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Outline	

•  A summary of laboratory results in water 

relevant to angular momentum transport in 
accretion disks	


•  Results from a new water experiment (HTX, 
Hydrodynamic Turbulence Experiment)	


–  Robust nonlinear stability up to 10^6 shear Reynolds #	

–  We offer a potential explanation of the reported 

conflicted results	

	


•  Summary and future work	
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•  Nonlinear hydrodynamic instabilities in cool, poorly ionized disks	

–  Zeldovich (1981) 	

–  Richard & Zahn (1999) based on Wendt (1933) and Taylor (1936)	

–  Theory/simulations 	


Two Main Candidate Mechanisms to 
Generate Turbulence for Fast Accretion	


•  Magnetorotational Instability (MRI) in hot, 
highly conducting disks	

–  Velikhov (1959) and Chandrasekhar (1960)	

–  Shakura & Sunyaev (1973)	

–  Balbus & Hawley (1991)	

–  Theory/simulations	


Terrestrial flows (e.g. pipe flows) are often nonlinearly 
unstable if Re > 102-104 despite linear stability.	


Magnetic field can destabilize 
otherwise stable flows.	




Moody Diagram (1944): Pipe Flow Friction 
Nonlinear (Subcritical) Transition to Turbulence	
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Q: Does subcritical transition exist at a 
sufficiently large Reynolds #, if so, how 
does the turbulence transport angular 

momentum in Keplerian flows?	


•  Direct astronomical observations or direct 
numerical simulations of accretion disk 
turbulence are still not yet possible.	


•  How about laboratory experiments?	
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The Basic Experimental Idea	

•  Couette flow geometry to realize 

quasi-Keplerian flows:	


•  Centrifugal force balanced by 
pressure force from the outer wall	


•  Use water for nonlinear hydro 
instabilities 	


•  Use liquid gallium for MRI,  
unstable with appropriate Ω1,  Ω2 
and Bz on a table-top size.	


Ga/H2O	


Bz	


Ω1 >Ω2

R1
2Ω1 < R2

2Ω2

Ji, Goodman & Kageyama, MNRAS (2001); Goodman & Ji, JFM (2002)	
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•  Rich nonlinear dynamics: bifurcations and 

transition to turbulence 	


Taylor-Couette Flows���
(Between Rotating Cylinders)	


1923	
 1890	




Stability Diagram of Taylor-Couette Flow	


Ω1

Ω2

Linearly unstable	

well-studied	


Solid body line	

(Ω1=Ω2)	


Rayleigh stability line	

(r1
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flows	
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Supercritical Turbulence and 
Angular Momentum Transport	


Reynolds #	
N
or

m
al
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ed

 T
or
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e	


Wendt (1933)	

Lathrop et al. (1992); 	


Paoletti & Lathrop (2011)	


Burin et al. (2010)	


gives overwhelming experimental and theoretical evidence
that there are no pure scaling laws, even up to Reynolds
numbers of 106. So all scaling exponents in this Letter have
to be read as effective scaling laws.

Our results for the counterrotating case for the dimen-
sionless torque G as a function of Rei for fixed Reo are
shown in Fig. 2. One immediately sees that counterrotation
enhances the torque (and thus the overall drag), but that for
general Reo ! 0 the effective power law G / Re1:76i , that
holds in the case of inner cylinder rotating only, gets lost; in
fact, there is no effective power law at all.

How can we represent the data to better reveal the
transport properties of the system? The analysis of
Eckhardt et al. [3] and the analogy of the TC system to
the RB system suggest to plot Nu! as a function of the
Taylor number

Ta ¼ 1
4!d

2ðri þ roÞ2ð!i %!oÞ2"%2; (4)

where ! ¼ f½ð1þ #Þ=2'= ffiffiffiffi
#

p g4, i.e., along the diagonals

!o ¼ %a!i (5)

in the parameter space [17], Fig. 1(b). Indeed, Eckhardt
et al. [3] derived, from the underlying Navier-Stokes equa-
tion, the exact relation

$w ¼ $% $lam ¼ "3d%4!%2TaðNu! % 1Þ (6)

for the excess kinetic energy dissipation rate $w [i.e., the
total kinetic energy dissipation rate $ minus the kinetic
energy dissipation rate in the laminar case $lam ¼
4"r2i r

2
oðri þ roÞ%2d%2ð!i %!oÞ2]. In Eq. (6) ! can be

interpreted as a (geometric) Prandtl number, and Ta and
Nu! are the exact TC analogs to the Rayleigh and Nusselt
numbers in RB flow. Along the diagonal, Eq. (5), in pa-
rameter space, one has Ta¼ 1

4!d
2ðriþroÞ2ð1þaÞ2!2

i"
%2,

and the well-studied [4] effective scaling lawNu / Ra~% for
RB flow (with ~% ( 0:31 [4,18]) would now correspond to
an effective scaling law Nu! / Ta% for TC flow.

