss’ law for magnetism (no magnetic
monopoles), and Maxwell’s version of Ampère’s law. No offense to Maxwell, but it turns
out that the original Ampère’s law,

j =
c

4π
∇×B, (IV.10)

is just fine our purposes. The displacement current, (4π)−1∂E/∂t, which mathematically
and physically connects electromagnetism with the propagation of light, may be rigor-
ously dropped if the fluid velocity satisfies u2 ≪ c2. Why, you ask? Well, this brings us
back to the first sentence of this section: we are interested in perfect conductors.

A perfect conductor is one that has exactly zero electrical resistance, and so by Ohm’s
law must have zero electrostatic field. But this doesn’t necessarily mean that E = 0,
because an electric field can be induced by the motion of a conductor through a magnetic
field (sometimes called the ‘motional emf’). What we mean by a perfect conductor is then
that the electric field vanishes in the frame of the conductor, or

E +
u

c
×B = 0. (IV.11)

Inserting this equation into the Maxwell–Ampère law and ordering ∂/∂t ∼ u/ℓ for
some characteristic bulk flow velocity u and gradient lengthscale ℓ, we find that the
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displacement current
∂E

∂t
∼ u2

c2
cB

ℓ
≪ cB

ℓ
∼ c∇×B

if the flow is non-relativistic. As claimed, the original Ampère’s law is just fine.
Altogether then, we may close our MHD momentum equation with the following subset

of Maxwell’s equations:

∂B

∂t
= ∇× (u×B), ∇·B = 0, j =

c

4π
∇×B (IV.12)

These equations for the electromagnetic fields B and j – taken alongside (IV.1), (IV.2),
and (IV.8) specifying the evolution of the hydrodynamics variables (ρ,ρu,e) – constitute
the equations of ideal MHD.

IV.1.1. Flux freezing: Alfvén’s theorem
Arguably the most important prediction of the ideal MHD equations is that the mag-

netic flux ΦB through the surface of any fluid element is exactly conserved as that element
is advected and deformed by a flow u = u(t, r). This is known as ‘Alfvén’s theorem’
or, more colloquially, flux freezing. Given Leibniz’s rule regarding the time derivatives
of surface integrals whose integrations limits S(t) are time-dependent (eq. (II.32)), the
proof itself is trivial:

DΦB
Dt

.
=

D

Dt

∫
S(t)

dS ·B =

∫
S(t)

dS ·
[
∂B

∂t
+ (∇·B)u

]
−
∮
∂S(t)

dℓ · (u×B)

(use equation (IV.12)) =
∫
S(t)

dS ·
[
∇× (u×B)

]
−
∮
∂S(t)

dℓ · (u×B)

(use Stokes’ theorem) =
∮
∂S(t)

dℓ · (u×B)−
∮
∂S(t)

dℓ · (u×B)

= 0. (IV.13)

In words, the magnetic flux is conserved in a frame comoving with a fluid element. (This
is analogous to Kelvin’s circulation theorem governing the circulation; cf. (II.39).)

An alternative description of flux freezing can be stated in terms of line tying: fluid
elements that lie on a field line initially will remain on that field line (Lundquist 1951).
See Problem 9 in Problem Set 1.

IV.1.2. Ideal MHD induction equation
Using a particular vector identity (see §II.3.1), the ideal MHD induction equation may

be written in the following form:

∂B

∂t
= ∇× (u×B) = −u ·∇B +B ·∇u−B∇·u. (IV.14)

Each of the terms on the right-hand side has a physical meaning. The first indicates that
the magnetic field is advected (carried around by) the fluid flow; when placed on the
left-hand side, we obtain the Lagrangian derivative of the magnetic field, DB/Dt. In this
Lagrangian frame, the magnetic field can evolve because of two effects. The second term
on the right-hand side, B ·∇u, represents stretching of the magnetic field: if the fluid
velocity has a gradient along the direction of the magnetic field, different parts of the
field line will be carried along at different velocities, causing the field line to stretch. The
final term, −B∇·u, corresponds to compression or rarefaction of the magnetic field.
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Indeed, with the continuity equation giving −∇·u = D ln ρ/Dt, we see that co-moving
increases (decreases) in the fluid density go hand-in-hand with increases (decreases) in
the magnetic-field strength.

A rarely publicized but useful form of the induction equation (IV.14) is obtained by
defining the magnetic-field unit vector b̂

.
= B/B and writing separate equations for it

and the magnetic-field strength B:

D lnB

Dt
=
(
b̂b̂− I

)
:∇u and

Db̂

Dt
=
(
I − b̂b̂

)
:
(
b̂ ·∇u

)
. (IV.15)

These may come in handy one day. . .

IV.1.3. Lorentz force: Magnetic pressure and tension

We now know that perfectly conducting fluids advect, stretch, and compress magnetic
fields while conserving magnetic flux. What is the effect of that flux on the dynamics of
the fluid element itself? For that, we revisit the Lorentz force in the MHD momentum
equation (IV.9), and use Ampère’s law to cast the current density in terms of the magnetic
field:

fM =
j

c
×B =

(∇×B)×B

4π
= −∇B2

8π
+

B ·∇B

4π
, (IV.16)

where to obtain the final equality we have used a well-known vector identity (see §II.3.1).
Because ∇·B = 0, this can also be written as

fM = −∇·
[
B2

8π
I − BB

4π

]
= −∇·M , (IV.17)

which implicitly defines the ‘Maxwell stress’, M . This form of the magnetic force suggests
a kind of elasticity. To further see this, use the definition of the magnetic unit vector
b̂
.
= B/B to write

B ·∇B = Bb̂ ·∇(Bb̂) = B2(b̂ ·∇b̂) + b̂b̂ ·∇B2

2
.

Using this in (IV.16) and collecting terms yields

fM =
B2

4π
(b̂ ·∇b̂)−

(
I − b̂b̂

)
·∇B2

8π
. (IV.18)

The first term here corresponds to a curvature force, with b̂ ·∇b̂
.
= κ being the curvature

of the field lines (see the diagram below). Note that 1/|κ| is the radius of curvature. When
a field line is bent, there is a force pointing towards the local center of curvature that
is trying to un-bend the field line and push the plasma towards a lower-energy state in
which the magnetic field is straight. The second term in (IV.18) corresponds to a magnetic
pressure force acting perpendicular to the field (thus the projection of the gradient onto
I − b̂b̂). This term causes the magnetic-field strength to evolve towards being uniform
across itself, again seeking a lower-energy state. Magnetic fields like to be straight and
evenly spaced, and they will coerce the fluid to adopt motions that drive them towards
being straight and evenly spaced.



30 M. W. Kunz

IV.1.4. MHD energy equation
In §II.1.3, we derived an evolution equation for the total energy of a neutral fluid

(eq. (II.20)). Here we augment that equation for a perfectly conducting fluid to include
the energy of the magnetic field, B2/8π. Take the ideal MHD induction equation (IV.14)
and dot it with B/4π:

∂

∂t

B2

8π
=

B

4π
·∇× (u×B) =

Bi
4π

ϵijk
∂

∂xj
(u×B)k

= ϵijk
∂

∂xj

[
Bi
4π

(u×B)k

]
− ϵijk(u×B)k

∂

∂xj

Bi
4π

= ϵijk
∂

∂xj

[
Bi
4π

(u×B)k

]
− ϵijkϵkℓmuℓBm

∂

∂xj

Bi
4π

= ϵijk
∂

∂xj

[
Bi
4π

(u×B)k

]
− (δiℓδjm − δimδjℓ)uℓBm

∂

∂xj

Bi
4π

= −∇·
[
B× (u×B)

4π

]
− uB :∇B

4π
+ u ·∇B2

8π

=⇒ ∂

∂t

B2

8π
+∇·

[
B× (u×B)

4π

]
= −uB :∇B

4π
+ u ·∇B2

8π
.

Note that the quantity inside the divergence on the left-hand side of this equation equals
(c/4π)E×B

.
= S. . . the Poynting flux! In words, magnetic energy (as measured in the

lab frame; note the partial time derivative) is transported by the Poynting flux. Those
two terms on the right-hand side corresponding to will be cancelled by two equal-and-
opposite terms found in the equation for the kinetic energy, obtained by dotting the
momentum equation (IV.9) with u and focusing on the Lorentz force:

u ·
(
−∇B2

8π
+

B ·∇B

4π

)
.

Yep, they cancel. So, adding the total hydrodynamic energy equation including these
Lorentz-force contributions to the magnetic energy equation leads to

∂

∂t

(
1

2
ρu2 + e+ ρΦ+

B2

8π

)
+∇·

[(
1

2
ρu2 + γe+ ρΦ

)
u+ S

]
= ρ

∂Φ

∂t
.
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But for the impact of a time-varying gravitational potential, the total MHD energy
E .
= (1/2)ρu2 + e+ ρΦ+B2/8π is conserved.

IV.1.5. Rotating reference frames

In §II.3.3, we examined the nonlinear combination u ·∇u in curvilinear coordinates,
finding additional terms that stemmed from differentiating unit vectors and which
included Coriolis, centrifugal, and tidal accelerations. Here we take a similar look at
the combination u ·∇B −B ·∇u that features in the induction equation (IV.14).

First, use ∂φ̂/∂φ = −R̂ and ∂R̂/∂φ = φ̂ in (IV.14) to obtain

∂B

∂t
+B∇·u = (−u ·∇Bi)êi + (B ·∇ui

)
êi +

BφuR −BRuφ
R

φ̂.

