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Protoplanetary disks

• Size:

• Temperature:

• Number density: 

• Ionization fraction:

1011–1015 cm

103–101 K

⇠ 10�13

1010—1017 cm�3
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An accretion problem...

• Accretion discs are known to form around young 
stars and compact objects

• Gas can fall on the central object only if it looses 
angular momentum.

• One needs a way to transport angular momentum 
outward to have accretion: 
«angular momentum transport problem»

First idea: molecular viscosity

• Theoretical accretion rate due to viscous 
transport is very small compared to 
observational constrains

• Other ways to extract angular momentum in discs?
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Angular momentum extraction 

• Local turbulence

• Suggested by Shakura & Sunyaev (1973)

• Turbulence leads to enhanced transport 
(«mixing length theory»).

• Definition of a turbulent viscosity

⇥t = �csH (observations)10�3 < ↵ < 1

⌫t
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Angular momentum extraction 

• Jets

• Angular momentum extracted by a jet from 
the disc

• Most of the gas remains in the disc

• Many models need turbulence inside the disc 
to launch jets (e.g. Ferreira & Pelletier 1995)

• Large scale phenomenon which requires large scale 
magnetic fields

Flow direction

Angular momentum
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Some disk instabilities
Local instabilities:

• Magnetorotational instability (MRI): shear driven instability but requires an ionised 
plasma (Velikhov 1959, Chandrasekhar 1960, Balbus & Hawley 1991)

• Subcritical shear instability: probably not efficient enough, if at all (Schartman et al. 2012)

• Baroclinic instabilities: Transport due to waves. Driven by the disk radial entropy profile 
(Petersen et al. 2007, Lesur & Papaloizou 2010)

• Gravitational instabilities: only for massive & cold enough disk (Gammie 2001) 

• Rossby wave instability: requires a local maximum of vortensity (Lovelace et. al 1999)

• Vertical convective instability: Requires a heat source in the midplane (Cabot 1996, 
Lesur & Ogilvie 2010)

Global instabilities:

• Papaloizou & Pringle instability: density wave reflection on the inner edge (Papaloizou & 
Pringle 1985)

• Accretion-ejection instability: spiral Alfvén wave reflection on the inner edge (Tagger & 
Pellat 1999)
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The shearing box model

Problem:

• Computing a full disk is computationally expensive

Local resolution is poor

Boundary conditions

Goal:

• Define a simplified setup which mimics the local properties of an 
accretion disks

Simplifies numerical simulations & boundary conditions

Better convergence properties
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The incompressible shearing 
box model

This set of equations admits a simple solution (incompressible approximation):

With the effective potential:

R0

Mean keplerian shear

⌦(R) ⇠ R�qAssuming

⌦(R0) ⌘ ⌦0

r · u = 0

@tu+ u ·ru = �rP +B ·rB

�2⌦0 ⇥ u�r + ⌫�u

@tB = r⇥ (u⇥B) + ⌘�B

 = �q⌦2
0x

2

u = �q⌦0xey
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The incompressible shearing 
box model

Separate the mean shear from the fluctuations:

u = �q⌦xey + v

Shearing box equations: H
x

y z

r · v = 0

@

t

v � q⌦x@
y

v + v ·rv = �rP +B ·rB � 2⌦⇥ v

+q⌦v
x

ey + ⌫�v

@

t

B � q⌦x@
y

B = r⇥ (v ⇥B)� q⌦B
x

ey + ⌘�B
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Boundary conditions

Vertical and toroidal total magnetic flux conserved

Boundary conditions

• Use shear-periodic boundary 
conditions= «shearing-sheet»

• Allows one to use a sheared Fourier 
Basis

• periodic in y and z (non stratified box)

Courtesy T. Heinemann

x

z y

x

z y

x

z y

mean vertical field mean toroidal field zero mean field
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Spectral methods for 
shearing boxes

Shearing wave

Courtesy T. Heinemann
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Spectral methods for 
shearing boxes

The shearing box involves equations of the type:

Assume Q can be decomposed into:

@Q

@t
� q⌦x

@Q

@y
= H(Q)

Q(t,x) = ˜Q(t) exp
⇥
ik(t) · x

⇤

One has:

@Q

@t
=

hd ˜Q
dt

+ i ˜Q
dk

dt
· x

i
exp

h
ik(t) · x

i

dQ̃

dt
+ iQ̃

dk

dt
· x� iq⌦xky = Ĥ(Q)