Nu! vs Ta is shown in Fig. 3(a) for various a, i.e., along
various straight lines through the origin of the parameter
space, Fig. 1(b). A universal, i.e. a-independent, effective
scaling Nu! / Ta% with % ( 0:38 is clearly revealed. This
corresponds to a scaling of G / Re1:76i for the dimension-
less torque along the straight lines, Eq. (5), in the para-
meter space, Fig. 1, to cf / Re%0:24

i for the drag coefficient,
and to G / Ta0:88. The compensated plots Nu!=Ta

0:38 in
Fig. 3(b) demonstrate the quality of the effective scaling
and, in addition, show the a dependence of the prefactor of
the scaling law.
The a dependence of the prefactor Nu!=Ta

0:38 is plotted
in Fig. 4. It shows a pronounced maximum around a ¼ 0:4,
i.e., for the moderately counterrotating case, signaling the
most efficient angular velocity transport from the inner to
the outer cylinder at that value. We mention that it is
obvious that this curve has a maximum, as in both limiting
cases a ! )1 (rotating of the outer cylinder only) the
flow is laminar and Nu! ¼ 1, but it is interesting to note
that the maximum does not occur for the most pronounced
counterrotating case !o ¼ %!i (or a ¼ 1). Compared to
the case of pure inner cylinder rotation (a ¼ 0), at a ¼ 0:4
the angular velocity transport from the inner to the outer
cylinder is enhanced by more than 20%.
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FIG. 2 (color online). The dimensionless torque GðReiÞ for
counterrotating TC flow for four different fixed values of Reo ¼
%1:4* 106, %0:8* 106,%0:4* 106, and 0 (top to bottom data
sets); see inset for the probed area of the parameter space.
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FIG. 3 (color online). (a) Nu! vs Ta for various a; see Fig. 1(b)
for the location of the data in parameter space. A universal
effective scaling Nu! / Ta0:38 is revealed. The compensated
plots Nu!=Ta

0:38 in (b) show the quality of the effective scaling
and the a-dependent prefactor of the scaling law.

PRL 106, 024502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 JANUARY 2011

024502-3

van Gils et al. (2011); 	

Huisman et al. (2012)	


Ultimate turbulence 
(turbulent boundary layers + 

Turbulent Interior): 	

Dream for Extrapolation to 
Astro and Geo Applications	




Stability Diagram of Taylor-Couette Flow	
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Nonlinearly unstable	

(Wendt 1933, Taylor 1936) 	




Nonlinear Instabilities Observed With Only 
Outer Cylinder Rotating	
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Taylor (1936)	


Wendt (1933);	

re-plotted by Coles (1965)	


Le Laboratoire 4.3 Stabilité

Fig. 4.4: Hystérésis au seuil de l’instabilité. Diagrammes spatio-temporels pour des écoulements entre Re
o

= 3.104 et Re
o

=
5.104. Le diagramme de gauche est obtenus en augmentant progressivement le nombre de Reynolds, celui de droite en le
diminuant. La figure de droite représente les deux chemins suivis sur le diagramme Re

o

-Re
i

.

aux écoulements kepleriens peuvent être non-linéairement instables.

4.3.1 Domaine @r⌦ > 0

Comme nous l’avons vu dans le chapitre consacré à la turbulence, une des caractéristiques des instabilités non-linéaires

est l’existence de régimes pour lesquels il existe plusieurs états stables. Expérimentalement, cela se traduit d’abord

par un seuil pour la transition laminaire-turbulent plus élevé que le seuil turbulent-laminaire. Ceci est vrai pour des

expériences comme celle-ci, où l’écoulement n’est pas volontairement perturbé, mais l’est simplement par le bruit

expérimental. La largeur de cette plage d’hystérésis entre les deux seuils est variable. En e↵et, si le seuil de transition

turbulent-laminaire ne varie pas – dans les limites de la précision de mesure –, le seuil de déclenchement de l’instabilité

en provenance d’un régime laminaire n’est pas fixe. Il dépend des perturbations présentes dans l’écoulement, et est

sensible aux moindres variations du bruit expérimental, c’est à dire aux caprices du montage expérimental. Le seuil

au dessous duquel la turbulence n’est plus observable se situe à Re = 34500 dans notre montage, lorsque le cylindre

intérieur est au repos. Le seuil d’apparition de la turbulence en provenance d’un état laminaire se situe typiquement

autour de Re = 45000.

La figure 4.4 prsente deux diagrammes spatio-temporels acquis pour des écoulements pour lesquels ⌦
i

= 0 en faisant

varier le nombre de Reynolds Re
o

entre 3.104 et 5.104. Ces diagrammes sont construits en faisant l’acquisition par

caméra d’un ligne génératrice des cylindres au cours du temps. Le diagramme de gauche est obtenus en augmentant

progressivement le nombre de Reynolds, c’est-à-dire en provenant d’un état laminaire pour déclencher la turbulence.

