A nonlinear perspective on the MRI dynamo transition and subcritical turbulence in sheared plasmas

François Rincon, Antoine Riols, Johann Herault

Institut de Recherche en Astrophysique et Planétologie (IRAP) CNRS and University of Toulouse, France

Carlo Cossu

Institut de Mécanique des Fluides de Toulouse (IMFT) CNRS and University of Toulouse, France

Geoffroy Lesur, Pierre-Yves Longaretti

Institut de Planétologie et d'Astrophysique de Grenoble (IPAG) CNRS and University of Grenoble, France

> Gordon I. Ogilvie DAMTP, University of Cambridge, UK

Transitions in fluid & plasmas

- Supercritical transitions: linear instabilities
 - Hydro: Rayleigh-Benard, Kelvin-Helmholtz, centrifugal...
 - MHD: MRI, Parker instability, magnetic RT, kinematic dynamos...
 - Plasmas: ITG, ETG...
- Subcritical transitions through nonlinear processes
 - Non-rotating, linearly stable hydrodynamic shear flows
 - Pipes, airplanes, cars...
 - Turbulence and instability-driven dynamos in astrophysical shear flows
 - Magnetorotational dynamo in accretion disks
 - Stellar dynamos
 - Sheared plasma turbulence in fusion devices

Subcritical transitions of shear flows: a glimpse through a pipe

• Many hydrodynamic shear flows have no linear instability...

- ...but nevertheless undergo a transition to turbulence
- Pipe flow: a century-old problem [Reynolds, Phil. Trans. R. Soc. 174, 935 (1883)]

• Phenomenology

[Van Dyke, An album of fluid motion (1982)]

• Transition requires 3D, finite amplitude perturbations [Darbyshire & Mullin, JFM 289, 83 (1995); Dauchot & Daviaud, Phys. Fluids 7, 335 (1995); Hof et al., PRL 91, 244502 (2003)]

- Transient linear algebraic growth: the lift-up effect [Ellingsen & Palm, Phys. Fluids 18, 487 (1975); Landahl, JFM 98, 243 (1980)]
 - Vigorous amplification of streamwise-independent streaks

$$\partial_t \overline{u}_x + \overline{u}_y = 0 \quad \Rightarrow \quad \overline{u}_x \sim \overline{u}_y t$$

And lots of debate on the nonlinear breakdown ensued...

• "Linear non-normality vs nonlinear normality"

[Trefethen et al., Science 261, 578 (1993); Baggett et al., Phys. Fluids 7, 833 (1995); Waleffe, Phys. Fluids 7, 3060 (1995); Stud. Appl. Math. 95, 319 (1995)]

The self-sustaining process

• Streaks instability and nonlinear feedback are key

[Hamilton et al, JFM 287, 317 (1995); Waleffe, Phys. Fluids 9, 883 (1997)]

Transitional dynamics

- Sensitive dependence on initial conditions
- Finite lifetime statistics, growing exponentially with Re [Faisst and Eckhardt, JFM 504, 343 (2004); Hof et al., Nat. 443, 59 (2006); PRL 101, 214501 (2008)]
- "Edge of chaos"
 - Transition to long-lasting bursty, turbulent behaviour on one side
 - Smooth decay to the laminar solution on the other side

A chaotic saddle

• Transitional dynamics structured around a chaotic repeller [Schmiegel & Eckhardt, PRL, 79, 5250 (1997)]

[Moehlis et al., Chaos, 14, S11 (2004)]

(Mostly) open questions

- What are the bifurcations mechanisms at work ?
- Can we make a rigorous assessment of typical transition Re ?
- What are the statistical properties of turbulence (transport etc.) ?

A zoo of nonlinear invariant solutionsFixed points, nonlinear travelling waves, periodic orbits

[Nagata, JFM 217, 519 (1990); Waleffe, PRL 81, 4140 (1998); Faisst & Eckhardt, PRL 91, 224502 (2003); Waleffe, Phys. Fluids 15, 1517 (2003); Wedin & Kerswell, JFM 508, 333 (2004); Viswanath, JFM 580, 339 (2007); Gibson et al., JFM 638, 243 (2009)]

- Physically supported by the self-sustaining process
- Born out of saddle node bifurcations
 - Not connected to the laminar state

Possible bifurcation mechanisms

- Bifurcations of invariant solutions
 - Local period doubling cascades
 - Global bifurcations
 - Homoclinic explosions, crises

[Kreilos & Eckhardt, Chaos 22, 047505 (2012)]

• Currently, lots of activity in this area...

