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Why is turbulence important?
Turbulence is important because it governs the transport of

Energy (energy flow, heating)

Mass (mixing, accretion)

Momentum (jet interactions, shocks)

Turbulence plays an important role in a large variety of space and
astrophysical phenomena, e.g.,

Accretion discs

Interstellar medium

Star-forming nebulae

Solar corona and
solar wind



Alfvénic Turbulence

Turbulence is mediated by interacting
Alfvén waves

In a magnetized plasma, large-scale
magnetic field adds a preferential
direction to the system

Turbulence becomes anisotropic



Gyrokinetics

What is gyrokinetics?

Average quantities over the
gyro-motion of particles and
describe the evolution of rings
rather than particles

Gyro-averaged and ordered version
of full Vlasov-Maxwell kinetic
theory

Basic ordering parameters:
� = ρi/a0 ∼ δf/F0 ∼ ω/Ωi ∼
k�/k⊥ � 1

Why is it useful?

Removes high frequency (> Ωi) fluctuations and reduces the
problem from 6 to 5 dimensions

Retains non-linear physics and kinetic effects (FLR, Landau
damping, collisions)

Ordering is concomitant to studies of turbulence



Solar Wind Energy Spectrum
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tion (MFI)instrument [œeppi•g et at., 1995] and ther- 
mal particle measurements from the SWE instrument 
[Ogit•ie et at., 1995] recorded in the solar wind when 
in near-Earth orbit between January 1995 and Febru- 
ary 1997. Wind was typically between 100 RE and 
200 RE upstream during the intervals in question. For 
all intervals in this study we use the highest available 
resolution magnetic field data; depending on the dis- 
tance from Wind to Earth, the sampling rate was either 
46, 92, or 184 ms. The resolution of the plasma data 
was 92 s. 

No attempt was made to limit this study to "... the 
purest examples of... outwardly propagating Alfv•n 
waves occur[ring] in high-velocity solar wind streams 
and on their trailing edges..." as did Betchef a•d Davis 
[1971, p. 3534] or to exclude disturbance regions such 
as coronal mass ejections or shocked plasma. We do 
attempt to eliminate periods of non-stationary behav- 
ior that might lead to improperly computed spectra, 
and intervals with power spectra that demonstrate sig- 
nificant upstream wave activity (due to apparent mag- 
netic connection to the Earth's bow shock) are also re- 
jected. Some spectra computed were rejected because 
no break in the spectrum was visible below the Nyquist 
frequency. Only periods that result in power law iner- 
tial range spectra are kept; power law dissipation range 
spectra were virtually always seen when a distinct spec- 
tral break was observed, and it was generally a poorly 
determined inertial range spectrum that led to the re- 
jection of some candidate intervals in this study. This 
study makes no claim of applicability outside this limi- 
tation. 

The 33 intervals used here span a wide range of basic 
plasma parameters: 

333 < Vsw < 692 km s -• 
3.1 <_ <B) _< 28.5 nT 

9-10 •_ OBvsw _• 87.10 
0.034 _•/Sp _• 2.75 

18.5 •_ v•t •_ 110.2 km s -x 
2.3 _• r¾ _• 49.5 cm -a 

2.24 x 104 _• T• _• 4.09 x 105 K, 
which are solar wind speed, magnetic field strength, 
field-to-flow angle, proton plasma/5, Alfv•n speed, pro- 
ton density, and proton temperature, respectively. 

The cross correlation between magnetic field and so- 
lar wind velocity fluctuations, 

where 5v A - 5B/x/pon•rn•, was computed using 92 s 
data. The cross correlation crz•v differs from the cross 
helicity but is similarly constrained to be -1 •_ •rz•v •_ 
+ 1. It provides an indication of the relative percentage 
of sunward and antisunward propagating Alfv•n waves 
in the inertial range. Seven of the 33 periods studied 
showed a dominance of sunward propagating waves with 
three of these seven having [•rBv[ •_ 0.25. 

Figure 1 shows the trace of the power spectral density 
matrix for hour 1300 on day 30 of 1995, which is typi- 

cal in most regards of the events used here. The high- 
frequency end of the inertial range spectrum is shown 
at spacecraft frame frequencies v,c < 0.44 H•.. The in- 
ertial range terminates in a spectral break to a steeper 
spectral index. This spectral break marks the onset of 
the dissipation range at v,c > 0.44 Hz. We return to 
Figure 1 below in sections 2.1 and 2.2. 
2.1. Method 

We used the following algorithm to analyze each data 
interval: 

1. Eliminate "flyers" and bad points. Any measure- 
ment that is more than 3.5cr from the mean in any com- 
ponent is removed. Typically, 1% of the data set (,-,400 
points out of 40,000) are removed in this way. The gaps 
so created are linearly interpolated. 

2. Prewhiten the data with a first-order difference 
filter to reduce the influence of leakage when computing 
the spectra. 

3. Compute the power spectra using the correlation 
matrix method of Btackrna• a•d Tuke•l [1958]. A max- 
imum lag of 10% of the length of the data set results in 
20 degrees of freedom for the spectral estimates. The re- 
suiting spectra are then postdarkened to correct for the 
earlier prewhitening [Che•, 1989; Bieber et at., 1993]. 

4. Fit power laws to inertial and dissipation range 
spectra using a least squares fit. We omit frequencies 
close to the apparent spectral breakpoint when fitting 
the two spectral ranges. Figure 1 is typical in most re- 
spects of the spectra considered here, except in that it 
does not show sharp peaks at harmonics of the space- 
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Figure 1. Typical interplanetary power spectrum 
showing the inertial and dissipation ranges. (a) Trace 
of the spectral matrix with a break at .-.0.4 Hz where 
the dissipation range sets in. (b) The corresponding 
magnetic hellcity spectrum. The date and time of the 
data used are given. 