Celui de droite est obtenu en diminuant le nombre de Reynolds, donc en provenant d’un écoulement turbulent vers

58

Richard (2001)	


varying end conditions !e.g., variations in !".
Second, the curves show that a significant fraction

!#30%" of the experiments relaminarized immediately after
the perturbation, almost independently of Re. Because our
perturbation consists of globally disorganizing the fluid, one
can think of it as moving the system away from the laminar
attractor in a random direction in phase space. If the pertur-
bation puts the system in the basin of attraction of the turbu-
lent state, the system will remain turbulent. If the perturba-
tion leaves the system in the basin of attraction of the
laminar state, the turbulence decays immediately. While the
short-lived events where not used in determining the decay
constants, the duration of these events allowed us to estimate
t0. This was determined to be #120 nondimensional time
units.

We observed that the characteristic lifetimes increased
very rapidly with Re, but we were unable to find a Re for
which we could not observe decay. At Re=9922, we ob-
served an event that lasted 29 h before relaminarizing. The
lifetimes became so long that we imposed maximum obser-
vation times for the highest Reynolds numbers studied. Be-
cause the experiments at lower Reynolds numbers were con-
ducted first, the maximum observation times were chosen by
linearly extrapolating from the decay constants calculated for
the previous three experiments on a plot of log10 "!Re" vs Re
and multiplying this time by 1.5. This prevented us from
directly observing the decays of the longest-lived events but
still left enough events of intermediate length to get good
estimates of the characteristic lifetimes. To validate this pro-
cedure, we used it to measure the characteristic lifetime for
Re=7111. The resulting lifetime differed from that measured
by observing all events by less than 1%.

We also conducted five experimental runs of 300 events
each at Re=7647 to check the sensitivity of our results to the

details of the perturbation. Increases in the pulse duration of
up to a factor of ten did not significantly change our results.
Neither did decreasing the inner cylinder acceleration by a
factor of 60. The measured lifetimes were also insensitive to
the maximum inner cylinder velocity as long as this was on
the order of the speed of the outer cylinder. However, if the
maximum speed was much lower than that, " remained the
same, but the fraction of events that relaminarized immedi-
ately increased dramatically. This agrees with recent experi-
ments in pipe flow $24% that showed that as long as the per-
turbation is large enough to cause the transition to
turbulence, the observed decay times do not depend on the
details of the perturbation.

Figure 4 shows the characteristic lifetimes "!Re" as a
function of Re. We fit the data with the various functional
forms suggested by Hof et al. $14% and found that

"!Re"−1 = exp$− exp!c1Re + c2"% , !2"

with c1=3.61#10−4 and c2=−0.59 best captured the trend
!i.e., had the smallest residuals". While Eq. !2" seems to fit
the observed trend, goodness-of-fit statistics indicate that it is
not a statistically significant fit !i.e., $%

2&1". Therefore, we
do not claim that it represents the actual functional depen-
dence of " on Re but only that lifetimes grow faster than
exponentially but remain bounded. However, the scaling of
Eq. !2" agrees with the most recent results for pipe flow $14%
and with the only theoretical prediction of "!Re" $25% that we
are aware of. As shown in Fig. 4, alternative fits to the data
are possible $e.g., "−1=exp$−!Re /c5"c6% with c5=3305 and
c6=2.62% and differentiating between them requires many
more decades of data. It is also possible to fit the data with

0 3 6 9
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t

ln
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(t
)

Re = 6423 Re = 7341 Re = 7800

Re = 8106 Re = 8258 Re = 8564

FIG. 3. The probability of observing events whose lifetime is
longer than time t decreases exponentially for long times with a
decay constant that increases with increasing Re. Times are scaled
by the advective time unit tnd=d /ro'o. Only a fraction of the total
events used to obtain the results in Fig. 4 are shown for clarity. The
error bars indicate sampling error and are shown only at represen-
tative points. The solid lines show the weighted least-squares linear
fits to the tails of the distributions.
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FIG. 4. Characteristic lifetimes as a function of Re in dimen-
sionless time units. ! indicates data sets for which all the decays
were directly observed. The points indicated with • correspond to
data sets for which a maximum observation time was set as indi-
cated in the text. Horizontal error bars represent absolute error in Re
based on experimental limitations. Errors in log10 "−1 are on the
order of the symbol size and were estimated by the uncertainty
calculated for the slope of the linear fits shown in Fig. 3. Inset:
A plot of "−1 vs Re on a linear scale shows that "−1→0 only as
Re→(.

TRANSIENT TURBULENCE IN TAYLOR-COUETTE FLOW PHYSICAL REVIEW E 81, 025301!R" !2010"

RAPID COMMUNICATIONS

025301-3

Borrero, Schatz, & Tagg (2010)	


Burin & Czarnocki (2012)	




Stability Diagram of Taylor-Couette Flow	
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Richard (2001)	

r1=3.5cm, r2=5cm, h=38cm	

η=0.7, Γ=25.3, Re<105	


“Wavy activity” observed through 
flow visualization in qK regime	


Le Laboratoire 4.1 Dispositif Expérimental

Fig. 4.1: Dispositif expérimental en configuration LDV. La cuve rectangulaire autour des cylindres est emplie d’eau à
température constante. Le cylindre interne en aluminium est recouvert d’un revêtement noir pour éviter la réflexion des faisceaux
laser (la tête laser est visible à droite). L’ensemble est monté entre deux plaques d’aluminium fixées sur un chassis micro-control
solidaire du marbre. Un des deux moteurs est visible en bas de l’image : ils sont montés sur un chassis indépendant sans contact
avec le marbre pour minimiser la transmission des vibrations.

