Flow, turbulence and transport in
laborato 'y plasmas (at least in LAPD and DIII-D)

T.A. Carter, D. Schaffner, B. Friedman, |. Hillesheim,
W.A. Peebles, G. Rossi, M.V.Umansky?, D. Guice,
S.Vincena, J.E. Maggs, L. Schmitz, + DIII-D Team

Dept. of Physics and Astronomy, UCLA

UCLA



Summary/Outline

® Suppression of turbulent particle transport in LAPD by flow
shear [Schaffner, et al., PRL 109, 135002 (2012)]

® External control of cross-field flow in the presence of

pressure-gradient driven turbulence [might be nonlinear
instability: Friedman, et al., PoP 19, 102307 (2012)]

® Transport decreases with shearing, enhanced at low shear;
reduction due to turbulent amplitude reduction

® Critical gradient response in electron temperature fluctuations
in DIII-D [Hillesheim, et al., PRL |10, 045003 (2013)]

® FElectron temperature gradient varied at constant heating
power using ECH in DIII-D [DeBoo]

® Electron temperature fluctuations increase beyond

threshold value in Lt, same critical gradient for Q. increase
from global power balance; consistent with turn-on of TEM



Turbulent transport reduction by sheared flow

® “H-mode” in tokamaks: edge transport barrier associated
with edge flow layer (E- “well”)
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Turbulent transport reduction by sheared flow

® “H-mode” in tokamaks: edge transport barrier associated
with edge flow layer (E- “well”)
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Turbulent transport reduction by sheared flow

® “H-mode” in tokamaks: edge transport barrier associated
with edge flow layer (E- “well”)

T X ® Biglari, Diamond, Terry (BDT 90):
T I I - transport modified by radial
f 1 T t decorrelation or “shearing apart” of
| A eddies
’ '
: l l y ® Flow shear dynamically important if

l l shearing rate comparable to eddy
turnover time



Motivation for basic experiment investigating shear
suppression of transport

® |arge body of work demonstrating shear suppression of

turbulent transport in experiment and simulation [see, e.g.,
Burrell 97, Tynan 09, Terry 00...]

® However, fundamental questions remain about mechanism for
transport reduction: decorrelation models (e.g. BDT)
underpredict suppression (by ~ an order of magnitude). New
ideas: enhanced coupling to damped eigenmodes by shear flow
[ Terry], nonlinear spectral shift [Staebler], etc.

® Role of shear-driven instabilities?: parallel velocity gradient
instability in tokamaks [Barnes, Highcock, et al.]; Kelvin-
Helmholtz, Rotational interchange in linear devices

® Predicting transport in current and future devices (ITER)
requires validation of models against experiment: predicting
shear suppression accurately is absolutely critical



The LArge Plasma Device (LAPD) at UCLA
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® US DOE/NSF sponsored user facility (http://plasma.physics.ucla.edu)-
® Solenoidal magnetic field, cathode discharge plasma

¢ 0.5<B<2kG,n,~10%cm >, T, ~5eV.T: ~ 1eV

® [arge plasma size, | 7/m long, D~60cm (1kG:~300 p;, ~100 ps)
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LAPD Plasma source
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Measurement methodology in LAPD

Use single probes to measure local density, temperature, potential,
magnetic field, flow: move single probe shot-to-shot to construct
average profiles

Add a second (reference) probe to use correlation techniques to
make detailed statistical measurements of turbulence (structure,

etC) End View
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LAPD Plasma Profiles

— No Bias
-- 175V Bias

r (cm)

® |ow field case (400G) (also shown: with particle transport barrier
via biasing™); generally get flat core region with D=30-50cm

® Broadband turbulence generally observed in the edge region

(localized to pressure gradient)
* Carter, et al, PoP 16,012304 (2009)



Turbulence and transport in LAPD
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® Broadband turbulence observed in edge (free energy from
pressure gradient (drift waves) and driven flow (e.g. KH)).
Exponential spectrum often observed [Pace, Shi, Maggs, Morales]

® |arge plasma size allows perp. transport to compete with
parallel losses; profile set by perp transport; confinement
modification apparent in profile changes



Visible light imaging of LAPD turbulence

Fast framing camera (~50k frames per second, ~|10ms total
time), visible light (neutral He), viewed along B



Visible light imaging of LAPD turbulence

Fast framing camera (~50k frames per second, ~|10ms total
time), visible light (neutral He), viewed along B
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Wavenumber spectra from pairs of probes (above),
correlation planes, camera images

Fastest growing linear instability: ke ps ~ | (resistive drift
wave)

Power law? Exponential?