[Gibson et al., JFM 611, 107 (2008); Halcrow et al., 621, 365 (2009); Vollmer et al., NJP 11, 013040 (2011); van Veen & Kawahara, PRL 107, 114501 (2011); Kreilos & Eckhardt, Chaos 22, 047505 (2012); Mellibovsky & Eckhardt, JFM 670, 96 (2011); JFM 709, 149 (2012); Willis et al., JFM (2013)]

Turbulence and dynamo in accretion disks

• The magnetorotational instability [Velikhov, JETP 36, 1098 (1959), Chandrasekhar, PNAS 46, 253 (1960)]

- Instability of differentially rotating flows with $\frac{d \Omega^2}{dr} < 0$
- Requires a weak magnetic field: magnetic tension is essential
- Linear, exponentially growing in the presence of a uniform field
- Astrophysical relevance [Balbus & Hawley, ApJ 376, 214 (1991)]
 - Keplerian accretion disks $\Omega(r) \propto 1/r^{3/2}$ are thought to be MRI-unstable
 - Subsequent turbulence transports angular momentum (hence accretion)
- The magnetorotational (disk) dynamo
 - How do you get the magnetic field in the first place ?
 - Requires some form of turbulent induction
 - But turbulence in disks apparently requires a magnetic field...

The MRI dynamo problem

MRI egg

Dynamo chicken

Bithhelame (

Magnetic field generation requires 3D fluid motions

3D fluid motions require magnetic field

Zero net-flux MRI is a subcritical dynamo

• Only 3D case is sustained

[Brandenburg et al., ApJ 446, 741 (1995); Hawley et al., ApJ 464, 690 (1996)]

- Not a kinematic dynamo
 - Decays with no Lorentz force
 - Requires finite-amplitude perturbations
- "Supertransient [Rempel et al., PRL 105, 044501 (2010)]
 - Finite lifetime growing exponentially with Rm

[courtesy T. Heinemann]

Pseudo-cyclic MRI dynamo action

• Oscillations of the large-scale toroidal/azimuthal field

[[Brandenburg et al., ApJ 446, 741 (1995); Lesur & Ogilvie, A&A 488, 451 (2008); Davis et al., ApJ 713, 52 (2010); Simon et al., ApJ 730, 94 (2011); MNRAS 422, 2685 (2012)]

0.250

.125

0.00

-0.125

0.250

Interesting questions

- What happens ?
 - How is the dynamics excited ?
 - How is it sustained ?
 - Why do we see recurrent dynamics ?
- Astrophysical relevance
 - The magnetic Prandtl number issue
 - Transport efficiency
- Dynamos in general
 - Theoretical framework for such a dynamo ?
 - Is the MRI dynamo a good candidate for experiments ?
 - Is this problem unique in dynamo theory ?

[Fromang et al., A&A 476, 1123 (2007)]

Connexion between hydro & MRI dynamo

- Basic requirements for instability-driven dynamos
 - A background shear flow
 - A configuration prone to non-axisymmetric MHD instability

The MRI dynamo is an archetype of this class of dynamos
Also: magnetic buoyancy, Spruit-Pitts-Tayler dynamo, magnetoshear

Proposed approach

- Proceed along the lines of the hydro transition problem
 - Self-sustaining process, nonlinear invariant solutions, bifurcations ?
- Simplest possible physical configuration
 - Local approximation of Keplerian flow
 - 3D dissipative MHD
 - Incompressible
 - Zero net-flux conserved

[Goldreich & Lynden-Bell, MNRAS 130, 125 (1965)]

- Reduce the dynamical complexity
 - Constrain the dynamics by using a "minimal" box
 - Reduce the dynamics to symmetric MHD subspaces
 - Focus on transitional regimes: low Re & Rm ~ a few 100

Princeton, April 2013

The shearing boxShearing-periodic boundary conditions

[Courtesy G. Lesur & T. Heinemann]

- SNOOPY: a spectral implementation
 - Shearing waves basis

$$\mathbf{Q}(x, y, z, t) = \sum_{\mathbf{k}} \widehat{\mathbf{Q}}_{\mathbf{k}}(t) \exp\left[\exp(i\mathbf{k}(t) \cdot \mathbf{x})\right]$$
$$\mathbf{k}(t) = (k_x^0 + Stk_y)\mathbf{e}_{\mathbf{x}} + k_y\mathbf{e}_{\mathbf{y}} + k_z\mathbf{e}_{\mathbf{z}}$$

The edge of MRI dynamo chaos

Re=70; Pm~4-8; (L_x,L_y,L_z)=(0.7,20,2)

[Riols, Rincon, Cossu et al., submitted to J. Fluid Mech.]