Cancel explicit x dependency:

dk
x

dt
= q⌦k

y dQ̃

dt
= Ĥ(Q)

k = k0 + q⌦tkyex
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The Snoopy code
a spectral method for sheared flows

• MHD equations solved in the sheared frame

• Compute non linear terms using a pseudo spectral representation

• 3rd order low storage Runge-Kutta integrator

• Non-ideal effects: Ohmic, Hall, ambipolar (coming soon), Braginskii

• Available online http://ipag.osug.fr/~glesur/snoopy.html

Advantages:

• Shearing waves are computed exactly (natural basis)

• Exponential convergence

• Magnetic flux conserved to machine precision

• Sheared frame & incompressible approximation: no CFL constrain due to the background 
sheared flow/sound speed.

http://ipag.osug.fr/~glesur/snoopy.html
http://ipag.osug.fr/~glesur/snoopy.html
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Magnetorotational instability

Field line

A
B

A

B

Main properties

• Due to an interaction between magnetic tension 
and epicyclic motions

• Not too strong magnetic fields required («weak 
field instability»)

• Need a sufficiently high ionization fraction

Balbus & Hawley 1991, Balbus 2003
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MRI simulations
Typical simulation

2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

t (orbits)

_

Simulation parameters: Re=1000, 
Pm=1, β=1000

3D map of vy (azimuthal velocity)

It works!

Is it the end of the story?
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Magnetic Prandtl numbers in astrophysics

• Prandtl number (Pm) compares the Ohmic diffusion time to the viscous diffusion time.

• In astrophysical objects,                or                ...

• Problem:

Pm ⇠ 10�6 Pm ⇠ 10�5—10�2 Pm ⇠ 10�5—104

Pm ⌧ 1 Pm � 1

0.1 < Pm < 100

Pm � 1
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MRI simulations
Simulations with a mean vertical field

Turbulent transport varies by 2 order of magnitude!

P.-Y. Longaretti and G. Lesur: MRI-driven turbulent transport: the role of dissipation, channel modes and their parasites
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Fig. 4. Transport standard deviation as a function of the time interval τ
used to bin the transport data, for a given run (in this case, Re = 3200,
Rm = 800, and β = 100). This information is used to quantify the error
in the transport from the fit ∝τ−1/2 that is expected to hold for large
enough binning time τ (see text for details).

1/16 1/8 1/4 1 4 8

10
−4

10
−3

10
−2

10
−1

10
0

Prandtl number

tr
an

sp
or

t

 

 

Transport ∝ Pmb, b = 0.34
Transport ∝ Pmb, b = 0.57
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Fig. 5. The dimensionless turbulent radial momentum transport α as a
function of the Prandtl number Pm and the field strength β for various
Reynolds numbers. black: β = 102; blue: β = 103; red: β = 104; !:
Re = 400; +: Re = 800; ♦: Re = 1600; ◦: Re = 3200; ×: Re = 6400;
the green starred data points correspond to the three more resolved runs
at Re = 20 000 and β = 103. Power law fits are also shown for each
value of β.

the initial work of Hawley et al. (1995). However, the varia-
tion of the index of the Prandtl number dependence with field
strength just discussed induces deviations from this scaling.

– There is a weaker, but systematic and significant increase of
the transport with increasing Reynolds number at any given
field strength and Prandtl number. This effect is real: for most
of our runs, this increase is larger than the standard deviation
in the transport, as quantified in the previous subsection. It is
also larger for the smaller Prandtl number values. This indi-
cates that the Prandtl number does not capture all the physics
of the correlation between transport and physical dissipation;
this point is further discussed below.

Our previous investigation was limited to β = 100. In the present
work, the Prandtl number dependence of the transport for this
field strength is consistent with our earlier findings. However,
the transport observed here is reduced by a factor ∼2; this is a
direct consequence of the reduced role played by the channel
mode in our horizontally extended simulation boxes.

For the lowest Prandtl number (1/4) and lowest field strength
(β = 104), only one point is reported in the graph. Our other
runs for this parameter have lower Reynolds numbers, and are
too close to the linear stability threshold of Eq. (23) to sustain
full 3D turbulent motions. These runs show 2D or quasi-2D be-
havior, with very different transport efficiency and behavior. The
data point we have retained might still be weakly affected by
such effects.

As pointed out above, Fig. 5 indicates that the spread with
Reynolds number at a given Prandtl number increases with de-
creasing Prandtl number. In fact, two different regimes can be
noted, one for Pm ≤ 1 and one for Pm = 4.

