The Heating & Acceleration of the Solar Wind

Eliot Quataert (UC Berkeley)

work led by Ben Chandran (UNH)

Overview

- Brief Background
- Solar Wind Heating by KAW Turbulence
 - 'stochastic heating' by low freq. fluctuations, not ion cyclotron heating
- Global Solar Wind Modeling

Empirical Constraints on Heating

- Heating \rightarrow acceleration of solar wind
- In situ: Fast vs Slow Wind
- Fast $T_{ion} \gtrsim T_p \gtrsim T_e \& T_{\perp,i} \gtrsim T_{\parallel,i}$
- Slow $T_e \gtrsim T_p$
- ~I-4 R_{\odot} : UVCS/SOHO constraints
- $T_{\perp,i} >> T_{\parallel,i}$ (e.g., O^{5+} , p)
- $T_i >> T_p \gtrsim T_e$; preferential minor ion htg Kohl et al. 1997. 1998; Cranmer et al. 1999

often interpreted as ion cyclotron resonant heating in bulk of solar wind

Heating by the Anisotropic Cascade Quataert 1998; Leamon et al. 1998; Quataert & Gruzinov 1999; Cranmer & van Ballegooijen 2003; Gary & Nishimura 2004

• Linear theory; if $\omega \preceq \Omega_i$

- no cyclotron resonance
- magnetic moment $\mu \propto T_{\perp}/B$ is conserved
- \rightarrow heating can only increase T_{||}
 - primarily e- htg for $\beta \leq$ few and p htg for $\beta \gtrsim$ few
- Strong Turbulence:
 - role of current sheets

Stochastic Ion Heating by Low-Frequency Turbulence

- E-field fluctuations at $\sim \rho$ can disrupt the smooth ion gyromotion, violating conservation of magnetic moment $\mu = (mv_{\perp}^2)/2B$. (e.g. McChesney et al 1987, Johnson & Cheng 2001, Chen, Lin, & White 2001)
- μ -conservation requires <u>both</u> $\omega \ll \Omega_p$ and $\delta v_\rho \ll v_\perp$

Stochastic heating is inherently self-limiting

Global Solar Wind Modeling

- 8 ID PDEs for p & e- fluid eqns solved in flux tube (no rotation)
 - flux tube w/ 'super-radial' expansion as in coronal holes
 - $T_{\perp} \& T_{\parallel}$ evol for protons w/ fluxes of both; e- isotropic
 - || p & e- htg from linear theory KAW damping; \perp stochastic p htg
 - e- heat flux; p \perp and || heat fluxes evolved w/ <v⁴f> = 0; Coulomb collisions
- Low Freq Alfven Waves Generated by Photospheric Convection e.g., Matthaeus et al. 1999; Cranmer & van Ballegooijen 2005

Global Solar Wind Modeling

- 8 ID PDEs for p & e- fluid eqns solved in flux tube (no rotation)
 - flux tube w/ 'super-radial' expansion as in coronal holes
 - $T_{\perp} \& T_{\parallel}$ evol for protons w/ fluxes of both; e- isotropic
 - || p & e- htg from linear theory KAW damping; \perp stochastic p htg
 - e- heat flux; p \perp and || heat fluxes evolved w/ <v⁴f> = 0; Coulomb collisions
- Low Freq Alfven Waves Generated by Photospheric Convection e.g., Matthaeus et al. 1999; Cranmer & van Ballegooijen 2005
- AW turbulence due to non-WKB reflection of outgoing waves

• wave kinetic eqn for wave energy density rms amplitude of ingoing/reflected AWs (solved for) Htg Rate $\sim E_{waves}$ energy mostly in 🖌 input correlation length outgoing AWs for waves ~108-9 cm

Density and Velocity Profiles

Temperature Profiles

Data: spectroscopic (corona) and in situ

Partitioning of Turbulent Htg Btw Q_e , $Q_{||p}$, and $Q_{\perp p}$

Electron Heating and Electron Heat Flux

Summary

- Alfvenic Turbulence: Htg in Extended Corona and Solar Wind
- Strong MHD Turbulence (Alfvenic)
 - ✓ Anisotropic Kolmogorov Turbulence
 - $\checkmark k_{\perp}\rho_{i} \sim I: Alfven Wave Cascade \rightarrow Kinetic Alfven Wave Cascade$
 - **not** cyclotron damping: $\omega \leq \Omega_i$ even at $k_{\perp}\rho_i \sim 1$
 - confirmed by in situ measurements
 - \checkmark Stochastic Htg by KAWs \rightarrow Primarily \perp proton heating
- Global (Fluid) Modeling Reproduces Solar Wind From First Principles