Even though linearly unstable, nonlinear
instability may explain saturated state
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Two-fluid simulations of LAPD turbulence (BOUT++)

Resistive drift wave linearly unstable; however flute-like
fluctuations dominate saturated state

Nonlinear instability drives n=0 perturbations [Friedman, et al. PoP
19, 102307 (2012)]; robust to changes in axial boundary condition

[Friedman et al., PoP in press] (Prior art: Drake, Biskamp, Zeiler, Scott...)



Using biasing to drive cross-field flow

® FElectrode immersed in plasma, biased relative to chamber
wall (tokamak) or plasma source (LAPD)

® Cross-field current driven (e.g. via Pedersen
conductivity), provides torque to spin up plasma

® Following CCT [Taylor 89], technique used widely to
drive flow and generate transport barriers: tokamaks,
stellarators, RFPs, mirror machines ... [Weynants 92, Sakai

93, Boedo 02, Silva 06, ...]

® | APD biasing experiments provide combination of precise
flow control and extensive measurements to provide
detailed response of turbulence to shearing required to
validate theoretical models and simulations



Variable-aperture limiter biased to drive azimuthal flow
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® Variable aperture, for
these studies set to
52cm diameter

® Biased relative to the
plasma source cathode




Variable aperture limiter biased to drive azimuthal flow

Discharge Circuit
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® L|imiters collect electrons, current closes via cross-field
ion current (Pedersen conductivity) and parallel
electron current on cathode-connected field lines

® Flows driven in edge (“core” plasma line-tied to
cathode)



Continuous control on edge flow/shear is achieved,
including flow reversal and zero shear state

T T T T T T T | Jewa faad T T
L

Spontaneous (unbiased)
flow in IDD

limiter edge :

Average edge flow velocity and
shearing rate scale linearly with

Bias Above Anode limiter bias

*e® 97

V, x10° cm/s
N

[ 44 85 :
4 | PP )
L o o K]
[ AAA04 1
{ I 2.7 - 1 - —~
' ‘1‘37 1 ave?ggg\%dregion 1 M) 1 3 :rE
-6 T 09®2x59 | E <
SR (g o s 2 1 a2 a3 » SEESYEEECENECE O b 7 100 9
20 24 28 32 lov O SR T A P S ‘M“.A //,./ m
Radius (cm) o EDD ool =
N '1 3 ° ’ ! =
X ] ‘ A 50 -
| s FroFlow<s e ' : o
Biasing drives flow in EDD, opposing = -2 g-'"Shear i . &
spontaneously induced flow ® 5 ,.""'“ Zero Shearing =
()] -3 E- s :.. M e e e S R e e e i o v o T - 0 8
>l TR e anas . . -
-10 0 10 2 30

Limiter Bias above Anode (Volts)



Confinement enhanced in both flow directions;

degraded at low shear
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Profile steepens, flux decreases with shearing rate

15t' -

£ ke 5

S 10 %, -

e -8 f

= 5F Doocow o o o o © -

O L i Ly v v s a2 T L e a s a L e -

° AP A

1.0 (b) SR 1 -

= I, -.'%. o 1 ]

O 0.8 0% =z % o070 i
”w ®) bo_ 0.5 g =

< 0.6 @% = o8 .

o %0 00 06—~ "015 025

\E/Q' 0.4 O o% 14L, Yem™ ") _

0.2 © 45 © o © E

0.0 :

0 1 2 3 5



Inferred diffusivity drops by a factor of ~40

100




Fluctuation power is reduced with increased shearing
and enhanced at low shear

l... Power (arb, log)
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Turbulent amplitude reduction dominates
transport suppression
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[ AN *“2s ] ® Density fluctuations drop
substantially, electric field
reduction weaker

® Crossphase largely
unchanged (distinct from
previous results: due to
lower shear?)