Same in a symmetric subspace

Re=70; Pm ~4-8; (L_x, L_y, L_z)=(0.7, 20, 2)

Exciting the system in different ways

Re=70; Pm ~4-8; $(L_x, L_y, L_z)=(0.7, 20, 2)$

Magnetic Reynolds number Rm

Transitional "fingers"...and periodic orbits

Re=70; Pm ~4-8; $(L_x, L_y, L_z)=(0.7, 20, 2)$

Nonlinear periodic orbits: skeleton of the transition ?

Dynamical systems approach

• Physical systems are commonly described as flows in time of physical fields X (velocity, B...) depending on space

$$\frac{\partial \vec{X}}{\partial t} = \mathcal{NL}(\vec{X}) \qquad \text{A vector flow}$$

- Interesting behaviours of these systems include
 - Fixed points (stationary solutions): $\mathcal{NL}(\vec{X}) = \vec{0}$
 - Periodic orbits: $\vec{X}(t = T, \vec{x}) = \vec{X}(t = 0, \vec{x})$

$$\vec{X}(T, \vec{X}(0)) \equiv \phi^T(\vec{X}(0)) = \vec{X}(0)$$

- Bifurcations of these solutions to more complex dynamical behaviour
- How do we compute all these things ?

Newton's method

- Fixed point: look for \vec{X}^* such that $\mathcal{NL}(\vec{X}^*) = \vec{0}$
 - Predict: start from a guess \vec{X}_0 "not too far" from the solution
 - Compute the residual $\mathcal{NL}(\vec{X}_o) = \vec{R}$

Jacobian operator \mathbf{J}_0

- Now, $\vec{X}^* = \vec{X}_o + \delta \vec{X}$ $\mathcal{NL}(\vec{X}^*) = \mathcal{NL}(\vec{X}_0 + \delta \vec{X})$ $\simeq \mathcal{NL}(\vec{X}_0) + \frac{\partial \mathcal{NL}}{\partial \vec{X}} \Big|_{\vec{X}_0} \delta \vec{X} = \vec{0}$ • Correct: find $\delta \vec{X}$ by solving $\frac{\partial \mathcal{NL}}{\partial \vec{X}} \Big|_{\vec{X}_0} \delta \vec{X} = -\vec{R}$
- Iterate as many times as needed until residual is small enough
- Periodic orbit: same for functional $\Psi(\vec{X}, T) = \phi^T(\vec{X}) \vec{X}$
 - A state vector \vec{X}^* is on a T-periodic orbit if $\Psi(X^*,T) = \vec{0}$

• Note: $\phi^T(\vec{X})$ is the result of integration of PDE for time T, i.e. of a DNS !

Important practical concerns

- How do you solve $\mathbf{J}_n \,\delta \vec{X} = -\vec{R}_n$ numerically ?
 - 1D equation (Ginzburg-Landau, Kuramoto-Sivashinsky): $N = N_x = 64$
 - 3D, incompressible MHD problem at 32³
 - $N \sim N_x \times N_y \times N_z \times (2 \text{ V components} + 2 \text{ B components}) \sim 130\ 000 \text{ !}$
- Two major problems
 - The Jacobian operator is usually dense and fills your computer memory very easily if you form it explicitly
 - Solving the system by Gaussian elimination is very expensive for large systems and difficult to parallelize -- impractical for N > a few thousands
- Use an iterative, matrix-free approach
 - Krylov methods (GMRES)
 - The Jacobian is not formed in the process

The PEANUTS code

- General features
 - Written in C, parallel if DNS code is parallel
- Philosophy
 - Separate problem-specific code (DNS) from nonlinear solver layer
 - Avoid reinventing the wheel...use libraries !
- Based on object-oriented toolkits
 - PETSc (ANL): matrix-free Newton-Krylov solver
 - SLEPc (Valencia): matrix-free stability solver

```
[] Residual Norm = 3.66307291e+00
              Guess Norm = 5.17308055e+03
            State Vector = 0.00000
  8 KSP Residual norm 3.663072910075e+00
        Residual norm 3.049393110937e-01
        Residual norm 5.107027108074e-02
           idual norm 3.334325976
        Residual norm 3.1661640265
        Residual norm 3.166164026
        Residual norm 3.16238866228
       Residual norm 4.898986810162e-09
It = 1
       || Residual Norm = 1.02827552e-01
              Guess Norm = 5.17297965e+03
           State Vector = 3.74514319e-17
       Residual norm 1.028275515706e-01
        Residual norm 9.52039986221
        Residual norm 9.512806619136
          sidual norm 9.51280369813
        Residual norm 1.76842331617
        Residual norm 5,075134188562
                      5.06519842928
        Residual norm 4,98898463344
       Residual norm 1,442646167804e-07
  9 KSP Residual norm 4.384301241420e-10
It = 2 || Residual Norm = 3.32154706e-05
              Guess Norm = 5.17298559e+03
            State Vector = 4.23394662e-13
Newton Solver has converged
Total number of Newton iterations
```