53

Le Laboratoire 4.3 Stabilité
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r (W r 2) < 0  

∂r ( Ωr 2) < 0  

∂r ( Ωr 2) > 0  

∂r ( Ωr 2) > 0  

∂r Ω < 0  

∂r Ω > 0  

Fig. 4.3: Diagramme de stabilité expérimental ; Re
o

= ⌦
o

R
o

d/⌫, Re
i

= ⌦
i

R
o

d/⌫ ; Aire gris foncé : domaine théorique de
l’instabilité centrifuge ; Aires gris clair : domaines linéairement stables où la turbulence est auto-entretenue expérimentalement.

57
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Richard (2001)	

r1=3.5cm, r2=5cm, h=38cm	

η=0.7, Γ=25.3, Re<105	


•  Sensitivities to axial boundaries:	


•  “Ekman” configuration: end 
caps connected to OC	


•  “Split” configuration: inner 
half connected to IC and outer 
half to OC	


“ideal Couette” profile for 
infinitely long cylinders	


Importance of the axial boundaries: Ekman effects	
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Ekman Effects due to Imperfect Axial 
Boundaries are Significant	
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Beckley (2002)	

r1=15.25cm, r2=30.50cm, h=30.50cm	


η=0.5, Γ=2, Re<4.4×106	


Predicted torque due 
to Ekman effects	
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Ω0 / 2 π [Hz]
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↓ Ω1: Ω0 = 4:1

Turbulent Theory Torque, Re = 4.4  ⋅ 106
Ekman Layer Torque:  δ = ( ν / Ω1 − Ω0)

1/2

Ekman Layer Torque:  δ =  (ν / 2 (Ω1 − Ω0))
1/2

Torque Transmitted by Fluid where  Ω1 / 2π = 40.1 Hz

Predicted torque due 
to Pipe flow turbulence	
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Ekman effects confirmed at a prototype experiment at 

Princeton 	


Kageyama, Ji, Goodman, Chen, Shoshan (2004)	

r1=3.8cm, r2=14.9cm, h=10cm	

η=0.255, Γ=0.9, Re<~106	




18	

€ 

Ω3

€ 

Ω4

Ω1

Ω2

Ji, Burin, Schartman, Goodman (2006)	

r1=7.06cm, r2=20.30cm, h=27.86cm	


η=0.348, Γ=2.10, Re<2×106 (now 2×107 in liquid gallium) 	
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Guess #0	


Guess #1	


Guess #2	


Guess #3	


Guess #4	


Guess #5	


Guess #6	


Fine Control of Ekman Effects by Rings	


€ 

Ω1,Ω3,Ω4,Ω2



What Happened: ���
Rings Break Large Scale Ekman Circulations 

into Smaller Eddies Near Each End	
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Phys. Scr. T132 (2008) 014029 A V Obabko et al

Figure 7. Steady-state contour lines of effective angular momentum flux function 9̃ for the case of Re = 620 with lids in the range from
�3.30 to 3.30 in the increment of 0.31 (a) and with rings in the range from �1.35 to 1.35 in the increment of 0.21 (b). In the case of lids,
most of the flux lines that originate from inner cylinder terminate at horizontal boundaries as opposed to the case of rings where they end up
mostly at the outer cylinder which is similar to the CCF angular momentum transport between the cylinders.

with solid lines and filled diamonds) and lids (open triangles
with dotted lines and filled triangles). All results are obtained
in axisymmetric computations except for the data plotted
with large open symbols that show the results of fully 3D
computations. Note that being zero in the ideal CCF, the
difference between the torques applied to the inner and outer
cylinders shown by open and closed symbols, respectively,
corresponds to the sum of torques exerted on the fluid next
to the horizontal boundaries

Ti � To = (T1 + T2)/TC

due to zero net torque in steady/statistically steady state.
Evidently, the setup with rings has the advantage of a smaller
contribution to the net torque from the horizontal boundaries
and of a smaller difference between inner and outer cylinder
torque magnitudes over the setup with lids where EC is
undisturbed. We also observe that in the range of Reynolds
numbers considered the flow makes a transition from steady
axisymmetric solution at Re = 620 to the unsteady one at
Re = 6200 with small 3D effects. Being more significant in
the case with lids, three-dimensionality is expected to play an
increasing role with the further increase of Reynolds number.