At Pm = 4, the transport seems to be only weakly depen-
dent on Re (or Rm), at least for large enough Reynolds number:
the transport increases by 10% to 50% (depending on β) while
the Reynolds number is multiplied by a factor of 4. This trend
can also be found in the work of Simon & Hawley (2009), where
the MRI turbulent transport in presence of a toroidal field is in-
vestigated with more emphasis on the Pm > 1 regime. Their
Figs. 6 and 7 show that, for Pm = 2 and 4 at least (the only ones
with enough data in the Pm > 1 regime), the transport increases
steadily with the Reynolds number for Re <∼ 1000 and much
more weakly for Re >∼ 1000.

On the contrary, the spread in Reynolds number for Pm ≤ 1
is substantial, and systematic. Such a spread was not detected in
our earlier investigation, due to the larger fluctuations in trans-
port related to the box aspect ratio, as discussed earlier. In fact,
this dispersion seems to be an effect of the magnetic Reynolds
number. To illustrate this point, the transport is represented in
Fig. 6 as a function of Rm (left panel) and Re (right panel),
for Pm ≤ 1; the colors describe different field strengths (β = 102

to 104 from top to bottom). The statistics in the number of points
at any given Re or Rm is rather low; however, it appears quite
clearly that the dispersion of the points at any given Reynolds
number is substantially larger in Re (with varying Rm) than
in Rm (with varying Re). The largest Reynolds number data
strongly support this conclusion. Furthermore, the fits5 of the
transport as a function of Rm indicate the Rm dependence of the
transport for Pm ≤ 1 is very similar to its Pm dependence as
shown in Fig. 5. This strongly suggests that the Pm dependence
observed on this figure is in fact mostly a Rm dependence for
Pm ≤ 1. Including the Pm = 4 data destroys this correlation,
which strengthens the idea that there are two regimes, depend-
ing on the Prandtl number (a feature that may be related to the
existence of a transition around Pm = 2 in zero net flux shear-
ing box simulations). The relevant results of Simon & Hawley
(2009); although less detailed, are consistent with these findings
(see their Fig. 7).

5. Role of channel and parasitic modes

5.1. Linear physics and turbulent transport

Lesur & Longaretti (2007) concluded that there was no di-
rect connection between the Prandtl dependence of MRI-driven

5 The Re = 20 000 data points have not been included in this fit to
make the comparison between the two dependences in the same condi-
tions.

Page 7 of 11

� = 100
� = 1000
� = 10000

↵

Pm

Longaretti & Lesur (2010)

↵ = ↵(Pm,�)

20000 < Re < 60000
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MRI simulations
Simulations with a mean toroidal field

Simon & Hawley (2009)

840 SIMON & HAWLEY Vol. 707

Figure 5. Time- and volume-averaged stress parameter α as a function of Rm in
the YN simulations; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The time average runs from
50 orbits onward, and the volume average is calculated over the entire simulation
domain. The colors correspond to Re values, and the symbols correspond to
Pm values. Red symbols are Re = 400, green Re = 800, dark blue Re = 1600,
black Re = 3200, pink Re = 6400, and light blue are Re = 12800. Circles are
Pm = 0.25, crosses Pm = 0.5, asterisks Pm = 1, diamonds Pm = 2, triangles
Pm = 4, squares Pm = 8, and X’s are Pm = 16. Note that some of the decayed
turbulence (α = 0) simulations are not plotted for clarity. Increasing Rm results
in larger α values, and for Rm less than 800–1600, the turbulence decays.
(A color version of this figure is available in the online journal.)

Figure 6. Time- and volume-averaged stress parameter α as a function of Re in
the YN simulations; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The time average runs from
50 orbits onward, and the volume average is calculated over the entire simulation
domain. The colors correspond to Rm values, and the symbols correspond to
Pm values. Light blue symbols are Rm = 800, green Rm = 1600, dark blue
Rm = 3200, black Rm = 6400, and red are Rm = 12800. Circles are Pm = 0.25,
crosses Pm = 0.5, asterisks Pm = 1, diamonds Pm = 2, triangles Pm = 4,
squares Pm = 8, and X’s are Pm = 16. Note that some of the decayed turbulence
(α = 0) simulations are not plotted for clarity. Increasing Re leads to decreasing
α values.
(A color version of this figure is available in the online journal.)

different Re values. The clearest trend is that if Rm is large
enough to sustain turbulence, increasing Pm leads to larger α
values. Note that turbulence can be sustained even for Pm less
than unity, if Rm is large enough. At constant Rm, we find that
α ∝ Reδ1 , with δ1 ranging from −0.1 to −0.3 (calculated by
a linear fit to the data in log space for non-decayed turbulence
simulations only). At constant Re value, we find α ∝ Rmδ2

with δ2 in the range 0.4–0.8 and δ2 generally decreasing with
increasing Re.

