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Interchange mode
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Toroidal device
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Unstable when:
p1 > p2 > p3



Transverse field stabilization
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Dispersion relation:
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Motivation

Behaviour at marginal stability for ideal interchange modes is
important in:

I Tokamaks,

I Reversed Field Pinches,

I Stellarators,

I etc...

Understanding the tradeoff between the deviation from marginality
and residual convection is useful for B-field coil design in
stellarators.



Previous result
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Amplitude dependent stability
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Numerical marginal conditions amplitude test

Linearly stable

∆B/Bc ≈ 0.04%

Small amplitude

a0 = 10−4

Linearly stable

∆B/Bc ≈ 0.04%

Large amplitude

a0 = 10−2



Numerical simulation result1

Stable runs are marked with a blue circle and unstable runs with a
red ’x’. The theoretical boundary is shown as the line a0 ∝

√
b.

1Phys. Plasmas 18 122103 (2011).



Rippled boundary problem
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Reduced equations in 2D

Complete, nonlinear set:

∂tψ = {ψ,ϕ}
ẑ·~∇⊥×ρ(∂t~u + {ϕ, ~u}) = {ψ,∇2

⊥ψ}+ g∂yρ

~u = ẑ×∇⊥ϕ
~B⊥ = ẑ×∇⊥ψ

Where, in general, ρ = ρ(ψ) and

{f, h} ≡ ∂xf∂yh− ∂yf∂xh.



“Simple-minded” linear calculation

Boundary condition:

At x = ±a− δ cos(ky)

∂yψ = −δ k sin(ky)∂xψ

Quasistatic equilibrium:

ψ = B0x+ ψ̃

(B2
0∇2
⊥ + gρ′0)∂yψ̃ = −B0{ψ̃,∇2

⊥ψ̃}

To lowest order in δ/a:

ψ̃ =
δB0

cos(kxa)
cos(kxx) cos(ky)

k2x =
gρ′0
B2

0

− k2



Boundary induced amplification

Critical condition:

B0 → Bc when kx → kc ≡ π/2a
B2

c (k2c + k2) ≡ B2
ck

2
⊥ = gρ′0

Amplification scaling:

B0 = Bc + b and kx = kc −∆kx

b/Bc ∼ ∆kx/kc � 1

To lowest order in b/Bc:

ψ̃ ≈ δ/a

b/Bc

kc
k2⊥
Bc cos(kxx) cos(ky)



Core penetration

Dirac delta gradient:

ρ′0(x) = ρ′0aδ(x)

Solution:

ψ̃ = B0δ
ka cosh(kx)− 1

2κ
2a2 sinh(k|x|)

ka cosh(ka)− 1
2κ

2a2 sinh(ka)
cos(ky), κ2 ≡ gρ′0
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Limits:

ψ̃k→0 ∝ B0δ
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ψ̃k→∞ ∝ 2B0δe
−ka cosh(kx)



Global amplification

∆

b

∆

a0

Ρ0
¢HxL

Ψ
�

0

Ψ
�



Nonlinear scaling and expansion

Previous scaling:

|ψ̃/ψ0| ∼ ε ≡ (b/Bc)
1/2

⇒ δ

a
∼ ε3

Expand ψ in ε:

ψ = ψ0 + ψ1 + ψ2 + ψ3 + · · ·
ψ0 = (Bc + b)x

ψi+1

ψi
∼ ε



First order

Equation:

B2
c (∇2

⊥ + k2⊥)∂yψ1 = 0

∂yψ1|x=±a = 0

Solution:

ψ1 =

[
A+

δ/a

b/Bc
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]
cos(kcx) cos(ky)

Where A is the plasma response.
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Second order

Equation:

B2
c (∇2

⊥ + k2⊥)∂yψ2 = −Bc{ψ1,∇2
⊥ψ1}

= 0

∂yψ2|x=±a = 0

Solution:

ψ2 = −1
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Third order

Equation:

B2
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⊥ + k2⊥)∂yψ3 + 2Bcb∇2
⊥∂yψ1 = −Bc

(
{ψ1,∇2
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)

∂yψ3|x=±a = −δBck sin(ky)

Secular term:
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δ
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Time evolution

Time dependence:

A = A(t) where τA∂t ∼ ε
keep δ̇ “small”

Result:
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Normalized with kc, Bc, and VAc equal to 1.



Boundary induced nonlinear instability2

U(A; δ) = bA2 − 1
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2Phys. Plasmas (Letters) 20 020704 (2013).



Summary and conclusions
In marginally stable interchange mode systems boundary
perturbations...

1. ...are amplified:
ψ̃ ∝ δ/b

2. ...induce nonlinear instability.

Therefore, marginal system is highly sensitive to boundary
perturbations:

δc ∝ b3/2

Future work
Energy principle generalization:

I δW with nonlinear effects

I δW with boundary perturbations

Realistic geometry (shear, curvature, etc)