Magnetic energy spectrum (a) and magnetic
helicity (b) from Leamon et al. [1998].

Alfvénic inertial range
transitions into
something else at the
spectral break

Proposed to be
kinetic Alfvén waves,
magnetosonic
whistler waves, ion
cyclotron waves, or
current sheets



More Recent Energy Spectra

Figure 1 shows the magnetic field components measured
by FGM. Note the rotations of By coincident with a mini-
mum in the magnetic field magnitude, indicating possible
multiple current sheet crossings as the spacecraft move
from quiet solar wind (!t1 in Fig. 1) toward the bow shock.
Figure 2 shows the power spectra of the magnetic field data
from FGM and STAFF-SC, decomposed into the parallel
and the perpendicular directions with respect to the mean
IMF (defined by averaging over the time interval of Fig. 1,
see [19] and the references therein). These spectra are
calculated using a windowed Fourier transform, where a
cos3 window (having 10% width of the whole interval) is
slid to span the time series containing 4! 106 samples.
The spectra shown are the result of averaging all the
windows.

Figure 2 illustrates the good matching between the
STAFF-SC and the FGM spectra at frequencies around
1.5 Hz. However, above f " 2:5 Hz, the power in the
physical signal falls below the noise floor of the instru-
ment, so we use STAFF-SC data to analyze frequencies
above f " 2:5 Hz. Here, we merge the low frequency
FGM data with the STAFF-SC data at f ¼ 1:5 Hz.
Figure 2 shows a spectral breakpoint at f$ 0:4 Hz where
the scaling changes from a Kolmogorov spectrum f%1:62 to
f%2:5. Similar breakpoints and steep spectra have been
reported previously [2–5], but mostly attributed to energy
dissipation [2,4].

Figure 2 shows, for the first time, clear evidence that the
magnetic energy continues cascading for about two deca-
des higher in spacecraft frequency and smaller spatial
scales. Furthermore, it shows the first evidence of a second
breakpoint at f$ 35 Hz, followed by a steeper spectrum
of f%3:9. To understand the origin of these breakpoints, we

calculated the characteristic scales of the plasma, namely,
the proton and electron gyroscales and inertial lengths
defined as !p;e ¼ Vthp;e=!cp;e, "p;e ¼ VAp;e

=!cp;e, where

Vth and VA are the thermal and the Alfvén velocities, and
!cp;e are the proton and electron gyrofrequencies. Using

the Taylor frozen-in-flow hypothesis (!$ kv), these
scales are Doppler-shifted and represented in Fig. 2. The
Doppler-shifted proton and electron gyroscales fit better
with the observed breakpoints than do the proton and
electron gyrofrequencies (as has been suggested [2,3]). In
particular, the ratio of the two frequencies 35=0:4$ 90 is

very close to the ratio !p=!e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mpTp=meTe

q
$ 95.

The new breakpoint occurs at the electron gyroscale !e,
which is very close to "e (because #e $ 1). This can be
seen clearly on Fig. 3, which shows the high frequency part
of two spectra calculated from the subintervals!t1 and!t2
of Fig. 1 which have different levels of turbulence. Both
spectra show similar properties to those of Fig. 2. The
slight difference in the scaling, f%2:5 and f%2:3, is likely
to be due to the discontinuities observed on Fig. 1 and were
included in computing the spectra of Fig. 2.
To investigate the nature of the small scale turbulence

(i.e., above f!p
), we computed the spectrum of the electric

field component Ey (shown in Fig. 4). Below f!p
the

spectrum of Ey shows a high correlation with the spectrum
of Bz, and both follow a Kolmogorov scaling. For frequen-
cies around f!p

, the Ey spectrum steepens slightly up to

f$ 1:5 Hz, where it becomes essentially flat. A fit of the
spectrum in the interval f$ ½1:5; 15' Hz shows a power

FIG. 2 (color online). The parallel (black) and perpendicular
(red) magnetic spectra of FGM data (f < 33 Hz) and STAFF-SC
data (respectively, light line; green online and dark line; blue
online); 1:5< f < 225 Hz). The STAFF-SC noise level as mea-
sured in the laboratory and in-flight are plotted as dashed and
dotted lines, respectively. The straight black lines are power law
fits to the spectra. The arrows indicate characteristic frequencies
defined in the text.

FIG. 1 (color online). FGM magnetic field data measured by
Cluster 2 in the solar wind plotted in the Geocentric Solar
Ecliptic (GSE) reference frame. The vertical dotted lines delimit
two subintervals of time discussed in the text.
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Magnetic energy spectrum from
Sahraoui et al. [2009].

The Astrophysical Journal, 760:121 (6pp), 2012 December 1 Alexandrova et al.

Figure 1. Frequency spectra with a signal-to-noise ratio greater than 3 measured
by Cluster-1/STAFF in the free solar wind (for 27 intervals randomly chosen
among 100). The dashed line shows the instrument noise level. The vertical
dotted line corresponds to f = 3 Hz. The legend indicates the variations of
some solar wind parameters for the studied data set of 100 spectra: speed V,
magnetic field B, temperature ratio, and the ion and electron plasma β.