In order to illustrate spacial variations of AMT, we
have computed an effective angular momentum flux function
defined in appendix B by analogy with a streamfunction. The
contours of the effective flux function show the (flux) lines
along which the angular momentum is transported, and the

difference between the values of the flux function at two
points gives the total flux across the segment of conical or
cylindrical surfaces on which these points lie. Figure 7 shows
steady-state contour lines of constant increment for effective
angular momentum flux function 9̃ (B.12) for the case of
Re = 620 with lids (a) and rings (b). For comparison, we
note that the flux lines of (purely viscous) AMT for the
ideal CCF (12) are the straight lines from the inner to outer
cylinder along z =const. Despite the fact that in both cases
only a single line of 9̃ = 0 (i.e. line of symmetry) is the
same as in the CCF case, the case with rings exhibits the
similar transport of angular momentum along the flux lines
that mostly originate at the inner cylinder and terminate at
the outer cylinder in contrast with the termination of the flux
lines at the lids. The latter indicates that in the cases with
lids, the angular momentum transport is mostly between the
inner cylinder and the horizontal boundaries, contrary to more
desirable CCF-like transport between the cylinders observed
in the cases with rings. Also note that the similarity between
the shape of the flux lines away from the boundaries in figure 7
and the shape of vorticity contour lines and poloidal vector
lines in figure 4 can be explained through creation of strong
Vr and Vz components of velocity due to Ekman flows, which
affects AMT flux through advective contributions Fa

rz and Fv
zz ,

respectively, given by relations (B.5) and (B.6).
In summary, if the ultimate objective is to achieve the

flow with AMT as close to the ideal CCF as possible, the

10

A. Obabko, F. Cattaneo, P. Fischer (2008)	
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Direct Measurement of Reynolds Stress	


•  Simultaneous measurement of Vr 
and Vθ by a dual synchronized 
Laser Doppler Velocimetry	

–  Random errors are reduced by large 

number statistics	

–  Systematic errors are removed by 

comparing with solid-body flows	

•  Benchmarked in hydrodynamically 

unstable cases	

Vr measured by a pair of lasers	


€ 

ν turb = βR3 ∂Ω
∂R

•  Quantifying transport: 	
	


€ 

β ≡
˜ V r ˜ V θ

q2 Vθ
2

€ 

β = (1− 2) ×10−5
Value needed to 
explain observation	
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Results: Negligible Angular Momentum 
Transport in qK Flows!	


indistinguishable from solid body flows	


needed values	




No Signs of 
Turbulence up to 

Re=2×106	


•  Large Reynolds stress detected 
if	

–  Boundary conditions not optimum, 

or	

–  Even with optimum boundary 

conditions, but at smaller Re’s	


•  β=(1.13±1.15)×10-6, or 
<3.4×10-6 with 98% confidence.	


•  Remarkable since no other 
terrestrial examples are known	


None-optimal b.c.	


Ji, Burin, Schartman, Goodman (2006)	

Schartman, Ji, Burin, Goodman (2012)	




Stability Diagram of Taylor-Couette Flow	


Nonlinearly unstable	
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Paoletti & Lathrop (2011)	

r1=16.00cm, r2=22.085cm, h=69.50cm	


η=0.7245, Γ=11.47, Re<2×106	


endcaps attached to OC	


Regions II and III are divided by the Rayleigh stability
criterion dL=dr ¼ 0. Region IV is characterized by coun-
terrotation with "4< Ro<"1. Regions I and II are
Rayleigh stable and are separated at Ro ¼ 0 (solid-body
rotation). Regions III and IV are linearly unstable since
dL=dr < 0. The division between regions III and IV is a
result of the observation of a maximum in the measured
torque at Ro ¼ "4. The dynamics are symmetric under
negating both!1 and!2; therefore, regions I–IV describe
the entire Taylor-Couette parameter space.

Our experiments use water as the working fluid and are
conducted in the apparatus constructed by Lathrop et al.
[2], which has been modified to allow the outer cylinder
to rotate independently. The acrylic outer cylinder used in
previous experiments [2,3] has been replaced by an ano-
dized aluminum cylinder with the same inner radius b ¼
22:085 cm and length L ¼ 69:50 cm. The inner cylinder
is stainless steel with a radius a ¼ 16:000 cm yielding a
radius ratio ! ¼ a=b ¼ 0:7245 and an aspect ratio " ¼
L=ðb" aÞ ¼ 11:47. The inner cylinder is rotated up to
!1=2" ¼ 20 s"1 while the outer cylinder may be rotated
in either direction up to j!2=2"j ¼ 10 s"1. Both angular
velocities are measured precisely by shaft encoders and
controlled to within 0.2% of the set value.