- Two nested iterative loops (Newton, Krylov)
 - Convergence to periodic solutions typically requires 100 DNS

Thanks to PEANUTS, SNOOPY now loves to cycle

A nonlinear MRI dynamo limit cycle ! T = 0

[Herault, Rincon, Cossu et al., PRE 2011] 27

Non-axisymmetric MRI-driven reversals

MRI dynamo: the full cycle

Regeneration of leading shearing waves

Wall-type axisymmetric confining mode with shearwise modulation is required to regenerate leading waves

[something similar in Lithwick, ApJ 670, 789 (2007)]

Note: not a simple mean field dynamo !

Continuation & local bifurcations of MRI dynamo cycles

Princeton, April 2013

Global bifurcations

- Homoclinic bifurcations and tangles [Poincaré 1890]
 - Phase-space collisions between stable and unstable manifolds of nonlinear solutions
- Smale-Birkhoff theorem [1935-1967] (in my own poor physicist's language)

• Hyperbolic maps with a transverse homoclinic point are topologically equivalent to a horseshoe map for a sufficiently high number of iterates

• Ergo: homoclinic bifurcations ⇒ (transient) chaos

[Palis & takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations (1993)]

Global MRI dynamo bifurcations ?

- LB₁ & UB₁ both have 1 unstable eigenvalue at Rm ~ 337
 - Track their unstable manifold $W^{u} = a 2D$ -surface in phase space
- Basic technique to obtain W^u and visualize it
 - Construct a set of initial perturbed states consisting of increasingly larger linear perturbations of a cycle along its unstable direction
 - Integrate all these initial conditions
 - Poincaré section: "MRI dynamo map"
 - Look at system states every period T
 - Project these states on a 2D plane
- In this representation
 - A MRI dynamo cycle = a point
 - Unstable manifolds W^u = 1D lines

[Credits J. Moehlis, Scholarpedia]

Of tangles and magnetic fields • LB₁ & UB₁ both have 1 unstable eigenvalue at Rm ~ 337

- Two homoclinic tangles
 - Homoclinic tangle in UB₁
 - Homoclinic tangle of LB₁
- Homoclinic orbits

[Riols, Rincon, Cossu et al., submitted to J. Fluid Mech.]

Heteroclinic tangles

- Other connections spotted
 - UB1 -> LB1, LB1 -> UB1, UB1 -> LB2
 - These things make the dynamics jump from one cycle to another
 - Transitions from low to high energy states (and conversely)

Verification of Smale's theorem and other mathematical results on 2D maps

Long-period orbits born out of saddle nodes

- stable upper branches [Newhouse, Topology 12, 9 (1974)]
- UBs lose stability and period-double [Yorke & Alligood, BAMS 9, 319 (1983)]

Princeton, April 2013

Chaos in Poincaré tangles

Summary

- The MRI dynamo is a subcritical, self-sustaining dynamo
 - Buy 1, get 1 free: both a dynamo and a turbulence activation process
 - The building blocks of the full nonlinear mechanism are well identified
 - Strong similarities with the hydro transition of non-rotating shear flows
- Dynamo cycles in elongated, incompressible shearing boxes
 - Clear precursors of subcritical MRI turbulence (homoclinic bifurcations)
 - Illustrate the MRI dynamo loop in its purest form
- Instability-driven dynamos
 - Fully non-kinematic & 3D, not a classical form of mean-field dynamo
 - A very natural way to obtain system-scale chaotic dynamo action

Ongoing & future work

- The Pm issue
- How do we connect the results to different set-ups ?
 - Aspect ratio, stratification, boundary conditions, larger boxes
 - Can we do this in cylindrical geometry ? (PCX@Madison, PPPL Gallium)
- Can we do a closure theory for this dynamo ?
- Turbulent transport
 - Can we use cycles to characterize the statistics of turbulence ?
- Connexions with other problems
 - Other instability-driven dynamos
 - Hydro shear flows (we finally caught up !)
 - Various dynamical plasma phenomena

[Highcock et al., PRL 109, 265001 (2012); Schekochihin et al., PPCF 54, 055011 (2012)]

Another diagram with many arrows [see also Troy Carter's talk next]

• Nonlinear instabilities galore

FIG. 5. Diagram of the nonlinear instability process that drives flute modes.

[Friedman et al., PoP 19, 102307 (2012)]