Previous authors (Sahraoui et al. 2010) have used a double
power-law model with a break to fit the observations in the
electron inertial and dissipation ranges. We have applied this
model as well to our data, and we find that the first power-law
exponent is consistent with the previous studies (Alexandrova
et al. 2009; Chen et al. 2010) while the second exponent varies a
lot. Despite the fact that the double power-law model has more
free parameters than the exponential model used here, we find
that it describes only 30% of the observed spectra and that the
associated break scale does not present any clear correlation
with an electron characteristic scale.

2. OBSERVATIONS

For our statistical study, we select homogeneous intervals
of 10 minutes (long enough to study kinetic scales) within the
five years interval (2001–2005) of Cluster. We eliminate time
intervals during which Cluster is magnetically connected to the
bow shock by using electrostatic wave spectrograms, which
show clearly waves typical of the electron foreshock (Etcheto &
Faucheux 1984; Lacombe et al. 1985), and by using the shock
model described by Filbert & Kellogg (1979). For small angles
ΘBV between the interplanetary magnetic field B and the solar
wind velocity V, Cluster is connected to the shock. Thus, our
data set only contains intervals for which the angle ΘBV > 60◦.
If the turbulent fluctuations have a phase speed Vφ " V , Cluster
detects by Doppler shift the fluctuations with k‖V. As B and
V are quasi-perpendicular, Cluster measures fluctuations with
k ⊥ B. We apply the Taylor hypothesis to get the wavenumber
from the frequency, k⊥ = 2πf/V . However, about ∼10% of the
pre-selected intervals show the presence of right-hand polarized
whistlers in quasi-parallel propagation. For these waves the
Taylor hypothesis is not applicable because Vφ > V . We discard
these intervals in the present study. This data selection process
gives us 100 intervals. Within this statistical sample, the plasma
conditions vary as usually in the solar wind in fast and slow
streams at 1 AU (see the legend of Figure 1).

Figure 1 shows the total power spectral density (PSD) of
magnetic fluctuations, for 27 intervals randomly chosen among
100, as a function of frequency in the spacecraft frame P (f ),
as measured by STAFF with the Search Coil sensors (SC)
at f ∈ [0.5, 9] Hz and with the Spectrum Analyser (SA) at
f � 8 Hz. The spectra are analyzed only for the frequencies

Figure 2. Fit of the most intense spectrum of Figure 1 with the exp model. The
spectrum was measured by Cluster-1/STAFF on 2004 January 22. Green crosses
represent the SC measurements, red stars show the raw SA measurements
without correction of the first three underestimated points, visible here around
0.1 km−1. Diamonds indicate the STAFF-SA noise level. The blue arrows
indicate inverse ion and electron Larmor radii, and the black ones correspond
to the inertial lengths. The solid line gives the exp model Ak−8/3 exp(−kρe).
(A color version of this figure is available in the online journal.)

where the signal-to-noise ratio (S/N) is larger than 3. The
spectral parts below this threshold are not shown to avoid any
erroneous interpretation. As one can see from Figure 1, this
instrumental noise limit allows us to use data up to 30–400 Hz,
depending on the turbulence intensity (i.e., for the most intense
spectrum, we have valid observations up to 400 Hz). The
analyzed range of frequencies corresponds to f ∈]fci, fce].

A poor calibration of the first three frequencies of SA (at 8,
11, and 14 Hz; Y. de Conchy & N. Cornilleau 2011, private
communication) was corrected by an interpolation of these
points between the highest SC frequency and the 4th point of
the SA spectra. The linear interpolation between log10 P (f ) and
log10 f is possible as far as the spectra follow a power law at
these frequencies. An example of a raw spectrum without the
correction can be found in Figure 2.

3. ALGEBRAIC DESCRIPTION OF TURBULENT
SPECTRA AT SCALES SMALLER THAN ρi AND λi

3.1. Exponential Model

Here we propose a model to describe the whole turbulent
spectrum at scales smaller than ρi and λi and down to a fraction
of the electron scales with the smaller possible number of
parameters, namely, an exponential with a characteristic scale
&d and with a power-law pre-factor

E(k⊥) = Ak−α
⊥ exp(−k⊥&d ). (1)

This exp model has three free parameters: the amplitude A, the
spectral index α, and the cutoff or “dissipation” scale &d .

We start by fitting the model (1) to the 100 observed
spectra (with an S/N > 3, as explained in Section 2) for k⊥
corresponding to f > 3 Hz (see vertical dotted line in Figure 1),
assuming that the three parameters have independent variations.

Figure 2 gives the fit with the most intense spectrum of
Figure 1 as a function of the wavenumber P (k⊥) = P (f )V/2π ,
which is determined using the Taylor hypothesis and the energy
conservation law

∫
P (k⊥)dk⊥ =

∫
P (f )df . Green crosses

show the Morlet wavelet spectrum (Torrence & Compo 1998)

2

Average of 100 magnetic energy spectra
from Alexandrova et al. [2012].



Evidence of KAWs (Support for Gyrokinetics)

To determine unambiguously the nature of the turbu-
lence and its anisotropies, we apply the k-filtering
technique to each frequency in the interval ½fmin; fmax" #
½0:04; 2" Hz in Fig. 2. The limit fmax is imposed by the
need to limit spatial aliasing, while fmin is fixed so that the
wave vectors are determined with an accuracy better than
15% [21]. By estimating the full wave vector(s) for each
frequency fsc, one can transform the quantity Pð!sc;kÞ
into Pð!plas;kÞ after correcting for the Doppler shift

!plas ¼ !sc ' k:Vf. The quantity Pð!plas;kÞ can then be

used to obtain both the dispersion relation!plas ¼ !plasðkÞ
and the integrated spectra P(ðkÞ ¼ R

Pð!plas;kÞd!plas.