® Coherent mode
emerges, but causes no
net transport

® Compares well with
BDT, but shouldn’t apply!




Effect of driven rotation on turbulence:
visible imaging



Effect of driven rotation on turbulence:
visible imaging




Radial correlation length decreases with shear

Unfilled = EDD Flow
Filled = IDD Flow
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® Again, fits BDT theory surprisingly well; however, trend in
gradient scale length is similar

® Coherent mode dominates at higher shearing



Radial correlation length decreases with shear
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® Again, fits BDT theory surprisingly well; however, trend in
gradient scale length is similar

® Coherent mode dominates at higher shearing



Coherent modes observed at high flow/shear

® Spatially and temporally coherent mode excited with strong
rotation

® | ocalized to limiter edge (peak of flow)



Coherent modes observed at high flow/shear

100

® Two primary coherent peaks observed, both scale with bias/
flow

® |nteraction/sidebands observed as modes cross



Coherent modes: consistent with low-m
rotational interchange instability

Braginskii two-fluid linear
eigenmode solver; using
experimental profiles

Rotational interchange
(n=0) and drift-
interchange (n=0.5)
modes unstable

Real frequency tracks
observation well with
increasing bias

No net transport caused
by these modes

(Limiter-Anode) V



Turbulence measurements in DIlI-D
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® UCLA group (Peebles) experts in microwave-based diagnostics

Reflectometry, Doppler Backscattering: microwaves launched into
tokamak, reflect off of cutoff; look at reflected or backscattered wave,
measure local density fluctuations and flows, low-k for reflectometry,
higher k (“intermediate”) for DBS [Hillesheim, et al., RSI 80, 083507 (2009)]

Correlation electron cyclotron emission diagnostic: plasma optically thick
at 2nd harmonic EC emission, temperature, temperature fluctuations
from received power [White, et al., RSI 79, 103505 (2008)]



Critical gradients/"stiff” profiles in tokamaks

a/LT crit

Growth rate

Heat Flux or Thermal Diffusivit
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® Beyond temperature-gradient instability threshold, heat flux
increases rapidly

® As you pour in more power, little change in profiles needed to
exhaust heat via turbulent transport: profiles are “stiff”

® Similar to solar wind: observed anisotropy does not exceed
instability thresholds (at least not much): if mirror/firehose is
excited, drives isotropization very effectively



Varying Lt using ECH in DIII-D
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® Electron cyclotron resonant
heating (2nd harmonic) with
steerable antenna (to vary
deposition location)

® Keep total injected power
constant, change localization to
create a range of profiles with
varying L

® Other parameters (density
profile, flow profiles, etc) kept
roughly constant

J.C. DeBoo et al Nucl. Fusion 45 494 (2005)
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The result: Te fluctuations increase beyond
critical gradient
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Consistent with threshold for Trapped Electron Mode
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® Linear growth rate calculations (TGLF) using expt profiles

® C(Crit. gradient consistent with linear threshold for TEM
(temp. gradient driven)

® Mode characteristics (temperature density cross-phase,
propagation direction) consistent

® Below threshold: density gradient driven TEM?



Summary/Outline

® Suppression of turbulent particle transport in LAPD by flow
shear [Schaffner, et al., PRL 109, 135002 (2012)]

® External control of cross-field flow in the presence of

pressure-gradient driven turbulence [might be nonlinear
instability: Friedman, et al., PoP 19, 102307 (2012)]

® Transport decreases with shearing, enhanced at low shear;
reduction due to turbulent amplitude reduction

® Critical gradient response in electron temperature fluctuations
in DIII-D [Hillesheim, et al., PRL |10, 045003 (2013)]

® FElectron temperature gradient varied at constant heating
power using ECH in DIII-D [DeBoo]

® Electron temperature fluctuations increase beyond

threshold value in Lt, same critical gradient for Q. increase
from global power balance; consistent with turn-on of TEM