The axial boundaries rotate with the outer cylinder,
although the ideal Couette geometry is unbounded axially.
To avoid end effects in our torque measurements, the inner
cylinder is divided axially into three sections of lengths
15.69, 40.64, and 15.69 cm (see Fig. 3 of [2]). Only the
central section of the inner cylinder senses the torque of

the fluid as described in Ref. [2]. Therefore 2:58ðb" aÞ
from each of the axial boundaries, where the secondary
circulation setup by finite boundaries (Ekman pumping) is
strongest, are avoided in the torque measurements.
The local wall shear stress is measured at the outer

boundary using a flush-mounted hot film probe. The probe
is located at the midheight of the experiment. The mea-
surements are performed in the constant temperature mode
using a Dantec mini-CTA anemometer. The frequency
response of the probe exceeds our sampling rate of
10 kHz. The shear-stress measurements are calibrated
in situ using the method described in Ref. [2].
The desired accuracy of our measurements requires that

the temperature of the water be precisely controlled. In
contrast to prior experiments [2,3] where the system was
cooled at the axial boundaries, we control the temperature
through the outer cylinder. This procedure is superior
owing to the 6.5 fold increase in temperature-controlled
surface area. Furthermore, the working fluid is now
temperature-controlled along the entire axial length of
the experiment. This is particularly important for the flows
in regions I and II of the parameter space, where mixing is
greatly reduced. In all of our measurements the tempera-
ture is controlled to within 0:02 %C of 50 %C, yielding a
kinematic fluid viscosity of # ¼ 0:0055 cm2=s, except for
Re> 2& 106 where T ¼ 90 %C and # ¼ 0:0032 cm2=s.
This control algorithm and temperature range would not
be possible with an acrylic outer cylinder, owing to the
poor thermal properties compared to those of aluminum.
We study the scaling of the torque as a function of Re for

several values of Ro. The measured torque $ is made
dimensionless by defining G ¼ $=%#2Lc, where % is the
fluid density and Lc the length of the torque-sensing central
section of the inner cylinder. Our measured values ofG are
shown in Fig. 2(a). We note that both Re andG are negative
in region I, and we therefore plot their absolute values. We
compare our data to the best fit ofGðRo ¼ 1Þ (solid curve)
given in Ref. [3], which is well described by the following:

Re1ffiffiffiffiffiffiffiffi
G1

p ¼ 1:56 log
ffiffiffiffiffiffiffiffi
G1

p
" 1:83: (2)

Our measurements of G obey the scaling observed in
previous experiments for Ro ¼ 1 [2,3], even above the
previous maximum of Re ¼ 1:2& 106. However, depend-
ing upon Ro, the value ofG for a given Re may be higher or
lower thanG1 [6,9]. The main observed dependence on Ro
is a vertical shift in this representation.
To determine this shift inGwith Ro, we measureG=G1,

as in Ref. [6], as a function of Ro"1, where G1 is given in
Eq. (2) [3]. Figure 2(b) shows that G=G1 is essentially
constant for each value of Ro. Therefore, the value of
Ro fully determines the basic state of the flow, which
then scales with Re in the same manner as the case of
outer-stationary Taylor-Couette flow (Ro ¼ 1).
The behavior of G=G1 is distinct in the four regions of

the parameter space. For Rayleigh-stable flows (regions I
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FIG. 1 (color online). Our experiments span a large range of
the (Re2, Re1) parameter space, which we divide into regions.
Region I (blue diamonds) is defined as "1 ' Ro< 0. Region II
(red squares) has 0< Ro< !"2 " 1, where Ro ¼ !"2 " 1 de-
fines the Rayleigh stability criterion [12]. Region III (black
circles) is for Ro<"4 and !"2 " 1< Ro. Finally, region IV
(green triangles) has"4< Ro<"1. Data are not acquired very
near Ro ¼ 0, since the torques are comparable to our measure-
ment precision of 0.01 Nm (G( 108 at 50 %C).
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and II), G=G1 is less than 0.22. On the other hand, for
!0:37< Ro!1 < 0 the torque is enhanced. Since G=G1
scales as Ro!1 within each region, we perform linear
regressions of G=G1 as a function of Ro!1. The resulting
functions are shown as solid lines in Fig. 2(b):

region I : G=G1 ¼ 0:078Ro!1 þ 0:27; (3)

region II : G=G1 ¼ 0:17$ 0:05; (4)

region III : G=G1 ¼ !0:95Ro!1 þ 1:00; (5)

region IV : G=G1 ¼ 2:24Ro!1 þ 1:83: (6)

In addition to the distinct torque scaling in regions I–IV,
the wall shear-stress spectra also show marked changes
with Ro. Figure 3 shows a spectrogram for !2< Ro<
2:1. For Rayleigh-stable flows (! 1< Ro< 0:905), the
system is characterized by narrow-band, weak shear-stress
fluctuations. The fluctuations are stronger in region II,
which also shows strong wave modes near Ro ¼ 0:5.
Region III only has strong, broadband fluctuations for
Ro> 0:95, even though the system becomes linearly un-
stable at Ro ¼ 0:905 in the case of vanishing viscosity.
Finally, the spectra for flows in region IV are also broad-
band but with much stronger wave modes evident.
Our measurements of the dimensionless torque G and