Both quantities can be compared directly to theoretical
predictions so as to determine unambiguously the actual
nature of the turbulence.

Figure 4 shows clearly that the wave vectors are highly
oblique with respect to B0, h!kBi# 88). The slight de-
parture from this value at low frequency is due to a larger
uncertainty (# 15)) at large scales [21]. This result proves
that the turbulence is strongly anisotropic (i.e., kk * k?).
The wave vectors form moderate angles with the SW flow,
h!kVf

i# 40) (results from the third time interval are

slightly different and show a quasialignment with the
flow). The finite angles !kVf

and their relative variation

with frequency might lead to significant distortions in the k
spectra if they were computed by using the Taylor frozen-
in-flow approximation [4,29].
Figure 5 displays the observed dispersion relations com-

pared to linear solutions of the Maxwell-Vlasov equations,
calculated by using the observed plasma parameters of
Table I. In addition to the uncertainty in the wave vector
determination [18,21], we used 10% uncertainty on the
flow to estimate the error bars plotted in this figure [16].
We can see clearly that the turbulence cascades following
the KAW mode in the scale range ½0:04; 2"k?!i, covering
both the transition and the Kolmogorov inertial ranges,
where the proton Landau damping dominates over the
electron Landau and proton cyclotron dampings. The ob-
served dispersion relations lie in the diagram far from the
curve of the fast magnetosonic mode. We recall that, in a
hot plasma (here "i # 1:7) and highly oblique propaga-
tion, the fast mode is modified by the gyroresonances,
splitting into the different branches of Bernstein modes
[30]. Whether the turbulence remains quasistationary (i.e.,
! * !ci) for scales k?!i + 1, as suggested in Ref. [7], or
develops high frequency fluctuations (!#!ci), requires
probing to much smaller scales than those studied here.
This, unfortunately, cannot be done with the available data
(this regime should be observable by, e.g., the magneto-
spheric multiscale mission). An immediate consequence of
these results is that the damping of turbulence and heating
of the protons will arise most likely via Landau damping
and not by cyclotron resonances [25,26,31].
Figure 6 shows the k spectra integrated over the tem-

poral frequencies !plas [5,18] (see [21] for details). The

spectra show that the turbulence cascades perpendicularly

FIG. 3 (color online). Bz spectra measured by FGM (blue
curve) and STAFF-SC (green curve) in the despun inverted
system of reference from 06:15 to 06:25 (flattening for f ,
3 Hz is due to hitting the noise floor of the FGM). The black
dotted line is the in-flight sensitivity floor of STAFF-SC.

FIG. 4 (color online). Angles!kB (diamonds) and!kVf
(dots)

with related error bars as estimated by using the k-filtering
technique.

FIG. 5 (color online). Observed dispersion relations (dots),
with estimated error bars, compared to linear solutions of the
Maxwell-Vlasov equations for three observed angles !kB (the
dashed lines are the damping rates). The black curves (Lp;e) are
the proton and electron Landau resonances ! ¼ kkVthi;e , and the

curves Cp are the proton cyclotron resonance ! ¼ !ci ' kkVthi
(the electron cyclotron resonance is also plotted, but it lies
expectedly out of the plotted frequency range).
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In situ solar wind dispersion relation
from Sahraoui et al. [2010].
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technique to each frequency in the interval ½fmin; fmax" #
½0:04; 2" Hz in Fig. 2. The limit fmax is imposed by the
need to limit spatial aliasing, while fmin is fixed so that the
wave vectors are determined with an accuracy better than
15% [21]. By estimating the full wave vector(s) for each
frequency fsc, one can transform the quantity Pð!sc;kÞ
into Pð!plas;kÞ after correcting for the Doppler shift

!plas ¼ !sc ' k:Vf. The quantity Pð!plas;kÞ can then be

used to obtain both the dispersion relation!plas ¼ !plasðkÞ
and the integrated spectra P(ðkÞ ¼ R

Pð!plas;kÞd!plas.
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predictions so as to determine unambiguously the actual
nature of the turbulence.

Figure 4 shows clearly that the wave vectors are highly
oblique with respect to B0, h!kBi# 88). The slight de-
parture from this value at low frequency is due to a larger
uncertainty (# 15)) at large scales [21]. This result proves
that the turbulence is strongly anisotropic (i.e., kk * k?).
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h!kVf
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with frequency might lead to significant distortions in the k
spectra if they were computed by using the Taylor frozen-
in-flow approximation [4,29].
Figure 5 displays the observed dispersion relations com-

pared to linear solutions of the Maxwell-Vlasov equations,
calculated by using the observed plasma parameters of
Table I. In addition to the uncertainty in the wave vector
determination [18,21], we used 10% uncertainty on the
flow to estimate the error bars plotted in this figure [16].
We can see clearly that the turbulence cascades following
the KAW mode in the scale range ½0:04; 2"k?!i, covering
both the transition and the Kolmogorov inertial ranges,
where the proton Landau damping dominates over the
electron Landau and proton cyclotron dampings. The ob-
served dispersion relations lie in the diagram far from the
curve of the fast magnetosonic mode. We recall that, in a
hot plasma (here "i # 1:7) and highly oblique propaga-
tion, the fast mode is modified by the gyroresonances,
splitting into the different branches of Bernstein modes
[30]. Whether the turbulence remains quasistationary (i.e.,
! * !ci) for scales k?!i + 1, as suggested in Ref. [7], or
develops high frequency fluctuations (!#!ci), requires
probing to much smaller scales than those studied here.
This, unfortunately, cannot be done with the available data
(this regime should be observable by, e.g., the magneto-
spheric multiscale mission). An immediate consequence of
these results is that the damping of turbulence and heating
of the protons will arise most likely via Landau damping
and not by cyclotron resonances [25,26,31].
Figure 6 shows the k spectra integrated over the tem-

poral frequencies !plas [5,18] (see [21] for details). The

spectra show that the turbulence cascades perpendicularly

FIG. 3 (color online). Bz spectra measured by FGM (blue
curve) and STAFF-SC (green curve) in the despun inverted
system of reference from 06:15 to 06:25 (flattening for f ,
3 Hz is due to hitting the noise floor of the FGM). The black
dotted line is the in-flight sensitivity floor of STAFF-SC.
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(dots)

with related error bars as estimated by using the k-filtering
technique.