As in §II.5, if we then decompose the fluid velocity as u = v + RΩ(R, z)φ̂, where Ω is
an angular velocity, substitute this decomposition into the above equation, and re-group
terms, we have

DBR
Dt

= B ·∇vR −BR∇·v, (IV.19a)

DBφ
Dt

= B ·∇vφ −Bφ∇·v +BR
∂Ω

∂ lnR
+BzR

∂Ω

∂z
+
BφvR −BRvφ

R
, (IV.19b)

DBz
Dt

= B ·∇vz −Bz∇·v, (IV.19c)

with D/Dt
.
= ∂/∂t+ v ·∇+Ω ∂/∂φ. Note that poloidal magnetic fields are sheared into

the azimuthal direction by differential rotation.

IV.2. Summary: Adiabatic equations of ideal MHD
The adiabatic equations of MHD, written in conservative form, are:

∂ρ

∂t
+∇· (ρu) = 0, (IV.20a)

∂(ρu)

∂t
+∇· (ρuu) = −∇·

[(
P +

B2

8π

)
I − BB

4π

]
− ρ∇Φ, (IV.20b)

∂e

∂t
+∇· (eu) = −P∇·u, (IV.20c)

∂B

∂t
−∇× (u×B) = 0. (IV.20d)

The left-hand sides of these equations express advection of, respectively, the mass density,
the momentum density, the internal energy density, and the magnetic flux by the fluid
velocity; the right-hand sides represents sources and sinks.

If we instead write these equations in terms of the density, fluid velocity, and entropy
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and make use of the Lagrangian derivative (II.7), we have

Dρ

Dt
= −ρ∇·u, (IV.21a)

Du

Dt
= −1

ρ
∇
(
P +

B2

8π

)
+

B ·∇B

4πρ
−∇Φ, (IV.21b)

Ds

Dt
= 0, (IV.21c)

DB

Dt
= B ·∇u−B∇·u, (IV.21d)

where s .
= (γ − 1)−1 lnPρ−γ .

PART V

Linear theory of MHD waves
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PART VI

Linear theory of MHD instabilities
Now let’s do some MHD linear instabilities. The program is to set up some equilibria
and then subject them to small-amplitude perturbations in the fluid and magnetic
field. There are a few different ways of doing this and assessing whether the system
is stable or unstable to these perturbations. There’s something called the MHD energy
principle, which will tell you whether a given set of perturbations about some equilib-
rium state will bring the system profitably to a lower energy state. There’s something
called Eulerian perturbation theory, where you subject the equilibrium state to small-
amplitude perturbations, formulate those perturbations in the lab frame, and ask whether
the perturbations oscillate, grow, or decay. And there’s something called Lagrangian
perturbation theory, which is same as Eulerian perturbation theory but is formulated
in the frame of fluid. Each of these has its advantages depending on the equilibrium
state, boundary conditions, and questions being asked. Eulerian perturbation theory is
the most straightforward procedure, so we’ll start there.

VI.1. A primer on instability
Before attacking the MHD equations, though, let’s do something simpler to establish

notation and learn the procedure. Consider the following ordinary differential equation:

d2x

dt2
+ 2ν

dx

dt
+Ω2(x− x0) = 0, (VI.1)

where ν and Ω > 0 are constants. You may recognize this as the equation for a damped
simple harmonic oscillator of natural frequency Ω whose velocity along the x axis is
damped at a rate ν > 0. But let’s not yet commit to any particular sign of ν. First, the
equilibrium state. This is easy: the oscillator is at rest at x = x0. We now displace the
oscillator by a small amount ξ, so that x(t) = x0 + ξ(t). The equation governing this
displacement is

d2ξ

dt2
+ 2ν

dξ

dt
+Ω2ξ = 0. (VI.2)

This equation admits solutions ξ ∼ exp(−iωt), where ω is a complex frequency that
satisfies the dispersion relation

ω2 + 2iων −Ω2 = 0 =⇒ ω = −iν ±
√
Ω2 − ν2. (VI.3)

How do we assess stability? If the imaginary part of ω is positive, then −iω has a positive
real part, and the displacements will grow exponentially in time. If the imaginary part
of ω is negative, then −iω has a negative real part, and this corresponds to exponential
decay of the perturbation. If ω additionally has a real part, then this represents a growing
or decaying oscillator. It’s clear from a cursory glance at the dispersion relation (VI.3)
that the perturbations oscillate and decay exponentially if Ω > ν > 0. If ν > Ω > 0,
then the perturbations decay without oscillating. But if ν < 0, then there is always an
exponentially growing solution. Thus, ν > 0 is the stability criterion for this system.

Now, suppose the equation of interest were instead

d2x

dt2
+ 2ν

dx

dt
+Ω2 sin(x− x0) = 0. (VI.4)

The equilibrium is still the same, but if we want simple harmonic oscillator solutions,
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we’re only go to get them if the displacement is small, i.e., |ξ| ≪ x0. In that case, we can
Taylor expand sin(x − x0) ≈ ξ − ξ3/6 + . . . . To leading order in ξ, we’re back to where
we started with (VI.2). This is linear theory: identify an equilibrium, perturb the system
about that equilibrium, and drop all terms nonlinear in the perturbation amplitude.

Note that we are not solving an initial value problems. We are agnostic about the
initial conditions and only ask whether some disturbance will ultimately grow or decay.
In some situations (most notably, Landau damping), solving the initial value problem
is absolutely essential to obtain the full solution and all the physics involved. But if
you just want to calculate the wave-like response of a system to infinitesimally small
perturbations and learn whether such a response grows or decays, you need only adopt
solutions ∼ exp(−iωt), find the dispersion relation for ω vs k, and examine the sign of its
imaginary part. (The difference is related to a Laplace vs a Fourier transform in time.)

VI.2. Linearized MHD equations
Take (IV.21) and write

ρ = ρ0(r) + δρ(t, r), u = δu(t, r), P = P0(r) + δP (t, r), B = B0(r) + δB(t, r);

i.e., consider a stratified, stationary equilibrium state threaded by a magnetic field and
subject it to perturbations. Never mind how the equilibrium is set up – it is what it is,
and we’ll perturb it. Neglecting all terms quadratic in δ, equations (IV.21) become

∂δρ

∂t
= −(δu ·∇)ρ0 − ρ0(∇· δu), (VI.5)

∂δu

∂t
= − 1

ρ0
∇
(
δP +

B0 · δB
4π

)
+
δρ

ρ20
∇
(
P0 +

B2
0

8π

)
+

(B0 ·∇)δB

4πρ0
+

(δB ·∇)B0

4πρ0
−∇δΦ, (VI.6)

∂δB

∂t
= −(δu ·∇)B0 + (B0 ·∇)δu−B0(∇· δu), (VI.7)

∂

∂t

(
δP

P0
− γ

δρ

ρ0

)
= −δu ·∇ ln

P0

ργ0
. (VI.8)

(A quick way of getting these is to think of δ as a differential operator that commutes with
partial differentiation.) Pretty much every gradient of an equilibrium quantity here will
give an instability! (Otherwise, you just get back simple linear waves on a homogeneous
background.) So let’s not analyze this all at once. But I write this system of equations here
for two important reasons: (i) it makes clear that we can adopt solutions δ ∼ exp(−iωt)
for the perturbations, since the equations are linear in the fluctuation amplitudes; (ii) we
can only adopt full plane-wave solutions δ ∼ exp(−iωt + ik · r) if the fluctuations vary
on length scales much smaller than that over which the background varies (the so-called
WKB approximation). Otherwise, we have to worry about the exact structure of the
background gradients and their boundary conditions.

So these are the themes of most linear stability analyses: a WKB approximation
whereby plane-wave solutions are assumed on top of a background state that is slowly
varying, and a focus only on whether fluctuations grow or decay rather than their specific
spatio-temporal evolution from a set of initial conditions.
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VI.3. Lagrangian versus Eulerian perturbations
There is one last thing worth discussing before proceeding with a linear stability

analysis of the MHD equations. Just as there is an Eulerian time derivative and a
Lagrangian time derivative, there is Eulerian perturbation theory and Lagrangian per-
turbation theory. The former, in which perturbations are denoted by a ‘δ’, measures
the change in a quantity at a particular point in space. For example, if the equilibrium
density at r, ρ(r), is changed at time t by some disturbance to become ρ′(t, r), then we
denote the Eulerian perturbation of the density by

ρ′(t, r)− ρ(r)
.
= δρ≪ ρ(r). (VI.9)

Again, these perturbations are taken at fixed position. The latter – Lagrangian pertur-
bation theory – concerns the evolution of small perturbations about a background state
within a particular fluid element as it undergoes a displacement ξ. For example, if a
particularly fluid element is displaced from its equilibrium position r to position r + ξ,
then the density of that fluid element changes by an amount

ρ′(t, r + ξ)− ρ(r)
.
= ∆ρ. (VI.10)

This is a Lagrangian perturbation. To linear order, δ and ∆ are related by

∆ρ ≃ ρ′(t, r) + ξ ·∇ρ(r)− ρ(r) = δρ+ ξ ·∇ρ. (VI.11)

There are many situations in which a Lagrangian approach is easier to use than an
Eulerian approach; there are also some situations in which doing so is absolutely necessary
(e.g., see §IIIe of Balbus (1988) and §Ic of Balbus & Soker (1989) for discussions of the
perils of using Eulerian perturbations in the context of local thermal instability).

Question: It is possible to have zero Eulerian perturbation and yet have finite Lagrangian
perturbation. What does this mean physically? Is there a physical change in the system?

