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Heavy ions are preferentially heated	



Schmidt et al., Geophys. Res. Lett. (1980). 
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Are similar effects possible in tokamaks?	



Schmidt et al., Geophys. Res. Lett. (1980). 
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Outline	



•  Description of system and model 
equations (gyrokinetics) 

•  Scaling of turbulent transport and 
heating with A (mass number) and Z 
(charge number) 

•  Heating or cooling? 
•  Comparison with numerical results 
•  Implications and discussion 



System description	



•  Focus on toroidal plasma with electrons, 
hydrogenic ions, and (trace) minority ions 

•  Include rotational shear, but neglect rotation 
itself  

•  Restrict attention to electrostatic fluctuations 
with wavelengths much larger than minority ion 
gyroradii 

•  Scalings are actually more general*: apply also 
to EM fluctuations in non-rotating, 
homogeneous plasma slab with 

*Barnes, Parra, and Dorland, Phys. Rev. Lett. 109, 185003 (2012). 
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Gyrokinetic description of dynamics	



•  Average over fast Larmor 
gyration and follow slower 
motion of charged rings 

•  Eliminates fast time scale 
and gyro-angle variable     
(6D     5D) 

•  Assume: 
•  Low-amplitude, 

anisotropic fluctuations 
•  Collisions weak, but 

strong enough to give 
equilibrium Maxwellian 



Gyrokinetic equation	
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Focus on electrostatic	
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Turbulent fluxes and heating	
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No A or Z dependence 
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Dependences on charge and mass	



A is the mass number Z is the charge number 

Electrostatic potential and turbulence space-time scales 
determined by bulk (main ion/electron) turbulence 
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Dependences on charge and mass	
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Symmetry property	



g0(vk) = �g0(�vk)Symmetry of equation:  
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Momentum flux and heating scalings	



g0(vk) = �g0(�vk)Symmetry of equation:  
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Simple physical picture	
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Simple physical picture	
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distribution along the mean field  



Simple physical picture	
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Particle and energy flux scalings	



Symmetry opposite that of      equation:  g1(vk) = g1(�vk)g0
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Minority ions heated (not cooled)	



Independent of Z, A ~ Z2/A, Z, A 

C = ⌫ ⇥ (di↵usive piece + integral piece)

Dominant for small  ⌫

Collisions increase entropy for each species separately, 
so heavy ions are heated instead of cooled 

Heating shut off when the heavy ion temperature becomes large 
enough to interfere with our expansion, i.e, Theavy/Tlight ~ A 
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Consistent with solar wind observations	



Schmidt et al., Geophys. Res. Lett. (1980). 
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Minority ion temperatures in solar wind 
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Gyrokinetic plasma turbulence simulations	
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Comparison with turbulence simulations	



Nonlinear gyrokinetic simulations with GS2 
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Comparison with turbulence simulations	



Nonlinear gyrokinetic simulations with GS2 
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Turbulent heating vs. collisional 
temperature equilibration	
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Summary	



•  Heavy ions preferentially heated by 
turbulence 

•  Turbulent heating shut off when Theavy/Tlight~A 
if collisional equilibration small 

•  Heavy tokamak impurities may be hotter than 
deuterium in limited circumstances (rotation, 
partial ionization, very weak collisions) 

•  Momentum flux of impurities increases with 
mass: can this affect bulk plasma rotation? 