FIG. 5 (color online). Observed dispersion relations (dots),
with estimated error bars, compared to linear solutions of the
Maxwell-Vlasov equations for three observed angles !kB (the
dashed lines are the damping rates). The black curves (Lp;e) are
the proton and electron Landau resonances ! ¼ kkVthi;e , and the

curves Cp are the proton cyclotron resonance ! ¼ !ci ' kkVthi
(the electron cyclotron resonance is also plotted, but it lies
expectedly out of the plotted frequency range).
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Angle between k and B Sahraoui et al.
[2010].

Also observed by Roberts et al. [2013] with two additional intervals.
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the distribution of points, with a histogram of βi overplotted.
The middle panel is the joint histogram normalized to number
of βi points in each βi bin. This shows clearly that C(δn, δB‖)
is near −1 over the entire interval, increasing slightly with βi

to #−0.7 at βi = 10. In the bottom panel, the cumulative
distribution shows that fewer than 10% of the intervals have
C(δn, δB‖) > 0.

3. SYNTHETIC DATA

A cubic synthetic plasma volume spanning scales 3×10−3 �
kρi � 4.8×10−2 is constructed using a 323 grid. A spectrum of
linear waves, with 90% of the energy in Alfvén waves and the
remaining 10% in a mixture of kinetic fast and slow waves,
consistent with the observed k−5/3 one-dimensional energy
spectrum of the magnetic field fluctuations |δB|, is created in
the volume using the linear eigenfunctions for these modes from
the Vlasov–Maxwell linear dispersion relation (Quataert 1998;
Howes et al. 2006). See Klein et al. (2012) for more details
on the quasilinear premise of modeling plasma turbulence as a
superposition of linear eigenfunctions, and note that alternative
models for plasma turbulence have been suggested (Dmitruk &
Matthaeus 2009; Parashar et al. 2010). A fully ionized proton
and electron plasma is assumed, with isotropic Maxwellian
velocity distributions, a realistic mass ratio mi/me = 1836,
equal ion and electron temperatures Ti = Te, and non-relativistic
conditions vti/c = 10−4. Taking the MHD limit kρi % 1,
under these conditions the normalized linear Vlasov–Maxwell
eigenfrequency depends on only two parameters, ω/(kvA) =
ω(βi , θ ), the ion plasma beta βi and the angle θ between
the wavevector and the mean magnetic field (Klein et al.
2012). Once βi has been chosen, one needs only to specify
the distribution of energy in wavevector space. Compressible
MHD turbulence simulations generate an isotropic distribution
of fast waves and critically balanced distributions of Alfvén and
slow waves (Cho & Lazarian 2003). Therefore, we initialize the
fast wave energy isotropically, while the Alfvén and slow wave
energy mimics a critically balanced distribution by setting all
modes with k‖ > k

1/3
0 k

2/3
⊥ to zero, where k0 corresponds to the

scale of the plasma volume.
Time series of density and parallel magnetic field fluctuations

are constructed by sampling the synthetic data at a probe moving
through the volume at an oblique angle with respect to the mean
field (tests have confirmed insensitivity to the choice of angle).
We then compute the cross-correlation C(δn, δB‖) as above.
Figure 4 shows C(δn, δB‖) for several values of the ratio of fast
wave energy to total compressible energy F versus ion plasma βi .
Peak histogram values (and FWHM error bars) are also shown.
The solar wind data are in striking agreement with the synthetic
data F = 0.00 curve. Note that if MHD eigenfunctions are used
instead of the kinetic eigenfunctions, the synthetic C(δn, δB‖)
curve does not fit the measured data (Klein et al. 2012).

To test the hypothesis that the observations may be simply
explained by a mixture of Alfvénic fluctuations and PBSs, we
have computed C(δn, δB‖) for the case where 90% of energy
is in a critically balanced spectrum of Alfvén waves and 10%
of the energy is in PBSs (red dashed). In this case, we find
C(δn, δB‖) = −1 for all values of βi , in disagreement with the
measured behavior.

4. DISCUSSION

Figure 4 shows that the observed correlation is consistent with
a statistically negligible kinetic fast wave energy contribution
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Figure 4. Comparison of measured values of the C(δn, δB‖) cross-correlation
(black dots with FWHM error bars) to the synthetic data predictions for the
ratio of kinetic fast wave to total compressible energy F. Best agreement is with
F = 0.00, indicating that the compressible component of solar wind turbulence
is almost entirely in the kinetic slow mode. A model with only Alfvén waves
and PBSs (red dashed) predicts C(δn, δB‖) = −1, which fails to reproduce the
measured βi dependence.
(A color version of this figure is available in the online journal.)

for the large sample used in this study. Note, however, that a
very small fraction of the data intervals have a positive cross-
correlation (see Figure 2), possibly indicating the presence
of kinetic fast waves in these intervals. Another significant
finding is that a model containing only Alfvénic turbulence and
PBSs cannot explain the observations, as has been previously
suggested in the literature.

