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There was a celebratory conference in Jadwin Hall, 
of  which I don’t have a picture (that was before mobile photography)… 

 …and at which I first heard Peter Goldreich talk about 

CRITICAL BALANCE 
in MHD (Alfvénic) turbulence 

 
(those were the days when the space & astro community 

believed, in the face of  considerable evidence to the contrary,  
that MHD turbulence was isotropic and weak, 

so Goldreich was a rebel against orthodoxy; 
interestingly, the fusion plasma community knew as a matter of  course that 

magnetised turbulence was anisotropic 
and gyrokinetics was maturing as the formalism of  choice, 

but somehow the connection to MHD had trouble getting traction) 
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Fig. 1. IK and GS (photo of R. S. Iroshnikov courtesy of Sternberg Astronomical
Institute; photo of R. H. Kraichnan courtesy of the Johns Hopkins University).

difference between MHD and hydrodynamic turbulence is the possibility of
long-time correlations. In the large-Rm limit, the magnetic field is determined
by the displacement of the plasma, i.e., the time integral of the (Lagrangian)
velocity. In a stable plasma, the field-line tension tries to return the field line
to the unperturbed equilibrium position. Only “interchange” (k‖ = 0) mo-
tions of the entire field lines are not subject to this “spring-back” effect. Such
motions are often ruled out by geometry or boundary conditions (cf. footnote
6). Thus, fluid elements in MHD cannot simply random walk as this would
increase (without bound) the field-line tension. However, they may random
walk for a substantial period before the tension returns them back to the
equilibrium state. The role of such long-time correlations in MHD turbulence
is unknown.
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 Assume (on evidence) MHD turbulence is 
     anisotropic at all scales:   
  Then there are two relevant frequencies 
     in the problem are 
      
 
 
                        weak (wave) turbulence 
                        2D turbulence  
 Assume it is in between:                   critical balance 
    This removes dimensional ambiguity in the 
    K41-style argument: 

[Goldreich & Sridhar 1995, 97; anticipated by Higdon 1984; amended by Boldyrev 2006] 
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[Goldreich & Sridhar 1995, 97; anticipated by Higdon 1984; amended by Boldyrev 2006] 

This has been quite successful in describing both simulated 
and real (solar wind) MHD turbulence: e.g.,   

[Chen, Mallet et al. 2011, MNRAS 415, 3219] 

SOLAR WIND 
(Cluster) 

NUMERICS 
(RMHD) 

See also talk by S. Bale and poster by R. Wicks 
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SOLAR WIND 
(Ulysses, wavelets) 

[Horbury et al. 2008, PRL 101, 175005] 



Critical Balance 

This has been quite successful in describing both simulated 
and real (solar wind) MHD turbulence: e.g.,   

[Chen, Mallet et al. 2011, MNRAS 415, 3219] 

SOLAR WIND 
(Cluster) 

NUMERICS 
(RMHD) 

SOLAR WIND 
(Ulysses) 

[see also Wicks et al. 2010, MNRAS 401, L31; see Rob Wick’s poster] 



Critical Balance: Plasma Extensions 

The idea of  balancing the linear and nonlinear frequencies 
has since proved useful in a number of  contexts: 

 KAW (~EMHD, Hall) turbulence:  

     gives                             and   
     [Cho & Lazarian 2004, AAS et al. 2009, ApJS 182, 310; amended by Boldyrev 2012] 
 

[Cho & Lazarian 2009, ApJ 701, 236]  
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The idea of  balancing the linear and nonlinear frequencies 
has since proved useful in a number of  contexts: 

 KAW (~EMHD, Hall) turbulence:  

     gives                             and   
     [Cho & Lazarian 2004, AAS et al. 2009, ApJS 182, 310; amended by Boldyrev 2012] 
 
 Generally in magnetised (GK) turbulence: 
 
                                   CB as an ordering assumption [Howes et al. 2006] 
 
  In particular, in ITG turbulence:  
     CB-based scaling theory fits numerical simulations 
     [Barnes, Parra, AAS 2011, PRL 107, 115003] see Felix Parra’s talk 
     and maybe also measurements [Ghim et al. 2013, PRL 110, 145002] 



CB = Universal Scaling Conjecture? 