The Lagrangian velocity perturbation ∆u is given by

∆u
.
=

Dξ

Dt
=

(
∂

∂t
+ u ·∇

)
ξ, (VI.12)

where u is the background velocity. It is the instantaneous time rate of rate of the
displacement of a fluid element, taken relative to the unperturbed flow. Because ∆u =
δu+ ξ ·∇u, we have

δu =
∂ξ

∂t
+ u ·∇ξ − ξ ·∇u. (VI.13)

Note the additional ξ ·∇u term, representing a measurement of the background fluid
gradients by the fluid displacement.

Exercise. Let u = RΩ(R)φ̂, as in a differentially rotating disk in cylindrical coordinates.
Consider a displacement ξ with radial and azimuthal components ξR and ξφ, each depending
upon R and φ. Show that

DξR
Dt

= δuR and
Dξφ
Dt

= δuφ + ξR
dΩ

d lnR
. (VI.14)

The second term in the latter equation accounts for the stretching of radial displacements into
the azimuthal direction by the differential rotation.
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You can think of δ and ∆ as difference operators, since we’re only working to linear
order in the perturbation amplitude: e.g.,

δ

(
1

ρ

)
=

1

ρ+ δρ
− 1

ρ
≃ −δρ

ρ2
.

But you must be very careful when mixing Eulerian and Lagrangian points of view. Prove
the following commutation relations:

(i)

[
δ,

∂

∂t

]
= 0;

(ii)

[
δ,

∂

∂xi

]
= 0;

(iii)

[
∆,

∂

∂t

]
= −∂ξj

∂t

∂

∂ξj
;

(iv)

[
∆,

∂

∂xi

]
= −∂ξj

∂xi

∂

∂ξj
;

(v)

[
∆,

D

Dt

]
= 0;

(vi)

[
∆,

D

Dxi

]
= −ξj

∂

∂xj

D

Dt
;

(vii)

[
∂

∂xi
,
D

Dt

]
=
∂uj
∂xi

∂

∂xj
.

You can use these to show that the linearized continuity equation, induction equation,
and internal energy equation are

∆ρ

ρ
= −∇· ξ, (VI.15)

∆B = B ·∇ξ −B∇· ξ, (VI.16)
∆T

T
= −(γ − 1)∇· ξ, (VI.17)

respectively. These forms are particularly useful for linear analyses.
Now to calculate something. . . I’ll start with two simple instabilities, the first of which

(Jeans instability) will be analyzed using Eulerian perturbation theory, and the second
of which (Kelvin–Helmholtz instability) will be analyzed using Lagrangian perturbation
theory. Hopefully you’ll see why one approach is sometimes easier than the other.

VI.4. Self-gravity: Jeans instability
One of the simplest hydrodynamical waves is a small-amplitude sound wave propagat-

ing on an infinite, homogeneous background. Take (IV.21), set B0 = 0, and assume ρ0
and P0 to be constant. The resulting linearized equations are

∂

∂t

δρ

ρ0
= −∇· δu, ∂δu

∂t
= − 1

ρ0
∇δP −∇δΦ,

∂

∂t

(
δP

P0
− γ

δρ

ρ0

)
= 0. (VI.18a)

I’ve retained the perturbed gravitational potential δΦ in the second equation, because
we’re going to assume that the fluid is self-gravitating with a potential that obey’s
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Poisson’s equation:8

∇2δΦ = 4πGδρ. (VI.18b)
These equations are linear in δ, and so we may adopt plane-wave solutions,
δ ∼ exp(−iωt+ ik · r). Substituting this form into (VI.18) gives

−iω
δρ

ρ0
= −ik · δu, −iωδu = −ik

δP

ρ0
− ikδΦ, −iω

(
δP

P0
− γ

δρ

ρ0

)
= 0, (VI.19a)

−k2δΦ = 4πGδρ. (VI.19b)
Taking k · the second equation and using the other three yields the dispersion relation

ω
(
ω2 − k2a2 + 4πGρ0

)
= 0, (VI.20)

where a2 .
= γP0/ρ0. The ω = 0 root comes from the perturbed entropy equation, and

corresponds to a isentropic relabelling of the fluid elements; its name is the ‘entropy
mode’. The other two roots correspond to forward- and backward-propagating sound
waves under the influence of their own self-gravity:

ω = ±ka
√
1− 4πGρ0

k2a2
(VI.21)

Self-gravity reduces the speed of the wave for wavenumbers satisfying ka > (4πGρ0)
1/2,

for which the (expansive) pressure force is greater than the (attractive) gravitational
force. At ka = (4πGρ0)

1/2, these two forces balance exactly, and the mode is neutrally
stable. But for ka < (4πGρ0)

1/2, the wavelength is long enough to include a sufficiently
large amount of mass in the perturbation to overwhelm the pressure force. Instability
ensues, and the mode grows without propagating. This is the Jeans instability, named
after Sir James Jeans (although Sir Isaac Newton understood the concept over 200 years
before the calculation).

The critical wavelength

λJ = a

√
π

Gρ0
(VI.22)

is referred to as the Jeans length. For an isothermal (γ = 1) molecular cloud of temper-
ature 10 K, number density 200 cm−3, and mean mass per particle 2.33mp, the Jeans
length is ≃1.5 pc. The corresponding Jeans mass enclosed within a spherical volume with
λJ as its diameter is

MJ =
π

6
ρ0λ

3
J = 20.3

(
T0

10 K

)3/2(
n

200 cm−3

)−1/2

M⊙. (VI.23)

Giant molecular clouds with these parameters have typical masses ≳104 M⊙, indicating
that more must be going on than just thermal pressure support against self-gravity (see:
magnetic fields and turbulence). Note that MJ =M⊙ at a density n ≃ 8.2× 104 cm−3.

VI.5. Shear: Kelvin–Helmholtz instability
Consider two uniform fluids separated by a discontinuous interface at z = 0, as in the

figure below:

8Wouldn’t an infinite, homogeneous, self-gravitating fluid collapse under its own weight? Indeed
it would. Ignoring this inconvenience is known as the Jeans swindle. Following Binney &
Tremaine (1987): ‘it is a swindle because in general there is no formal justification for discarding
the unperturbed gravitational field’.
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The fluid above the interface (z > 0) has density ρ2 and equilibrium velocity u0 = U x̂.
The fluid below the interface (z < 0) has density ρ1 and is stationary. (We can always
transform to a frame in which this fluid is stationary, so why not take advantage of that?)
There is a uniform magnetic field B0 = B0xx̂ + B0yŷ oriented parallel to the interface
that permeates all of the fluid, which we take to be perfectly conducting. For simplicity,
take the fluid to be incompressible, viz. ∇·u = 0.

We seek the dispersion relation governing small-amplitude perturbations. It turns out
that this problem is most easily analyzed using Lagrangian perturbations rather than
Eulerian perturbations – the reason being that the interface and the interfacial pressure
between the two fluids must remain continuous as the fluid is perturbed, and it’s easier
to measure this interface in the frame of the fluid element than in the lab frame.

Take the momentum equation in each of the fluids, above and below, and apply the
difference operator ∆ .

= δ + ξ ·∇ while recalling that [∆,D/Dt] = 0 and ∆u = Dξ/Dt:

∆

[
ρ
Du

Dt
= −∇

(
P +

B2

8π

)
+

B ·∇B

4π

]

=⇒ ρ
D2ξ

Dt2
= −∇δ

(
P +

B2

8π

)
+

B0 ·∇δB

4π
, (VI.24)

the form of the right-hand side following because ∇B0 = ∇P0 = 0. Use the linearized
induction equation (VI.16) with ∇B0 = 0, which reads δB = (B0 ·∇)ξ, and rearrange
to obtain [

D2

Dt2
− (B0 ·∇)2

4πρ

]
ξ = −1

ρ
∇δ

(
P +

B2

8π

)
.
= −1

ρ
∇δΠ. (VI.25)

Note that taking the divergence of this equation and using ∇· ξ = 0 (incompressibility)
implies that the total perturbed pressure Π satisfies

∇2δΠ = 0. (VI.26)

With the x and y directions being infinite in extent and the background state possessing
no structure in those directions, we may write δΠ = δΠ(z) exp(ikxx+ ikyy) to find(

−k2 + d2

dz2

)
δΠ(z) = 0 =⇒ δΠ(z) ∝ exp(−|kz|), k ≡

√
k2x + k2y. (VI.27)

The absolute value in the argument of the exponential indicates that the perturbation
must die off as z → ±∞. We may now adopt solutions of the form exp(−iωt) and evaluate
the z component of (VI.25) above and below the interface:[

(−iω + ikxU)2 +
(k ·B0)

2

4πρ2

]
ξz2 = +

1

ρ2
|k|δΠ2, (VI.28a)[

(−iω )2 +
(k ·B0)

2

4πρ1

]
ξz1 = − 1

ρ1
|k|δΠ1, (VI.28b)

respectively. At the interface, ξz1 = ξz2 and ∆Π1 = ∆Π2, i.e., the two fluids must move
together at the interface and their pressures must hold continuous as they are perturbed.
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Because ∇B0 = ∇P0 = 0, the latter implies δΠ1 = δΠ2. Using this information to
match (VI.28a) and (VI.28b) leads to

(ω − kxU)2ρ2 + ω2ρ1 =
(k ·B0)

2

2π
(VI.29)

=⇒ ω =
kxU

2

ρ

ρ1

{
1± i

√
ρ1
ρ2

[
1− (k ·B0)2

πρk2xU
2

]}
(VI.30)

where ρ .
= 2ρ1ρ2/(ρ1 + ρ2) is the reduced mass density. For

(k ·B0)
2

4πρ
<

(
kxU

2

)2

, (VI.31)

the discriminant is positive and there is a growing (and propagating) mode whose growth
rate is proportional to the wavenumber and the velocity shear across the interface. Note
that, for ρ1 = ρ2 = ρ, we have ρ = ρ, and then (VI.30) becomes

ω =
kxU

2

[
1± i

√
1− (k ·B0)2

πρk2xU
2

]
;

for U = 0, this returns a stably propagating shear Alfvén wave, ω = ∓(k ·vA). This
indicates that it is the tension in the magnetic-field lines that is responsible for stabilizing
the instability. That being said, if the magnetic field is oriented such that B0x = 0, then
(VI.31) can always be satisfied for small enough |ky/kx|, no matter how strong is B0y.