Previous analyses have generally dismissed the possibility
of kinetic slow waves because, in an isotropic Maxwellian
plasma with warm ions, the collisionless damping via free
streaming along the magnetic field is strong (Barnes 1966).
However, in the limit k⊥ ' k‖ applicable to a critically balanced
power distribution, the damping rate of the slow waves is
proportional to the parallel component of the wavevector, γ ∝
k‖ (Howes et al. 2006). For exactly perpendicular wavevectors,
the damping rate drops to zero—this perpendicular limit of the
slow wave corresponds to an undamped, non-propagating PBS.
In compressible, strong MHD turbulence, it has been shown
that the slow modes are cascaded passively by the Alfvénic
turbulence (Maron & Goldreich 2001; Schekochihin et al. 2009),
so the energy cascade rate is related not to the slow wave
frequency, but to the Alfvén wave frequency. Therefore, the
more nearly perpendicular slow waves (possibly with k‖ well
below critical balance, k‖ % k

1/3
0 k

2/3
⊥ ) may be cascaded to

smaller scales on the timescale of the Alfvénic turbulence, while
the collisionless damping of these modes remains weak.

We offer the following physical model of the compressible
fluctuations in solar wind turbulence. At inertial range scales
kρi � 0.1, the density and parallel magnetic field fluctuations
arise mainly from the kinetic counterparts of the fast and/or slow
MHD waves. The measured C(δn, δB‖) cross-correlation at
these scales strongly suggests that the compressible fluctuations
are statistically dominated by kinetic slow mode fluctuations,
and the distribution of power in wavevector space of these slow
modes mimics the critically balanced distribution expected of
Alfvénic fluctuations (Klein et al. 2012). These kinetic slow
wave fluctuations may be cascaded as passive fluctuations to
smaller scales by the Alfvénic turbulence (Maron & Goldreich
2001; Schekochihin et al. 2009), and so are predicted to exist

3

From Howes et al. [2012].



Particle Distributions

Outer-scale ∼ 105km,
λmfp ∼ 108km,
ρi ∼ 100km

Core (Maxwellian)
distribution represents 95%
of plasma

Most probable
T⊥/T� = 0.89

independent measurements of solar wind plasma and mag-
netic field. Proton density np, velocity ~vsw, and tempera-
ture are measured by the Faraday cup instrument of SWE
(solar wind experiment) [13]. Both the parallel proton
temperature Tk and perpendicular temperature T? are
computed by comparison with the average magnetic field

direction. The magnetic field investigation (MFI) is used to
measure the solar wind magnetic field [14] at either 22
vectors/s or 11 vectors/s depending on telemetry mode and
averaged to 3 s intervals; we denote this 3 s average data as
~B. The vector rms fluctuation field during the 3 s average

interval is denoted as ! ~B. Each fluctuation field mea-
surement ! ~B is rotated into a coordinate system defined

by the average field direction B̂ so that we have both the
compressive component !Bk and the shear component

!B?½¼ ð!B2
?;1 þ !B2

?;2Þ1=2&. We then define the magnetic

compressibility as !B2
k=ð!B2

k þ !B2
?Þ [15]. The magnetic

field is an rms measurement over the bandwidth !f ¼
ð0:3' 5:5Þ Hz, or ð0:3' 11Þ Hz in high TM mode.

Since the magnetic fluctuation spectrum falls as f'5=3 (or
steeper) at these frequencies, the power in this bandwidth is
dominated by the lowest measured frequency f0 ( 0:3 Hz.
Since it is believed that k? ) kk [16], the natural frequen-
cies of the turbulence are all much lower than the sample
frequency (i.e., f0 ) fci), and Taylor’s hypothesis applies
(! ¼ kvsw). Therefore, the measured power at f0 (
0:3 Hz corresponds to power at wave number k"i (
ðf0=fciÞðvth=vswÞ. The distribution (in our data) of this
parameter is sharply peaked at k"i ( 0:56 with a half-
width of 0.32; therefore, these measurements correspond
to magnetic fluctuation power at k"i ( 0:56* 0:32.
The upper panel of Fig. 1 shows the distribution of

measurements of proton temperature anisotropy (T?=Tk)
against parallel proton plasma beta #k; this distribution
shows the striking signatures of the regulation of the
anisotropy by instabilities. These proton measurements
are a subset of those used by Kasper et al. [10]; here, we
include only proton measurements at times when there also

exist good measurements of ! ~B. Dotted lines (on all four
panels) show the instability thresholds for the mirror in-
stability at T?=Tk > 1 [Eq. (1) with ða; b;#0Þ ¼
ð0:77; 0:76;'0:016Þ] and the oblique firehose instability
at T?=Tk < 1 [Eq. (1) with ða; b;#0Þ ¼ ð'1:4; 1:0;
'0:11Þ] [11]. The second panel of Fig. 1 shows the average
measured amplitude of the magnetic fluctuations j! ~Bj=j ~Bj
in the space of (#k, T?=Tk), as in the upper panel. A
general trend of enhanced fluctuations with larger #k is
clearly visible. Furthermore, the fluctuation amplitude is
enhanced along both the mirror/IC (for T?=Tk > 1) and
oblique firehose (T?=Tk < 1) thresholds. A simple esti-
mate of the pitch-angle scattering rate $ due to Alfvénic
fluctuations gives $ ¼ 1=T?dT?=dt+!chð!B=BÞ2i. If
the first adiabatic invariant is conserved, then the plasma
is driven towards the instability thresholds at a rate com-
parable to the solar wind expansion rate vsw=R, where R is
1 AU. The condition that the pitch-angle scattering be
fast enough to constrain the anisotropy then requires

h!B=Bi * ðvsw=!cRÞ1=2 + 10'3, which is the case near
the thresholds and at high # in the second panel of Fig. 1.
This is the principal result of this study.