wall shear-stress spectra indicate that the dominant control
parameter for rotating shear flows is the Rossby number
Ro. We have not observed any transitions or evidence for
nonlinear instabilities with increasing Re in regions I, III,
or IV, although we have indications of hysteresis in
region II. This likely indicates that quasi-Keplerian flows
can be nonlinearly unstable, but more systematic studies
are needed to determine if this is indeed the case.
In Ref. [8] the variations of the torque with rotation rates

are modeled using exact relations derived from the Navier-
Stokes equations and assumptions about the torque contri-
butions from the radial and vertical velocity fields (the
‘‘wind’’). Our observed variations with Ro suggest that,
while the exact relations in Ref. [8] contain only !1–!2,
there is a dependence of the wind on Ro. The data pre-
sented here may be used to determine this dependence and
provide testable predictions for the velocity fields.
Ji et al. [7] did not directly measure G, but instead used

their velocity measurements to determine the parameter !,
which has been used to interpret angular momentum
transport in astrophysical objects [4–6]. In this prescription
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FIG. 2 (color online). Experimental measurements of the di-
mensionless torque G as a function of (a) Re and (b) Ro!1 with
the symbols defined in Fig. 1. The solid line in (a) represents the
fit G1 for Ro ¼ 1 given in Eq. (2) [3]. The solid lines in (b)
correspond to the fits given in Eqs. (3)–(6).

FIG. 3 (color online). Fluctuations in the wall shear stress
strongly depend upon Ro. The logarithmic spectral power den-
sity is indicated by color, and the spectral frequency ! is
normalized by !2=2" ¼ 8:22 s!1. The experimentally inacces-
sible range of !1:25< Ro< 0:75 is shown as white.
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Enhanced torque from a sleeve mounted on middle 1/3 of IC:	

•  significant if applicable to accretion disks	

•  but is this scheme really immune from Ekman effects?	




Edlund, Ji, Goodman (2013)	

R1=6.9cm, r2=20.3cm, h=39.7cm	

η=0.34, Γ=2.96, Re<2×106	


one ring (Ω3) w/ rims on IC & OC	


16	  nozzles	  	  
on	  IC	  to	  perturb	  
the	  flow	  



One Ring Can Do a Good Job As Well!	




“Optimal Ring Speed” Minimizes 
Turbulence!	


Why?	


Optimal 
ring speed	




Turbulent Boundary Layers ?!	


Inner 3 cm	
 Outer 3 cm	




Unstable Stewartson Layer on IC or OC	


Increasing Re to 4.0!104 results in a very different type
of three-dimensional flow. It has a number of prominent fea-
tures, as illustrated in Fig. 12. From the " and !"−"0" con-
tours near the sidewall, we find that the three-dimensional
instability components are of magnitude comparable to the
axisymmetric component of the flow. Different instability ac-
tivities are located in regions where the LC1 and LC2 axi-
symmetric rolls were active. Note that this solution was com-
puted for !Re,Ro" values where in the axisymmetric
subspace only LC2 is stable !i.e., in the region between the
Hopf curve H2 and the Neimark–Sacker curve NS2". At
about midheight in the sidewall layer, the perturbation azi-
muthal vorticity is organized into rolls with a forward tilt that
precess prograde with the sidewall at a rate considerably
faster than the rotation of the sidewall, about five times
faster. This is consistent with the experimental observations
of Hart and Kittelman.7 Lower in the sidewall boundary
layer there is also another group of forward tilted rolls, but
these are less coherently organized and have some features
more in common with the wavy turbulent state reported in
the experiments toward the end of the ramp in Ro. Together
with the various forward tilted roll structures, which are pre-
dominantly present very close to the sidewall, we see from
the isosurface rendering of the flow that in the outer bound-
ary layer there are also a number of backward tilted struc-
tures that appear to erupt from within the inner layer; their
“footprints” near the sidewall are seen to periodically
breakup the otherwise coherent forward tilted rolls. Finally,
very close to the top corner !r=z=1", there is a very local-
ized series of small structures with azimuthal wavenumber
m=13. From animations, we find that all of these structures
are co-precessing with the dominant forward tilted rolls, and
that there are slow modulations in the spatial structures,
which, as in the lower Re cases, could be partially due to
transient effects, or even to interactions with the inertial
waves in the interior.

Further increasing Re to 5.0!104 !see Fig. 13", the flow
state is qualitatively the same as at Re=4.0!104, but the
backward tilted structures erupting from the deep inner
boundary layer are much more intense and their interactions
with the previously coherent forward tilted rolls have now
rendered these much less coherent. The isosurface rendering
has much in common visually with the Kalliroscope image
of the wavy turbulent state in the experiment #see Fig. 2!d" in
Ref. 7$.