The physics is as follows. An upwardly displaced distortion of the interface into
region 2 causes a constriction of the velocity there, and the fluid must move faster to
conserve its mass. But when it moves faster, the pressure must drop (Bernoulli!). The
opposite happens below the interface. Now there is a pressure gradient pushing upwards,
reinforcing the displacement, and the process runs away (unless the magnetic tension
can stabilize the displacements and propagate them away as Alfvén waves). That’s why
pressure perturbations were vital in (VI.25).

Question: Does this instability occur in a simple linear shear flow, e.g., u0 = Szx̂? No! The
proof goes as follows. Drop the magnetic field for simplicity. With u0 = u0(z)x̂, one can show
using ∇· ξ = 0 and the momentum equation that

d2ξz
dz2

− k2
xξz =

ku′′
0

ω − kxu0
ξz.

Multiply this by ξ∗z (the ‘∗’ denotes the complex conjugate) and integrate between the upper
and lower boundaries z = ±L to obtain∫ L

−L

dz
(
ξ∗zξ

′′
z − k2

x|ξz|2
)
=

∫ L

−L

dz
kxu

′′
0

ω − kxu0
|ξz|2.

The first term on the left-hand side may be simplified using integration by parts and assuming
either periodicity or that ξz or ξ′z vanish at the boundaries. Then∫ L

−L

dz
(
−|ξ′z|2 − k2

x|ξz|2
)
=

∫ L

−L

dz
kxu

′′
0

ω − kxu0
|ξz|2,

If the system is unstable, then ω must have an imaginary part, ωI. Writing ω = ωR + iωI, the
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imaginary part of the above equation is simply

ωI

∫ L

−L

dz
kxu

′′
0

|ω − kxu0|2
|ξz|2 = 0.

This states that u′′
0 must be positive over part of the integration range, and negative over

the remainder, i.e., u′′
0 must pass through zero. Thus, instability requires an inflection point

(Rayleigh 1880). (Note that the converse is not true: a velocity profile with an inflection point
is not necessarily unstable.)

VI.6. Buoyancy: Rayleigh–Taylor instability
Using Lagrangian perturbation theory, it is easy to generalize the calculation in the

previous section (§VI.5) to include gravity. Again, let the fluid above the interface (z > 0)
have uniform density ρ2, and the fluid below the interface (z < 0) have uniform density
ρ1. Include the same uniform background magnetic field as before, B0 = B0xx̂+ B0yŷ.
But now place these fluids in a constant gravitational field g = −gẑ, with the gas pressure
either side of the interface satisfying hydrostatic equilibrium in the vertical direction:

g = − 1

ρ1

dP1

dz
= − 1

ρ2

dP2

dz
.

The entire calculation goes through as before, but with the following additions and
modifications. First, we must include the perturbed gravitational force in the momentum
equation (VI.24), viz. ∆(ρg) = −(∆ρ)gẑ. Secondly, because of the background pressure
gradient in each of the fluids, we no longer have that ∆(∇P ) = ∇δP , but rather that
∆(∇P ) = ∇δP + ξ ·∇(∇P ). Using hydrostatic equilibrium, this may equivalently be
written as ∆(∇P ) = ∇δP − ξ ·∇(ρgẑ). Making these two changes in (VI.24) leads to

ρ
D2ξ

Dt2
= −∇δ

(
P +

B2

8π

)
+

B0 ·∇δB

4π
− (∆ρ)gẑ + ξ ·∇(ρg). (VI.32)

Despite this extra work, however, those two additional terms cancel one another if
the fluid is incompressible, since then ∆ρ − ξ ·∇ρ

.
= δρ = 0. As a result, the only

difference between this calculation and the Kelvin–Helmholtz calculation in §VI.5 is that
the imposition of pressure continuity at the perturbed interface does not imply that
δΠ1 = δΠ2, but rather

∆Π1 = ∆Π2 =⇒ δΠ1 − ξz1ρ1g = δΠ2 − ξz2ρ2g =⇒ δΠ2 − δΠ1 = ξz(ρ2 − ρ1)g.

We may then use this in (VI.28) to jump straight to the dispersion relation (cf. (VI.29))

(ω − kxU)2ρ2 + ω2ρ1 =
(k ·B0)

2

2π
+ |k|g(ρ1 − ρ2), (VI.33)

whose solutions are (cf. (VI.30))

ω =
kxU

2

ρ

ρ1

{
1± i

√
ρ1
ρ2

[
1 +

2|k|g
k2xU

2

ρ2 − ρ1
ρ

− (k ·B0)2

πρk2xU
2

]}
. (VI.34)

By design, this has both Kelvin–Helmholtz and Rayleigh–Taylor in it; let’s set U = 0 to
eliminate the former, in which case

ω = ±i

√
|k|g ρ2 − ρ1

ρ1 + ρ2
− (k ·B0)2

2π(ρ1 + ρ2)
(VI.35)
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This equation states that linear instability requires ρ2 > ρ1 (heavy on top, light on the
bottom), with the difference between the densities being large enough for the destabilizing
pressure gradient (Bernoulli!) to overcome the stabilizing magnetic tension. Note that,
if B0 is not oriented along the interface, no amount of magnetic field can stabilize the
system.

Usually a physical explanation of the Rayleigh–Taylor instability isn’t provided in
derivations of its linear theory; indeed, the fact that heavy stuff falls down if given the
opportunity to do so is fairly obvious. But it’s worth thinking about the physics a little
harder, and connecting this intuition back to the math. Let’s return to (VI.32) with
U = 0 and B = 0 in order to isolate the Rayleigh–Taylor physics, and take curl of this
equation:

∇×
(
ρ
D2ξ

Dt2

)
= 0.

Chain-ruling the curl, dividing through by ρ, and using (VI.32) to eliminate D2ξ/Dt2

yields
D2

Dt2
∇× ξ =

1

ρ2
∇ρ×∇δP.

If you read §II.4, you’ll recognize this as an equation for the vorticity, which is being
baroclinically forced by the misalignment between the background density gradient and
the perturbed pressure gradient. Because of the rippled interface, this perturbed pressure
gradient has a component in the x direction, which points from regions where ξz > 0
towards regions where ξz < 0. With ∇ρ pointing upwards (in the unstable situation),
the baroclinic forcing is pointing in just the right direction to accentuate the vorticity in
the original perturbation. See the figure below.

VI.7. Buoyancy: Convective (Schwarzschild) instability
Next up: stratification. Henceforth, ignore self-gravity. Suppose our plasma is immersed

in a constant, externally imposed gravitational field g = −gẑ and that its thermal-
pressure gradient balances the gravitational acceleration to produce a stationary, equi-
librium state. Ignoring for the moment magnetic fields, this hydrostatic equilibrium is
described by the equation

1

ρ0

dP0

dz
= g = const, (VI.36)
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where ρ0 = ρ0(z). The hydrodynamic equations linearized about this equilibrium are

∂

∂t

δρ

ρ0
+∇· δu+ δuz

d ln ρ0
dz

= 0, (VI.37)

∂δu

∂t
= − 1

ρ0
∇δP − δρ

ρ0
gẑ, (VI.38)

∂

∂t

(
δP

P0
− γ

δρ

ρ0

)
+ δuz

d

dz
ln
P0

ργ0
= 0. (VI.39)

Solutions to this set of equations are ∝ exp(−iωt):

−iω
δρ

ρ0
+∇· δu+ δuz

d ln ρ0
dz

= 0, (VI.40)

−iωδu = − 1

ρ0
∇δP − δρ

ρ0
gẑ, (VI.41)

−iω

(
δP

P0
− γ

δρ

ρ0

)
+ δuz

d

dz
ln
P0

ργ0
= 0. (VI.42)

Continued on hand-written notes. . .
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VI.8. Buoyancy: Parker instability
Continued on hand-written notes. . .
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VI.9. Rotation
In §II.5, we wrote down the equations of hydrodynamics in a rotating frame – see

(II.44). Here we do the same for the equations of MHD. With v = u−RΩ(R, z)φ̂ and

D

Dt

.
=

∂

∂t
+ v ·∇+Ω

∂

∂φ
,

the continuity and force equations are the same,

Dρ

Dt
= −ρ∇·v, (VI.43)

DvR
Dt

= fR + 2Ωvφ +RΩ2 +
v2φ
R
, (VI.44)

Dvφ
Dt

= fφ − κ2

2Ω
vR −R

∂Ω

∂z
vz −

vRvφ
R

, (VI.45)

Dvz
Dt

= fz, (VI.46)

but with the addition of the Lorentz force:

f = −1

ρ
∇
(
P +

B2

8π

)
+

B ·∇Bi
4πρ

êi +
BRBφ
4πρR

φ̂−
B2
φ

4πρR
R̂−∇Φ. (VI.47)

Note the additional geometric terms ∝B2/R; these are tension forces associated with the
bend in the magnetic-field lines as they follow the azimuthal direction. To these equations
we must append the induction equation:

DBR
Dt

= −BR∇·v +B ·∇vR, (VI.48)

DBφ
Dt

= −Bφ∇·v +B ·∇vφ +
∂Ω

∂ lnR
BR +R

∂Ω

∂z
Bz, (VI.49)

DBz
Dt

= −Bz∇·v +B ·∇vz. (VI.50)

With the exception of advection by the differential rotation, the only additions to the
induction equation beyond its more customary Cartesian form appear in its azimuthal
component: + RB ·∇Ω on the right-hand side. This corresponds to stretching of the
flux-frozen magnetic field by the differential rotation.