4855

0.0005

1

0.2

0.1
10

0.1

0.7

δ B/B0

magnetic
compressibility

collisional
age

FIG. 1 (color). The distribution of proton temperature anisot-
ropy (T?=Tk) measurements with respect to the parallel plasma
beta #k (upper panel) is constrained by the oblique proton
firehose instability threshold (lower dotted line) and the mirror
instability threshold (upper dotted line). In the second panel, the
magnetic fluctuation amplitude j!Bj=jBj is shown to be en-
hanced along the instability thresholds and overall at high #k
where the thresholds converge. The third panel shows magnetic
compressibility !B2

k=ð!B2
k þ !B2

?Þ, which is enhanced at high

#k (>1) along the mirror threshold, as expected for the mirror
instability. The lower panel shows the ‘‘collisional age,’’ which
is largest around T?=Tk ( 1 suggesting that isotropy results
largely from Coulomb collisions. Anisotropic plasma is rela-
tively collisionless.
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From Bale et al. [2009].



Turbulence at Kinetic Scales

Anisotropic cascade of MHD
Alfvén waves transitions to a
cascade of kinetic Alfvén
waves at the ion Larmor
radius, ρi.

Dissipation begins at ion
kinetic scales in the form
wave-particle interactions
(Landau, transit-time,
cyclotron, ...).

Current sheets also form at
ion scales and may be
responsible for dissipation.

Which mechanism is
dominant in weakly
collisional kinetic plasmas?

Dynamics of  Turbulent Fluctuations

Kinetic Alfven
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 (Howes et al. 2011)

Alfven and Slow cascades 
merge at k⊥ρi ∼ 1

(Schekochihin et al. 2009)

Dissipation Range:
• Kinetic Alfven Waves

(Leamon et al. 1998, 1999; Quataert & 

Gruzinov 1999; Howes et al. 2008a,b,

2011; Schekochihin et al. 2009)

Nonlinear wave-wave interactions 
well described by fluid theory

(Howes and Nielson 2011)
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Turbulence at Kinetic Scales

Anisotropic cascade of MHD
Alfvén waves transitions to a
cascade of kinetic Alfvén
waves at the ion Larmor
radius, ρi.

Dissipation begins at ion
kinetic scales in the form
wave-particle interactions
(Landau, transit-time,
cyclotron, ...).

Current sheets also form at
ion scales and may be
responsible for dissipation.

Which mechanism is
dominant in weakly
collisional kinetic plasmas?

Dissipation of  Turbulent Fluctuations

(Howes et al. 2011; Schekochihin et al. 

2009; Sahraoui 2010)

Ion Landau Damping peaks 
  around k⊥ρi ∼ 1

Inertial Range:
•!Negligible damping of

Alfven wave cascade
(Schekochihin et al. 2009)

Weakening Nonlinear
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• Electron Landau Damping

increases for 

(Leamon et al. 1999; Howes et al. 2008, 

2011a,b; Schekochihin et al. 2009)

k⊥ρi � 1

Dissipation weakens nonlinear cascade in
dissipation range, steepening spectrum 
somewhat beyond (Howes et al. 2011)∝ k−7/3

⊥
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AstroGK

Based on GS2, a mature fusion gyrokinetics code

Eulerian initial-value code with periodic boundary conditions in slab
geometry

Evolves 5D phase space for each species

Fully non-linear, with number, momentum, and energy conserving
collision operator

Realistic mass ratio, βp = 1, Tp = Te, weakly collisional
(νs � ωmin)

Driven at outer-scale with Langevin antenna current coupled to
A�—injects Alfvén like waves at outer-scale



Why Antenna Driven?

Schematic diagram of the distribution of energy
in the k⊥ − k� plane, highlighting the

turbulence driving scale, typical simulation
domain, and domain scale driving. From

TenBarge et al. [2013b].

Solar wind and
astrophysical plasmas
tend to be driven by
external sources

Finite and small
simulation domain
requires energy input
consistent with
cascade from larger
scales

Allows specification
of central amplitude
and frequency as well
as decorrelation rate
for chosen k vector



Why Langevin?
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Example of a single oscillating Langevin
antenna with A0 = 100,

ω0 = 2π rad/s, and γ0 = −1 rad/s.
From TenBarge et al. [2013b].
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Example of a single delta-correlated
white noise antenna with A0 = 100.

From TenBarge et al. [2013b].



Ion Scale Spectra

Energy spectra from AstroGK simulation from
Howes et al. [2011b].

Ion scale simulation,
k⊥ρi ∈ [1, 42] ≡
k⊥ρe ∈ [0.02, 1]

Spectrum agrees well
with solar wind
observations, e.g.,
Kiyani et al. [2009],
Alexandrova et al.
[2009], Sahraoui
et al. [2010]

Insufficient resolution
to determine
behaviour at electron
scales



Electron Scale Spectra
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Weakened Cascade
AstroGK

One dimensional magnetic energy spectra from
AstroGK averaged over three turn-around times
(solid black), weakened cascade model (blue
dash-dotted), and the empirical form from
Alexandrova et al. [2012] (red dotted).