Reducing Ro to 0.45 so that we are in the region be-
tween H1 and NS1 where in the axisymmetric subspace
only LC1 is stable does not alter the qualitative nature of
the three-dimensional solution !see Fig. 14". The solution at

(a) (b) (c)

FIG. 12. !Color online" Snapshots of azimuthal vorticity " for the state at
Re=4.0!104 and Ro=0.50: contours in a partial plane !r ,z"! #0.8,1.0$
! #0.0,1.0$ for !a" "! #−2.0,2.0$ and !b" !"−"0"! #−2.0,2.0$, where posi-
tive levels are red !light", negative levels are blue !dark", and zero is white,
and !c" isosurfaces of !"−"0", the red !dark" isosurfaces are at level 1.0 and
the yellow !light" isosurfaces are at level #1.0 !enhanced online" #URL:
http://dx.doi.org/10.1063/1.3517292.8$ #URL: http://dx.doi.org/10.1063/
1.3517292.9$ #URL: http://dx.doi.org/10.1063/1.3517292.10$.

(a) (b) (c)

FIG. 13. !Color online" Snapshots of azimuthal vorticity " for the state at
Re=5.0!104 and Ro=0.50: contours in a partial plane !r ,z"! #0.8,1.0$
! #0.0,1.0$ for !a" "! #−4.0,4.0$ and !b" !"−"0"! #−4.0,4.0$, where posi-
tive levels are red !light", negative levels are blue !dark", and zero is white,
and !c" isosurfaces of !"−"0", the red !dark" isosurfaces are at level 1.0 and
the yellow !light" isosurfaces are at level #1.0 !enhanced online" #URL:
http://dx.doi.org/10.1063/1.3517292.11$ #URL: http://dx.doi.org/10.1063/
1.3517292.12$ #URL: http://dx.doi.org/10.1063/1.3517292.13$.

(a) (b) (c)

FIG. 14. !Color online" Snapshots of azimuthal vorticity " for the state at
Re=5.0!104 and Ro=0.45: contours in a partial plane !r ,z"! #0.8,1.0$
! #0.0,1.0$ for !a" "! #−2.0,2.0$ and !b" !"−"0"! #−2.0,2.0$, where posi-
tive levels are red !light", negative levels are blue !dark", and zero is white,
and !c" isosurfaces of !"−"0", the red !dark" isosurfaces are at level 1.0 and
the yellow !light" isosurfaces are at level #1.0 !enhanced online" #URL:
http://dx.doi.org/10.1063/1.3517292.14$ #URL: http://dx.doi.org/10.1063/
1.3517292.15$ #URL: http://dx.doi.org/10.1063/1.3517292.16$.
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II. EXPERIMENTAL RESULTS

Experiments were conducted in two different tanks, both
having transparent walls. Each tank was placed on a rotating
table, which has a period stability of better than 0.01%. A
stepper motor attached to a drive shaft by a belt provided the
differential rotation, v, of the disc. The spacing between the
2.5 cm thick disc and the sidewall was less than 0.02 cm.
The stability of the drive was about 0.1%. The fluid was
water and the flows were visualized by adding Kalliroscopic
platelets. The procedure was to fix the basic rotation V

~CCW! by setting the period of the table ~the range of 2–6
seconds was used!, and then slowly ramping up v over sev-
eral hours while videotaping the output from a black and
white CCD camera mounted on the tank. The frames were
subsequently analyzed both digitally and by hand to estimate
transition points, wavelengths, and phase speeds. The rel-
evant nondimensional parameters are the Ekman number
E5n/2VH2, the Rossby number based on the Stewartson
layer thickness R05vL/2VLs , and the aspect ratio H/L .
The Stewartson layer thickness is Ls5(n/2V)1/4H1/2!L .
The experiments described below have v.0 ~corotation!.
For the range of parameters explored here the equivalent
experiments with v,0 ~counterrotation! are stable.

Figure 2 shows typical flow visualizations. At low R0 the
motion is axisymmetric with smooth vertical structure in the
basic state. As R0 is raised a primary instability consisting of
downward propagating axisymmetric high wave-number
rolls is established @Fig. 2~a!#. The rolls appear to originate
near the upper corner where the disc meets the sidewall and
extend further and further down the sidewall as the forcing
Rossby number is increased. Rather than becoming twisted
or azimuthally wavy, as is the fate of the stationary roll
vortices observed in the pressure-driven rotating channel, the
axisymmetric traveling modes begin to merge into longer
wavelength disturbances as R0 is increased a bit more, but
retain axisymmetry. A second basic instability arises some-
what lower down the sidewall at slightly higher R0 . This
takes the form of stationary nonpropagating rolls that are
tilted backward with height @Fig. 2~b!#. At still higher R0 a

FIG. 1. Physical configuration. Fluid of uniform viscosity n and uniform
density r is contained in a cylinder that is subject to basic rotation V, with
motion driven by differential rotation v of a plexiglass disc.

FIG. 2. Photographs of Kalliroscopic flakes looking in at the sidewall. AE52.1731023. ~a! Traveling axisymmetric rolls moving downward: R052.0. ~b!
Traveling rolls plus stationary diagonals: R052.5. ~c! Rolls, diagonals, and propagating waves going left to right: R053.1. ~d! Turbulence at high forcing:
R054.4.
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Stability Diagram of Taylor-Couette Flow	


Nonlinearly unstable	
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