J. Fluid Mech. 677, 134 (2011)

Consider a generic wave-supporting system with these properties: 
  there is a direction of  anisotropy: 
    (magnetic field, axis of  rotation…) 
  there are parallel propagating waves: 
     MHD:                 Alfvén waves  
      rotating systems:                         inertial waves   
      GK (low-frequency magnetised plasma): dispersion relation generally in this form       

  there is a                                nonlinearity, so  
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  Parallel spectrum:                 invert the above and substitute 



Rotating Turbulence: Anisotropic! 

 
 
     
 
      
because turbulence is anisotropic:        
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Rotating Turbulence: Anisotropic! 

 
 
     
 
      
because turbulence is anisotropic:        
             

Lamriben et al. 2011, 
PRL 107, 024503 
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Rotating Turbulence: CB Scalings 

 
 
     
 
      
because turbulence is anisotropic:        
             

 
ARGUE/CONJECTURE: 
 constant flux (à la K41): 
 critical balance (à la GS95):  
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 Kolmogorov spectrum: 
  Scale-dependent anisotropy: 
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Is CB Inevitable? 

WEAK TURBULENCE: 
 
One (weak) interaction: 
 
Cascade time:    s.t. after               interactions, 
 
 
 
 
This result only satisfies the weak interaction approximation if  
 
 
Thus, weak turbulence will drive itself  into a CB state 
(unless           grows faster than         )  

J. Fluid Mech. 677, 134 (2011)

This derivation is in fact  
problematic because it involves 

treating             modes as waves. 
For an amended treatment (MHD), see 
AAS et al. 2012, PRE 85, 036406    



Is CB Inevitable? 

WEAK ROTATING TURBULENCE: 
 
One (weak) interaction: 
 
Cascade time:    s.t. after               interactions, 
 
 
 
 
This result only satisfies the weak interaction approximation if  
 
 
NB: Cascade only in      : exact for MHD, approximate for rotating 
         So     is an energy injection parameter                    [Galtier 2003] 
       Let us assume isotropic forcing: 
                  and low Rossby number   

J. Fluid Mech. 677, 134 (2011)

This derivation is in fact  
problematic because it involves 

treating             modes as waves. 
For an amended treatment (MHD), see 
AAS et al. 2012, PRE 85, 036406    



Cascade Path: From Weak Turbulence… 
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Cascade Path: …via CB… 
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weak 

injection 

weak 

crit.bal. 

 Weak, anisotropic: 
 
 
 
 
 
 Critically balanced, anisotropic: 



Cascade Path: Towards Isotropic State 
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weak 

injection 

weak 

crit.bal. isotropic 

 Weak, anisotropic: 
 
 
 
 
 
 Critically balanced, anisotropic: 
 
 
 
 
 
                          Zeman (1994) scale  
 Kolmogorov, isotropic: 

[Isotropisation confirmed in DNS by 
Mininni et al. 2012, JFM 699, 263] 



Cf. MHD: Ever More Anisotropic 

J. Fluid Mech. 677, 134 (2011)

weak 
crit.bal. 

injection 

weak 

crit.bal. 

 Weak, anisotropic: 
 
 
 
 
 
 Critically balanced, anisotropic: 

 Note: KAW turbulence is similar to MHD: 
          gets more anisotropic 
          [Cho & Lazarian 2004] 
          ITG to rotating: 
          gets (a bit) more isotropic 
          [Barnes, Parra & AAS 2011] [Goldreich & Sridhar 1995, 97] 



Reality Check: Weak to Strong in the Lab? 

injection 

weak 

crit.bal. isotropic 

Morize et al. 2005 
PoF 17, 095105 
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Is CB Inevitable? 

2D TURBULENCE: 
 General causality argument:  

 
 
 
 
 
Max corr. distance:          
                                                                                  critical balance 
  Inverse cascade (for rotating turbulence) 
 
In 2D, the system does not feel Coriolis force 2D hydro 
So inverse cascade will carry energy to larger      , where 
eddies turn over slower and so                                  critical balance 
 
NB: System must be large enough in the parallel direction! 

J. Fluid Mech. 677, 134 (2011)

Eddies 
decorrelating 
In 2D 

Eddies 
decorrelating 

In 2D 

Waves carrying information 

Waves carrying information 



Cascade Path: 2DCBK41 
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  2D: 
 
 
 
 
 
 Critically balanced, anisotropic: 
 
 
 
 
 
                          Zeman (1994) scale  
 Kolmogorov, isotropic: 

2D inverse 

injection 



Polarisation Alignment? 
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In an inertial wave, 
 



Polarisation Alignment? 
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Inertial waves have                     , so they are nonlinear solutions 
 
In an inertial wave, 
Is there a dynamical (or statistical) tendency for velocity and vorticity to align, 
i.e., for fluctuations to look like inertial waves? 
 