Electron scale
simulation,
k⊥ρi ∈ [5, 105] ≡
k⊥ρe ∈ [0.12, 2.5]

Average spectrum
agrees well with the
exponential observed
by Alexandrova et al.
[2012].

AstroGK spectrum
also reproduced by
weakened cascade
model [Howes et al.,
2011a].



Composite Spectrum
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Composite spectrum of four AstroGK simulations with similar parameters spanning
k⊥ρi ∈ [0.05, 105]. From TenBarge et al. [2012].



Anisotropy at Kinetic Scales

Alfvénic turbulence is observed to
obey two related properties

Critical balance:
χ = ωnl

ωl
� 1

Wavevector anisotropy:
k� ∝ kξ⊥

The linear KAW frequency follows
the general scaling with wavevec-
tor ωl ∝ k�k⊥. The frequency will

therefore scale as ωl ∝ kξ+1
⊥ .

Schematic diagram of the energy
distribution in the k⊥ − ω plane
assuming critical balance holds.
FromTenBarge and Howes [2012]



Evidence of Critical Balance
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Contour plot of EB⊥ (ω, k⊥)/EB⊥ (0, k⊥) from an AstroGK simulation. Predictions
for the envelope of the turbulent power are given for ξ = 0 (dot-dashed), ξ = 1/3
(dashed), ξ = 1 (dotted), and for the spectral anisotropy predicted by the weakened
cascade model (solid). From TenBarge et al. [2013a].



Current Sheet Formation

First wave-driven,
3D, kinetic study of
current sheet
evolution in turbulent
plasma

Current sheets form
and persist for
� 0.1t0

Strongest sheets
correspond to field
rotations approaching
180◦

Exist down to
electron scales, below
which no structure
exists
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Parallel current density, jz , for a perpendicular
plane, with different band-pass filters applied:
(a) unfiltered, (b) 5 ≤ k⊥ρi < 21,
(c) 21 ≤ k⊥ρi < 84, and (d) k⊥ρi ≥ 84.
Contours of the parallel vector potential Az are
shown in (a).



Electron Collisional Heating Rate
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Filling fraction is
computed as the
percentage of the
volume with current
density j > jmax/3.

EKAW = EB + EKE

is the total energy of
the turbulent
fluctuations in the
simulation.

Over six simulations:
�max(Corr(Q, jant))� =
0.52± 0.02
�max(Corr(Q,EKAW ))� =
0.78± 0.04
�max(Corr(Q,nfill))� =
0.91± 0.04



Heating by k

10
1

10
2

10
−4

10
−2

10
0

Q
e
(k

⊥
)

k⊥ρ i

k
⊥
ρ
e
=

1

k
⊥
ρ
i
=

1
0
5

 

 

Qe

Qwp = 2γEKAW(k⊥)
Qη = ηj 2(k⊥)

Total heating of the electrons from the
simulation (solid black), an estimate of the
electron heating based on linear wave-particle
damping (dotted blue), and the Ohmic heating
rate (dashed red).

Resistive heating rate,
ηj2, calculated using
Spitzer resistivity

Integrated, total
predicted electron
heating (dotted blue)
is within 4% of the
collisional heating
diagnosed in AstroGK
(solid black)—no free
parameters

Slight disagreement
by scale can be
explained by electron
entropy cascade



Discussion

x/ρ i

y
/
ρ
i

 

 

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

−40

−30

−20

−10

0

10

20

30

40

50

Current sheets form as a
natural consequence of
turbulence

They may be associated
with dissipation, but that
dissipation can take several
forms: reconnection,
resistive, or wave-particle.

Wave-particle damping
associated with current
sheets requires they have
parallel extent and
propagation, which is absent
in the majority of 2D studies
of reconnection in
turbulence.



PIC Reconnection Comparison

To better understand the limitations of gyrokinetics on a detailed
level, we have undertaken a direct comparison with PIC.

PIC should converge to gyrokinetics in the correct asymptotic
regime: δB � Bg and small drift velocity Uez � vte.

Parameters of the first set of simulations:
βi = 8πn0iT0i/B2

g = 0.01, mi/me = 1/25, Ti0/Te0 = 1,
Lx = Ly = 20πρi, a = 2ρi, nx = ny = 512,
δBpert = 0.02δBHarris.

Periodic domain requires simulating double Harris-like sheet
configuration.



Fully Kinetic PIC Simulations

L = de mi/me = 25 vthe/c = 0.125

Xmax = 15.7de nx = 256

Ymax = 31.4de ny = 512 βe = βi = 0.01

Run1

Run2

Run3

Bzo = 10Byo

Bzo = 20Byo

Bzo = 40Byo

βrx = 1

βrx = 4

βrx = 16

ωpe/Ωce = 8

ωpe/Ωce = 16

ωpe/Ωce = 32

Uez/vthe = 1

Uez/vthe = 0.5

Uez/vthe = 0.25

Consider 3 simulations that should approach GK orderings.  
These correspond to a progressively weaker current sheet

Use a single Force-Free Harris sheet

Hold
these 
Fixed!

Based on
reconnecting 
component

Peak electron
fluid drift



PIC Reconnection First Results
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PIC Comparison δne and δBz
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Summary

Gyrokinetics can be a useful tool for the space and
astrophysics communities

Reproduce spectra in qualitative and quantitative agreement
with solar wind data

First evidence of critically balanced anisotropic cascade in a
kinetic plasma

Current sheets form as a natural consequence of wave-driven
turbulence and correspond to locally enhanced heating rates

Heating in current sheets can be due to reconnection,
enhanced wave-particle interactions, or resistivity
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