In the hand-written pages that follow, these equations are used to describe the evolution
of small fluctuations about a homogeneous, differentially rotating disk with Ω = Ω(R),
in which the centrifugal acceleration RΩ2 is balanced by gravity −∂Φ/∂R. If the latter
is dominated by that of a central point mass M , we have Φ = −GM/R and so Ω =
(GM/R3)1/2 – i.e., Keplerian rotation.

Before proceeding, I’ll write down the linearized MHD equations written in cylindrical
coordinates (R,φ, z) in a rotating frame with Ω = Ω(R, z)ẑ. The only assumptions here
are that the background magnetic field is uniform, and that the equilibrium state arises
from a balance between the centrifugal force and gravity plus thermal-pressure gradients
(i.e., we allow for density and pressure stratification in the background state). We also
neglect curvature terms of order ∼(v2A/R)(δB/B), as these are small compared to the
other terms unless the toroidal magnetic field is super-thermal by a factor ∼(R/H)1/2,
where H ∼ cs/Ω is the disk thickness and cs is the sound speed – an atypical situation.
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Without further ado. . .(
∂

∂t
+Ω

∂

∂φ

)
δρ = −(δv ·∇)ρ− ρ(∇· δv), (VI.51)(

∂

∂t
+Ω

∂

∂φ

)
δvR = −1

ρ

∂

∂R

(
δP +

B · δB
4π

)
+
δρ

ρ2
∂P

∂R
+

(B ·∇)δBR
4πρ

− ∂δΦ

∂R

− 2Ωδvφ, (VI.52)(
∂

∂t
+Ω

∂

∂φ

)
δvφ = − 1

ρR

∂

∂φ

(
δP +

B · δB
4π

)
+
δρ

ρ

1

ρR

∂P

∂φ
+

(B ·∇)δBφ
4πρ

− 1

R

∂δΦ

∂φ

+
κ2

2Ω
δvR +R

∂Ω

∂z
δvφ, (VI.53)(

∂

∂t
+Ω

∂

∂φ

)
δvz = −1

ρ

∂

∂z

(
δP +

B · δB
4π

)
+
δρ

ρ2
∂P

∂z
+

(B ·∇)δBz
4πρ

− ∂δΦ

∂z
(VI.54)(

∂

∂t
+Ω

∂

∂φ

)
δBR = (B ·∇)δvR −BR(∇· δv), (VI.55)(

∂

∂t
+Ω

∂

∂φ

)
δBφ = (B ·∇)δvφ −Bφ(∇· δv) + ∂Ω

∂ lnR
δBR +R

∂Ω

∂z
δBz, (VI.56)(

∂

∂t
+Ω

∂

∂φ

)
δBz = (B ·∇)δvz −Bz(∇· δv), (VI.57)(

∂

∂t
+Ω

∂

∂φ

)
δσ = −δvR

∂ lnPρ−γ

∂R
− δvz

∂ lnPρ−γ

∂z
, (VI.58)

where δσ .
= δP/P − γδρ/ρ.
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PART VII

Magnetic reconnection

Magnetic reconnection refers to the topological rearrangement of magnetic-field lines that
converts magnetic energy to plasma energy. In these lecture notes, we will assume that
such a rearrangement is facilitated by a spatially constant Ohmic resistivity, as might
occur in a well-ionized collisional fluid:

∂B

∂t
= ∇× (u×B) + η∇2B.

This assumption is obviously not warranted in hot, dilute astrophysical systems, such as
the collisionless solar wind, or in poorly ionized systems, like molecular clouds and pre-
stellar cores. But let us assume this anyhow, knowing that (i) the physics of reconnection
in even the simplest of systems is surprisingly rich and complex, and (ii) there is a
huge amount of literature on all aspects of magnetic reconnection in a wide variety of
environments. This part of the lecture notes is not intended as a replacement of that
literature, nor a synopsis of current research in the field (particularly in the laboratory
and the Earth’s magnetosheath). What follows is an incomplete presentation of a few key
highlights in the theory of magnetic reconnection, which will hopefully provide enough
pedagogical value and inspiration to encourage you to dig into the literature further. For
that, I recommend that you start with the excellent review articles by Zweibel & Yamada
(2009), Yamada et al. (2010), and Loureiro & Uzdensky (2016).

VII.1. Tearing instability

VII.1.1. Formulation of the problem

We begin by analyzing the stability of a simple stationary equilibrium in which the
magnetic field reverses across x = 0:

B0 = By(x)ŷ +Bgẑ, (VII.1)

where By(x) is an odd function and Bg = const denotes the guide field. A oft-employed
profile for By(x) is the Harris (1962) sheet:

By(x) = Br tanh
(x
a

)
, (VII.2)

where Br is the asymptotic value of the reconnecting field and a is the characteristic
scale length of the current sheet. Its profile, and the associated current density jz =
(Br/a) sech

2(x/a), are shown in the figure below:
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To have a stationary equilibrium, we require something to balance the magnetic pressure
gradient implied by (VII.1). One option is to allow the thermal pressure in the background
to vary so that P (x) + B2

y(x)/8π = const. Another option is to make the guide field
also depend upon x and arrange for the total magnetic-field strength to be constant;
for example, if the reconnecting field satisfies (VII.2), then the guide field should satisfy
Bg(x) = Br sech(x/a). Either way, the total pressure P+B2/8π in the equilibrium should
be constant. We might consider allowing the background magnetic pressure gradient to
be unbalanced, which would be fine if the tearing instability were to grow much faster
than the current sheet would evolve globally from being initialized out of equilibrium.
But the latter would occur on the Alfvén-crossing time of the sheet, ∼a/vA,r, which we
will find is actually shorter than the characteristic growth time of the fastest-growing
tearing mode. Many presentations of the tearing instability conveniently omit this point.

We start by linearizing the momentum and non-ideal induction equations about the
x-dependent, pressure-balanced equilibrium (cf. (VI.5)):

ρ
∂δu

∂t
= −∇

(
δP +

BgδBz
4π

+
ByδBy
4π

)
+
Bg

4π

∂δB

∂z
+
By
4π

∂δB

∂y
+

dBy
dx

δBx
4π

ŷ, (VII.3a)

∂δB

∂t
= −δux

dBy
dx

ŷ +Bg
∂δu

∂z
+By

∂δu

∂y
+ η∇2δB. (VII.3b)

Here we have taken the plasma to be incompressible, ∇· δu = 0; note further that the
mass density ρ in (VII.3a) refers only to its time-independent background value. As a
result, we don’t need the continuity equation to close our system of equations, and the
energy equation is replaced by the requirement that the divergence of (1/ρ) × (VII.3a)
vanish (which constrains δP ). We have also ignored resistive diffusion of the background
current-sheet profile, which should be fine as long as the growth rate of the tearing mode
is ≫ ηBr/a

2; this will amount to the condition that the Lundquist number of the current
sheet, Sa

.
= vA,ra/η where vA,r

.
= Br/

√
4πρ0 is the Alfvén speed associated with the

reconnecting field and ρ0 is the mass density at the center of the reconnecting layer
(x = 0), satisfies S1/2

a ≫ 1.
The next step, which is not at all necessary but is standard and simplifies this first

pass through the analysis, is to assume that the perturbations have no z component
and do not vary in the z direction, thereby reducing the problem completely to 2D. In
this case, the guide field Bg disappears from the analysis, and incompressibility and the
solenoidality constraint on the magnetic field allow us to write the perturbed velocity
and magnetic field in terms of scalar potentials whose gradients lie in the x-y plane:

δu = ẑ×∇ϕ,
δB√
4πρ0

= ẑ×∇ψ, (VII.4)
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Likewise, we may associate the background reconnecting field By with a scalar po-
tential: By(x)/

√
4πρ0 = Ψ ′(x), where the prime denotes differentiation with respect

to x. For example, if By is taken to be the Harris-sheet profile (VII.2), then Ψ(x) =
vA,ra ln[cosh(x/a)]. Making these simplifications in (VII.3), substituting in (VII.4), and
simplifying leads to

∂

∂t

(
ρ

ρ0
ẑ×∇ϕ

)
= −∇

(
δP

ρ0
+ Ψ ′ ∂ψ

∂x

)
+ Ψ ′ ∂

∂y
ẑ×∇ψ − Ψ ′′ ∂ψ

∂y
ŷ, (VII.5a)

ẑ×∇ ∂

∂t
ψ = ẑ×∇

(
Ψ ′ ∂ϕ

∂y
+ η∇2ψ

)
. (VII.5b)

We may remove the ẑ×∇ from both sides of the latter equation without consequence.
Finally, to eliminate ∇δP from (VII.5a), we take the curl of (VII.5a) and use ∇×∇ = 0.
After the use of some vector identities and rearranging, our final equations are

ρ

ρ0

∂

∂t

(
∇2ϕ+

d ln ρ

dx

dϕ

dx

)
= Ψ ′ ∂

∂y
∇2ψ − Ψ ′′′ ∂ψ

∂y
, (VII.6a)

∂ψ

∂t
− Ψ ′ ∂ϕ

∂y
= η∇2ψ. (VII.6b)