Boldyrev 2006 suggested a similar thing  
for Alfvén waves in MHD (also exact solutions) 
                        See his talk! 
He argues this tendency to alignment 
between       and          has to do with 
cross-helicity                     conservation. 
The analog argument for rotating turbulence 
would invoke helicity                
[see extensive studies by 
 Mininni & Pouquet 2009, 2010, 2012] 
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Inertial waves have                     , so they are nonlinear solutions 
 
In an inertial wave, 
Is there a dynamical (or statistical) tendency for velocity and vorticity to align, 
i.e., for fluctuations to look like inertial waves? 
 
 Suppose                                  %

  Then 
 

alignment angle 

[Boldyrev 2006 did this for MHD; see his talk!]  
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     (max alignment ~ angular uncertainty)  

  Then    
 

alignment angle 

[Boldyrev 2006 did this for MHD; see his talk!]  



Polarisation Alignment? 
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Inertial waves have                     , so they are nonlinear solutions 
 
In an inertial wave, 
Is there a dynamical (or statistical) tendency for velocity and vorticity to align, 
i.e., for fluctuations to look like inertial waves? 
 
 Suppose                                  %

  Then 

 Conjecture                                            

     (max alignment ~ angular uncertainty)  

  Then    

 Using CB etc., 

     (for                    , get Boldyrev’s           for Alfvén waves)  
 

alignment angle 

[Boldyrev 2006 did this for MHD; see his talk!]  



 Weak, anisotropic: 
 
 
 
 
 
 CB, anisotropic, aligned: 
 
 
 
 
 
                          Zeman (1994) scale  
 Kolmogorov, isotropic: 

Cascade Path (Amended for Alignment) 
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 CB, anisotropic, aligned: 
 
 
 
 
 
                          Zeman (1994) scale  
 

Cascade Path (Amended for Alignment) 
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injection 

weak 

crit.bal. isotropic 

DNS by 
Müller & Thiele 2007, 
EPL 77, 34003 

Thiele & Müller 2009, 
JFM 637, 425 

DOES THIS HAPPEN IN (VIRTUAL) REALITY? 



 
 
 
 
 
 
 CB, anisotropic, aligned: 
 
 
 
 
 
                          Zeman (1994) scale  
 

Cascade Path (Amended for Alignment) 
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injection 

weak 

crit.bal. isotropic 

DNS by 
Pouquet & Mininni 2010, 
PTRS A 368, 1635 

Mininni & Pouquet 2010, 
PoF 22, 035106  

DOES THIS HAPPEN IN (VIRTUAL) REALITY? 



 
 
 
 
 
 
 CB, anisotropic, aligned: 
 
 
 
 
 
                          Zeman (1994) scale  

  Dealignement: 

 (decreasing relative helicity) 

Cascade Path (Amended for Alignment) 
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injection 
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crit.bal. isotropic 

DNS by 
Pouquet & Mininni 2010, 
PTRS A 368, 1635 

Mininni & Pouquet 2010, 
PoF 22, 035106  



Conclusion 
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 Critical balance as a universal scaling conjecture: 
 Physically sensible 
 Aesthetically appealing 
 So far has stood the test of  measurement & simulations 
 Originated from MHD, has spread to GK & Hall plasmas 
     see talks by S. Bale, C. Chen, R. Wicks, S. Boldyrev, F. Parra 

 A novel cascade scenario for rotating turbulence: 
 Makes sense 
 Describes strong anisotropic turbulence at low Rossby number 
 Naturally implies isotropisation at Zeman scale (had to happen!) 
  The alignment principle might also be universal  

  Other interesting (hydro) examples (but careful with some analogies!):  
o  Stratified turbulence: CB leads to known/observed spectra 
          [Nazarenko & AAS 2011; cf. Dewan 1997, Billant & Chomaz 2001, Lindborg 2006] 
o  Shallow water waves [Phillips 1958, Newell & Zakharov 2008] 
o  Rossby waves in beta plane [Rhines 1975; see talks by J. Krommes, J. Parker on ZFs] 
o  Kelvin waves in superfluids [Proment, Nazarenko & Onorato 2009] 