The former equation describes the evolution of the fluid vorticity, ∇×u = ẑ∇2ψ.
Because (VII.6) are linear in the perturbation amplitudes, and because the background

only depends upon x, we are allowed to adopt the solutions

ψ(t, x, y) = ψ(x) eiky+γt and ϕ(t, x, y) = ϕ(x) eiky+γt, (VII.7)

where k is the wavenumber and γ is the rate at which the perturbations will grow or
decay. In this case, ∂/∂t→ γ and ∂/∂y → ik, leaving us with

γ
ρ

ρ0

(
d2

dx2
− k2 +

d ln ρ

dx

d

dx

)
ϕ = ikΨ ′

(
d2

dx2
− k2

)
ψ − ikΨ ′′′ψ, (VII.8a)

γψ − ikΨ ′ϕ = η

(
d2

dx2
− k2

)
ψ. (VII.8b)

The trick to solving this set of equations is to realize that, as η tends towards zero,
the derivative on the right-hand side of (VII.8b) must grow to balance the terms on the
left-hand side. In other words, a boundary layer forms about x = 0, outside of which the
system satisfies the ideal-MHD equations and inside of which the resistivity is important.
The width of this boundary layer is customarily denoted δin, and much of reconnection
theory rests on determining its size given the various attributes of the host plasma. To
do so, we will first solve (VII.8a) and (VII.8b) in the “outer region”, where the resistivity
is negligible and the system behaves as though it were ideal. Then they will be solved in
the “inner region”, where the resistivity dominates and k ∼ a−1 ≪ d/dx ∼ δ−1

in . The two
solutions must asymptotically join onto one another; this matching, along with boundary
conditions at x = 0 and ±∞, will determine the full solution.

Before proceeding with this program, it will be advantageous to define the resistive
and Alfvén timescales,

τη
.
=
a2

η
and τA

.
=

1

kaΨ ′′(0)
=

1

kvA,r
, (VII.9)

respectively. We further assume τ−1
η ≪ γ ≪ τ−1

A , i.e. the tearing mode grows faster than
it takes for the entirety of the current sheet to resistively diffuse but slower than it takes
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for an Alfvén wave to cross k−1. Physically, this implies that the outer solution results
from neglecting the plasma’s inertia and Ohmic resistivity.

VII.1.2. Outer equation
Adopting the ordering τ−1

η ≪ γ ≪ τ−1
A , equations (VII.8a) and (VII.8b) reduce to

0 =

(
d2

dx2
− k2 − Ψ ′′′

Ψ ′

)
ψout and ϕout =

γ

ikΨ ′ψout. (VII.10)

Note that Ψ ′′′/Ψ ′ = B′′
y /By measures the gradient of the current density, and so different

current-sheet profiles will result in different solutions to (VII.10). Regardless of the exact
current-sheet profile, however, both ϕout and ψout must tend to zero as x → ±∞. Also,
since the y-component of the perturbed magnetic field must reverse direction at x = 0,
ψout must have a discontinuous derivative there, corresponding to a singular current.
Indeed, it is this discontinuity that characterizes the free energy available to reconnect,
quantified by the tearing-instability parameter

∆′ .=
1

ψout(0)

dψout

dx

∣∣∣∣+0

−0

, (VII.11)

and that ultimately warrants consideration of a resistive inner layer.

VII.1.3. Inner equation
In the inner region where k ≪ d/dx ∼ δ−1

in , the dominant terms in (VII.8a) and
(VII.8b) are

γ
ρ

ρ0

d2ϕin
dx2

= ikΨ ′ d
2ψin

dx2
, (VII.12)

γψin − ikϕinΨ
′ = η

d2ψin

dx2
. (VII.13)

Note that ρ, whose gradient length scale is a, may be taken as constant over the inner-
layer thickness δin ≪ a, and so the pre-factor ρ/ρ0 in (VII.12) is ≃1. These equations
may be solved analytically provided some amenable form of Ψ ′. Because we are deep
within the current sheet, the leading-order term in a Taylor expansion will suffice, viz.,
Ψ ′ ≈ Ψ ′′(0)x = vA,r(x/a). Then (VII.12) and (VII.13) may be straightforwardly combined
to obtain

d2ψin

dx2
= −

[
γ

kΨ ′′(0)

]2
1

x

d2

dx2

[
1

x

(
1− η

γ

d2

dx2

)
ψin

]
. (VII.14)

With some effort, this equation can actually be solved for ψin analytically. I’ll show you
how below. But even without that effort, equation (VII.14) may be used to estimate the
width of the boundary layer, δin:

1 ∼ (γaτA)
2 η

γδ4in
=⇒ δin

a
∼
(
γτ2A
τη

)1/4

. (VII.15)

Note that δin depends on k – each tearing mode k has a different boundary-layer width;
because of this, each k will correspond to a different ∆′.

Normalizing lengthscales to δin by introducing ξ
.
= x/δin, equation (VII.14) may be

written as
d2ψin

dξ2
= −1

ξ

d2

dξ2

[
1

ξ

(
Λ− d2

dξ2

)
ψin

]
, (VII.16)
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where the eigenvalue Λ .
= γ3/2τAτ

1/2
η = γδ2in/η is the growth rate of the tearing mode

normalized by the rate of resistive diffusion across a layer of width δin. Provided we can
solve (VII.16), the solution ψin must be matched onto the outer solution ψout. This is
done by equating the discontinuity in ψout, quantified by ∆′ (see (VII.11)), to the total
change in dψin/dx across the inner region, viz.,

∆′ =
2

δin

∫ 1

0

dξ
1

ψin(0)

d2ψin

dξ2
.

(The factor of 2 is because the solution is odd, and so the total change across the x = 0
surface is twice the change measured for x > 0.) The upper limit on the integral can be
extended to +∞ by committing only a ∼10% error:

∆′ =
2

δin

∫ ∞

0

dξ
1

ψin(0)

d2ψin

dξ2
. (VII.17)

So, find ψ(ξ) by solving the inner equation (VII.16), compute the integral in (VII.17),
and invert the answer to obtain the growth rate in terms of ∆′.

Before carrying out that program, it will be useful to further simply (VII.16) by
introducing

χ(ξ)
.
= ξ2

d

dξ

[
ψin(ξ)

ξ

]
, (VII.18)

so that
d

dξ

[
d

dξ

(
1

ξ2
dχ

dξ

)
−
(
1 +

Λ

ξ2

)
χ

]
= 0. (VII.19)

Integrating this equation once and, for reasons that will eventually become apparent,
setting the integration constant to −χ∞, we find

ξ2
d

dξ

(
1

ξ2
dχ

dξ

)
−
(
ξ2 + Λ

)
χ = −χ∞ξ

2. (VII.20)

Once this equation is solved, the inner solution is obtained using (cf. (VII.18))

ψin(ξ) = −ξ
∫ ∞

ξ

dx
χ(x)

x2
= −ξ

∫ ∞

ξ

dx
χ′(x)

x
− χ(ξ), (VII.21)

which may then be plugged into (VII.17) to compute ∆′.

VII.1.4. Approximate solutions
There are a few ways to solve (VII.10) and (VII.20), none of which are particularly

obvious. However, it’s possible to obtain scaling laws for ∆′ and the tearing-mode growth
rate γ without actually doing so. In fact, the answers obtained in this way differ from
those obtained by a more mathematically rigorous solution (see §VII.1.5) by only order-
unity coefficients. Nice.

We start with (VII.10), the outer equation. With some knowledge that the fastest-
growing modes occur at long wavelengths (ka ≪ 1), we can make some progress by
simply dropping the middle term in (VII.10). Then, so long as By varies faster within
|x| ≲ a than it does at |x| ≫ a, we can estimate

∆′ ∼ 1

ka2
. (VII.22)

(This scaling is exact for the Harris-sheet profile, solved for in §VII.1.5.) One may
formalize this estimate somewhat (Loureiro et al. 2007, 2013) by quantifying what “varies
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faster within |x| ≲ a than it does at |x| ≫ a” means, but not much is gained intuitively
by going that route, and the estimate (VII.22) will suffice.

As for the inner equation (VII.16), we know from (VII.20) that, whatever its solution,
ψin(ξ) only depends on the parameter Λ. Thus, equation (VII.17) may be written as

∆′δin = f(Λ) (VII.23)

for some function f(Λ). Combining (VII.22) and (VII.23) yields an expression for the
growth rate, provided we can invert f(Λ). Fortunately, we can, at least in certain limits.

The first limit is the so-called “constant-ψ approximation” or “FKR regime”, which
corresponds to f(Λ) ∼ Λ≪ 1 (Furth et al. 1963). Then (VII.23) gives ∆′δin ∼ Λ, so that

γFKR ∼ τ
−2/5
A τ−3/5

η (∆′a)4/5 ,
δin
a

∼
(
τA
τη

)2/5

(∆′a)1/5 (VII.24)

With ∆′ ∼ 1/ka2 (see (VII.22)), these become

γFKR

vA,r/a
∼ (ka)−2/5S−3/5

a ,
δin
a

∼ (ka)−3/5S−2/5
a , (VII.25)

where we have introduced the Lundquist number

Sa
.
=
avA,r
η

. (VII.26)

Note that longer wavelengths have faster growth rates (the divergence as k → 0 will be
cured in the “Coppi” regime, in which the small-∆′ assumption breaks down – see below).
This approximation results from setting ψin = ψin(0) on the left-hand side of (VII.13),
so that the inner equation (VII.13) becomes

γψin(0)− ikϕinΨ
′′(0)x = η

d2ψin

dx2
, (VII.27)

and so (cf. (VII.20))

ξ2
d

dξ

(
1

ξ2
dχ

dξ

)
− ξ2(χ− χ∞) = −Λψin(0). (VII.28)

In effect, we are assuming that the resistive diffusion time across the inner-layer thickness
is much shorter than the instability growth time, i.e., γ ≪ η/δ2in, so that ψin can be
approximated as constant on the dynamical time scale. Using (VII.25) in this inequality
requires Sa ≫ (∆′a)4. This is sometimes called the “small-∆′ regime”.

The second limit is the “Coppi regime” or “large-∆′ regime”, in which the constant-ψ
approximation breaks down and γ ∼ η/δ2in. This occurs for Λ ∼ 1−, at which f(Λ) → ∞.
The growth rate then becomes independent of ∆′ and we have

γCoppi ∼ τ
−2/3
A τ−1/3

η ,
δin
a

∼
(
τA
τη

)1/3

(VII.29)

In terms of the tearing-mode wavenumber k and the Lundquist number Sa,

γCoppi

vA,r/a
∼ (ka)2/3S−1/3

a ,
δin
a

∼ (ka)−1/3S−1/3
a . (VII.30)

In this limit, the shorter wavelengths have faster growth rates, opposite to the FKR
scaling (VII.25). This suggests a maximally growing mode, whose growth rate γmax and
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wavenumber kmax may be estimated by matching the FKR solution (VII.25) to the Coppi
one (VII.30):

γFKR ∼ γCoppi =⇒ kmaxa ∼ S−1/4
a ,

γmax

vA,r/a
∼ S−1/2

a ,
δin
a

∼ S−1/4
a . (VII.31)

Note that the FKR (Coppi) regime corresponds to k > kmax (k < kmax).
Of course, all of these scalings make sense only if the modes can fit into the current

sheet, i.e., kL ≳ 1, where L is the length of the current sheet. For the maximally growing
mode to be viable thus requires a current-sheet aspect ratio of L/a ≳ S

1/4
a . If this

inequality is not satisfied, then the fastest-growing mode will be the FKR mode (VII.25)
with the smallest possible allowed wavenumber, kL ∼ 1. Thus, low-aspect-ratio sheets
with L/a ≪ S

1/4
a will develop tearing perturbations comprising just one or two islands;

the high-aspect-ratio sheets, in which the Coppi regime is accessible, will instead spawn
whole chains comprising ∼kmaxL islands.

VII.1.5. Exact solution for a Harris sheet
With some (read: a lot of) effort, one can be more precise than the solutions obtained

in the previous section. For that task, let us adopt the equilibrium flux function Ψ =
avA,r ln[cosh(x/a)], corresponding to the Harris-sheet profile (VII.2). Then (VII.10)
becomes[

d2

dx2
− k2 +

2

a2
sech2

(x
a

)]
ψout = 0 and ϕout = −iγτA coth

(x
a

)
ψout. (VII.32)

The former equation can be solved by changing variables to µ = tanh(x/a), so that
sech2(x/a) = (1− µ2)−1 and

d

dx
=

1− µ2

a

d

dµ
,

d2

dx2
=

1− µ2

a

d

dµ

1− µ2

a

d

dµ
.

Then (VII.32) becomes[
d

dµ
(1− µ2)

d

dµ
+ 2− k2a2

1− µ2

]
ψout = 0 and ϕout = −iγτA

ψout

µ
, (VII.33)

the first of which you might recognize as the associated Legendre equation[
d

dµ
(1− µ2)

d

dµ
+ ℓ(ℓ+ 1)− m2

1− µ2

]
Pmℓ (µ) = 0

with ℓ = 1 and m = ka. Transforming the boundary conditions ψ(±∞) = 0 into ψ(µ =
±1) = 0 and enforcing ψ(µ) = ψ(−µ), the solution to (VII.33) is thus

ψout = C1mP
m
1 (µ), (VII.34)

with C1m = const. If you can’t picture in your head what the first associated Legendre
polynomial with non-integer m looks like – I know I can’t – you may like to know that
the outer solution may be equivalently written as

ψout(x) = C ′
1me−kx

[
1 +

1

ka
tanh

(x
a

)]
(VII.35)

for ξ ⩾ 0, where C ′
1m = const. (Note that ψout(−ξ) = ψout(ξ).) Visually:
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Recall that ∆′ measures the discontinuity of dψout/dx at x = 0 (see (VII.11)). Restoring
the cos(ky) dependence of ψout provides the following isocontours of ψout, which are
equivalently the magnetic-field lines:

For ease of visualization, I plotted two y wavelengths using ka = (2π)−1 and set the
tearing-mode amplitude to 0.2 (which in a realistic system would be well outside of the
linear regime). The red line is called the separatrix; it serves as the boundary between
the inside of each magnetic island and the surrounding field lines, and runs through the
“X-points” that lie at y = 0, 2π/k, 4π/k, etc. To determine the island width w, we follow
the isocontour that starts from the X-point at, say, (x, y) = (0, 0) and set its x location
when y = π/k equal to the half-width w/2:

�
��*

0
Ψ(0) + ψ(0, 0)︸ ︷︷ ︸

= ψout(0)

= Ψ(w/2) + ψ(w/2,π/k) ≈ 1

2
Ψ ′′(0)

w2

4
+ ψ(w/2,π/k)︸ ︷︷ ︸

= −ψout(w/2)

,

where we’ve used cos(π) = −1 and approximated Ψ(x) a distance x away from the neutral
line by its Taylor expansion, (1/2)Ψ ′′(0)x2. If we then take ψ to be approximately constant
within the island, viz. ψout(w/2) ≈ ψout(0), we find that island width satisfies

w ≈ 4

√
ψ(0)

Ψ ′′(0)
.

Note that Ψ ′′(0) = vA,r/a for the Harris-sheet profile. Solving for the mode amplitude
C1m (or C ′

1m) requires matching onto the inner solution, but even before doing that we
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can compute ∆′ using ψout ∝ Pm1 (µ) in (VII.11):9

∆′a =
1

Pm1 (0)

dPm1
dµ

∣∣∣∣+0

−0

=
2

Pm1 (0)

dPm1
dµ

∣∣∣∣
µ=0

= 2

(
1

m
−m

)
= 2

(
1

ka
− ka

)
. (VII.36)

Note that ∆′ > 0 requires ka < 1 – any unstable mode must have an extent at least as
large as the current-sheet thickness. This places an upper limit on the wavenumber of
the FKR modes (VII.25).

As for the inner equation, let us use its compact form (VII.20), repeated here for
convenience:

ξ2
d

dξ

(
1

ξ2
dχ

dξ

)
−
(
ξ2 + Λ

)
χ = −χ∞ξ

2, (VII.37)

where Λ
.
= γ3/2τAτ

1/2
η . There are a few ways to solve (VII.37), none of which are

particularly obvious. One way, explained in Appendix A of Ara et al. (1978), is as follows.
Write

χ = χ∞

∞∑
n=0

anL
(−3/2)
n (ξ2) e−ξ

2/2, (VII.38)

where Lαn(z) are the associated Laguerre (or “Sonine”) polynomials satisfying

z
d2L

(α)
n

dz2
+ (α+ 1− z)

dL
(α)
n

dz
+ nL(α)

n = 0. (VII.39)

Substitute this decomposition into (VII.20) and use the recursion relations

dLαn
dz

= −Lα+1
n−1(z) if 1 ⩽ n (= 0 otherwise),

nL(−3/2)
n (z) = −

(
z +

1

2

)
L
(−1/2)
n−1 (z)− zL

(1/2)
n−2 (z),

to obtain
∞∑
n=0

an ξ
−2 e−ξ

2/2L(−3/2)
n (ξ2)

(
4n+ Λ− 1

)
= 1. (VII.40)

Multiply this by e−ξ
2/2ξ−1L

−3/2
m , integrate, and use the orthogonality relation∫ ∞

0

dz e−zzαLαmL
α
n = δmn

Γ (n+ α+ 1)

Γ (n+ 1)

to find that

an
(n− 3/2)!

n!
(4n+ Λ− 1) =

∫ ∞

0

dz z−1/2e−z/2L−3/2
n

=

∫ ∞

0

dz z−1/2e−z/2(L−1/2
n − L

−1/2
n−1 )

=
√
2(−1)n

[
Γ (n+ 1/2)

Γ (n+ 1)
+
Γ (n− 1/2)

Γ (n)

]
=⇒ an =

(−1)n√
2

4n− 1

4n+ Λ− 1
.

9See https://dlmf.nist.gov/14.5 for information on Pm
ℓ (0) and dPm

ℓ /dµ|µ=0.

https://dlmf.nist.gov/14.5
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Thus, equation (VII.38) becomes10

χ =
χ∞√
2
e−ξ

2/2
∞∑
n=0

(−1)nL−3/2
n (ξ2)

4n− 1

4n+ Λ− 1
= ξ2

d

dξ

ψin

ξ
, (VII.41)

which may be solved for ψin following (VII.21).
Actually doing so and plugging the solution into (VII.17) to compute ∆′ ain’t easy,

as it involves a lot of non-standard math. I may LaTeX those steps up one day, but, for
now, I’ll just skip to the answer:

∆′δin = f(Λ)
.
=

π

2

Γ [(Λ+ 3)/4]

Γ [(Λ+ 5)/4]

Λ

1− Λ
. (VII.42)

This is an implicit equation for Γ , which may be solved numerically (see figure below). But
it’s possible to recover our approximate results (VII.24) and (VII.29) in their respective
limits. For Λ≪ 1,

f(Λ) ≈ π

2

Γ (3/4)

Γ (5/4)
Λ ≃ 2.124Λ =⇒ γ ≈ 0.547 τ

−2/5
A τ−3/5

η (∆′a)4/5. (VII.43)

Our approximate result for this FKR regime, equation (VII.24), is off by only a factor of
0.547 – not too bad. For Λ = 1−,

f(Λ) ≈ π

2

Γ (1)

Γ (3/2)

1

1− Λ
=

√
π

1− Λ
=⇒ γ ≈ τ

−2/3
A τ−1/3

η −O
(
kvA,r
∆′a

)
. (VII.44)

This matches our Coppi-regime estimate, (VII.29). These asymptotic solutions actually
do rather well across the full range of wavenumbers:

It also appears that we are well justified in estimating the maximally growing mode by
matching the FKR and Coppi expressions (as in (VII.31)). These regimes also occur
where we anticipated, with f(Λ) = ∆′δin being ≪ 1 (≫ 1) in the FKR (Coppi) regime:

10Note that we cannot use the expansion (VII.38) if Λ = 1.
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Thus the “small-∆′” / “large-∆′” phraseology.

VII.1.6. Nonlinear evolution and X-point collapse

How long does this linear phase, in which the tearing modes grow exponentially, last?
That depends on the ∆′ of the mode. If the Coppi regime is accessible – i.e., if the
maximally growing wavenumber kmax (see (VII.31)) that results in ∆′δin ≳ 1 also satisfies
kmaxa < 1 – then X-point collapse is essentially instantaneous once the width w =
4
√

−ψ(0)/Ψ ′′(0) of the exponentially growing island reaches δin. At this moment, w∆′ is
also ∼1, and so the deformations of the current sheet by the nonlinear islands have driven
the regions between the X-points to marginal stability. If the fastest-growing available
modes are instead FKR-like, then there is a gap between when the nonlinear regime
begins (w ∼ δin) and when it ends (w∆′ ∼ 1). In between occurs a period of secular
growth called the Rutherford (1973) stage, in which ẇ ∼ η∆′(w), the argument of ∆′

indicating that the logarithmic derivative of ψout is to be taken across the island (rather
than across the inner-layer width).11 During this slow growth stage, the initially unstable
current profile flattens and conditions are set up for the collapse of the inter-island X
points (Waelbroeck 1993; Loureiro et al. 2005). The figure below, adapted from Loureiro
et al. (2005), shows contours of ψ at the beginning of X-point collapse (left) and the
formation of an embedded, high-aspect ratio current sheet (right):

This current sheet is reminiscent of the now-famous Sweet–Parker configuration.

11Rutherford (1973) did not predict a saturation amplitude for the algebraically growing
nonlinear tearing mode. Subsequent papers by Militello & Porcelli (2004) and Escande
& Ottaviani (2004) (“POEM”) derived a modified equation for the Rutherford stage,
ẇ ∼ η(∆′ −αw/a2) with α being a constant dependent upon the initial current-sheet geometry,
thus predicting a saturated amplitude w ∼ ∆′a2.
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VII.2. Sweet–Parker reconnection

Peter Sweet (Sweet 1958) and Eugene Parker (Parker 1957) provided the first quan-
titative model of magnetic reconnection, envisioning it to be a steady-state process in
which a two-dimensional, incompressible flow advects magnetic flux into a current sheet
of length L and thickness δSP ≪ L. It is through the latter dimension that plasma,
accelerated in the direction along the current sheet by magnetic tension, is expelled in
the form of an outflow:

Steady state is achieved by (i) balancing the inflow velocity uin and the outflow velocity
uout using mass conservation, uinL ∼ uoutδSP; (ii) balancing the advective and resistive
electric fields so that all the inflowing magnetic flux is resistively destroyed, uinvA,r ∼
ηjz ∼ ηvA,r/δSP; and (iii) stipulating that the outflows are Alfvénic, uout ∼ vA,r. (This
final ingredient follows from conservation of energy, with the magnetic energy flux into
the sheet balancing the kinetic energy flux out of the sheet.) The result is

uin
vA,r

∼ δSP
L

∼
(
vA,rL

η

)−1/2
.
= S−1/2, (VII.45)

where S is the Lundquist number (using the current-sheet length L as the normalizing
lengthscale). In the solar corona, S ∼ 1012–1014; in the Earth’s magnetotail, S ∼ 1015–
1016; and in a modern tokamak like JET, S ∼ 106–108. You can see that S−1/2 is typically
a very small number, and so Sweet–Parker (SP) reconnection is slow – not as slow as
pure resistive diffusion, but slow in the sense that the reconnection rate τ−1

r
.
= uin/L ∼

(vA,r/L)S
−1/2 tends towards zero as S → ∞. For example, the SP model predicts that a

reconnection-driven solar flare in a S ∼ 1014 part of the solar corona should last ∼2 mths;
instead, flares are observed to last between 15 min and 1 hr. Not good.

This mismatch between theory and observation was immediately appreciated, and
spawned several attempts to formulate a model in which fast reconnection occurs. The
culprit is the smallness of the resistive layer: the fact that it must be thin enough to
make the current density large also means that the outflowing mass must pass through too
small of an opening. One particularly notorious attempt to circumvent this constraint was
proposed by Petschek (1964) (later revisited and amended by Kulsrud (2001)), in which
the current-sheet length L was shortened at the expense of introducing four standing
slow-mode shocks emanating from a central diffusion region:
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The result is a logarithmic dependence of the reconnection rate on S, τ−1
r ∼ (vA,r/L) lnS.

Unfortunately, no convincing evidence for this type of reconnection has been found (Park
et al. 1984; Biskamp 1986; Uzdensky & Kulsrud 2000; Malyshkin et al. 2005; Loureiro
et al. 2005), even when Petschek’s solution is used as an initial condition (Uzdensky &
Kulsrud 2000).12

It is worth emphasizing that the failure of the SP model to explain magnetic reconnec-
tion as it occurs in nature is not due to any shortcoming of the theory itself. There are no
obvious mistakes in the theory, which has been put on a rigorous footing (e.g., Uzdensky
& Kulsrud 2000). Indeed, both numerical simulations (e.g., see figure 4(b) of Loureiro
et al. 2005) and laboratory experiments (e.g., Ji et al. 1998) have measured reconnection
rates in excellent agreement with the SP scalings (VII.45). What, then, is the issue?

VII.3. Plasmoid instability
Let us suspend judgement for the meantime and suppose that the SP model is correct.

With tearing-mode theory in hand, let us ask the intriguing question of whether or not
the steady-state SP current sheet is stable to tearing instabilities. One could of course
go the route of rigorously doing the linear tearing theory using the SP solution as the
background state, as Loureiro et al. (2007) did in a now-classic paper, but for our purposes
it will be sufficient to simply replace the current-sheet thickness a in the tearing-mode
theory of §VII.1 with δSP ∼ S−1/2L (Tajima & Shibata 1997; Bhattacharjee et al. 2009;
Loureiro et al. 2013). Focusing on the maximally growing tearing mode (VII.31),

kmaxL ∼ L

a
S−1/4
a −→ L

δSP

(
vA,rδSP

η

)−1/4

∼ S3/8, (VII.46a)

γmax

vA,r/L
∼ L

a
S−1/2
a −→ L

δSP

(
vA,rδSP

η

)−1/2

∼ S1/4, (VII.46b)

δin
L

∼ a

L
S−1/4
a −→ δSP

L

(
vA,rδSP

η

)−1/4

∼ S−5/8. (VII.46c)

This is the plasmoid instability – essentially, the tearing instability of a SP current
layer. Of course, the situation in question is very different than that obtained using
the stationary equilibrium Harris sheet, perhaps most obviously because the former has
background flows. These flows can be stabilizing in the tearing calculation, a possibility
we have ignored in making the estimates in (VII.46). This may be circumvented, however,
by demanding that γ ≫ vA,r/L, kmaxL ≫ 1, and δin/δSP ≪ 1 – demands that may be
satisfied if S ≳ 104. Indeed, it is at this critical Lundquist number that the plasmoid

12Petschek-like configurations do emerge when strongly localized (anomalous) resistivity profiles
are used (Malyshkin et al. 2005; Sato & Hayashi 1979; Ugai 1995; Scholer 1989; Erkaev et al.
2000, 2001; Biskamp & Schwarz 2001), as might occur under collisionless conditions.
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instability is (now routinely) observed to occur in numerical simulations of reconnection
(e.g., Samtaney et al. 2009; Daughton et al. 2009; Bhattacharjee et al. 2009; Ni et al.
2010; Huang & Bhattacharjee 2010; Loureiro et al. 2012, 2013). The example below is
taken from a resistive-MHD numerical simulation by Samtaney et al. (2009), showing
the evolution of the current density (color) in the central x = [−δSP, δSP] region of a SP
current sheet with S = 107:

Below is another example, taken from Bhattacharjee et al. (2009) using S = 2π × 105:
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Since then, simulations of plasmoid-dominated reconnection has become an industry.
Given that large-aspect-ratio SP current sheets are violently unstable to the plasmoid

instability, it is worth asking whether we should expect them to exist in nature at all.
Indeed, Lundquist numbers of typical space and astrophysical plasmas are absurdly large,
with S ∼ 1013 or so in the solar corona implying a plasmoid-instability time scale less
than 0.06% of the dynamical time scale. Why would a nice SP current sheet ever be
realized under these conditions? See Pucci & Velli (2014) and Uzdensky & Loureiro
(2016) for more.13

13You may also wish to see Alt & Kunz (2019) and Winarto & Kunz (2022) for reasons why a
relatively large-scale, smoothly varying current layer (e.g., a Harris sheet) should not be expected
to occur in a weakly collisional, high-β plasma.
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