These results naturally lead to the question of why increasing
ν or decreasing η causes an increase in turbulence. Magnetic
reconnection and dissipation of field lines, either due to an
explicit resistivity or to grid-scale effects, presumably play the
primary role in limiting the amplitude of the MHD turbulence.
Balbus & Hawley (1998) hypothesized that increased viscosity
would inhibit reconnection by preventing velocity motions that
would bring field together on small scales. When Pm > 1, the
viscous length is greater than the resistive one, and magnetic
field dissipation becomes less efficient, leading to an increase in
turbulent stress (e.g., Balbus & Henri 2008). If this hypothesis is

Figure 7. Time- and volume-averaged stress parameter α as a function of Pm;
α ≡ 〈〈ρvxδvy −BxBy〉〉/Po. The time average runs from 50 orbits onward, and
the volume average is calculated over the entire simulation domain. The colors
correspond to Rm values, and the symbols to Re values. Light blue symbols
are Rm = 800, green Rm = 1600, dark blue Rm = 3200, black Rm = 6400, and
red are Rm = 12800. Crosses are Re = 400, asterisks Re = 800, diamonds Re
= 1600, triangles Re = 3200, squares Re = 6400, and circles are Re = 12800.
Note that some of the decayed turbulence (α = 0) simulations are not plotted
for clarity. The average stress increases with increasing Pm.
(A color version of this figure is available in the online journal.)

correct, there may also be a change in the dissipation of kinetic
and magnetic energy into heat. To investigate this possibility, we
carry out an analysis of viscous and resistive heating for several
of the simulations.

Consider the volume-averaged kinetic and magnetic energy
evolution equations, Equations (15) and (16) in Simon et al.
(2009),

K̇ = −
〈
∇ ·

[
v

(
1
2
ρv2 +

1
2
B2 + P + ρΦ

)
− B(v · B)

]〉

+
〈(

P +
1
2
B2

)
∇ · v

〉
− 〈B · (B · ∇v)〉 − Ġ − Qk,

(15)

and

Ṁ = −
〈
∇ ·

(
1
2
B2v

)〉
−

〈
1
2
B2∇ · v

〉
+ 〈B · (B · ∇v)〉 − Qm.

(16)
Here, K̇ and Ṁ are the time derivatives of the volume-
averaged kinetic and magnetic energies, respectively. The time
derivative of the volume-averaged gravitational potential energy
is given by Ġ, and Qk and Qm are the volume-averaged
kinetic and magnetic energy dissipation rates, respectively. The
gravitational potential is Φ = qΩ2

(L2
x

12 − x2
)
.

We determine Qk and Qm for select YN models by computing
the time average of each of the source terms in the energy
evolution equations using 200 data files equally spaced in time
over 20 orbits. We assume that Ġ is zero in the time average;
the analysis of Simon et al. (2009) found that Ġ is always
negligibly small. The time derivatives, K̇ and Ṁ , are calculated
by differentiating the volume-averaged kinetic and magnetic
energy history data with respect to time and then sampling these
data to the times associated with the data files. The dissipation
terms Qk and Qm, which include both physical and numerical
effects, are the remainder after all the other terms are calculated.

Figure 8 shows the ratio of the time average 〈Qk〉 to 〈Qm〉
as a function of Pm and α for selected YN runs. The colors
and symbols are the same as in Figure 6. The time average is
calculated from t = 70–90 orbits for YNRe400Pm16 (black
X) and YNRe12800Pm0.25 (blue circle), t = 110–130 orbits
for YNRe800Pm2 (green diamond) and YNRe800Pm8 (black

� = 100

↵ = ↵(Pm,�, topology)

• Weaker transport with a mean toroidal field

• Same trend with Pm

No. 1, 2009 VISCOUS AND RESISTIVE EFFECTS ON THE MRI WITH A NET TOROIDAL FIELD 839

dimensionless stress, where the time average is calculated on-
ward from orbit 50.

The column labeled “〈〈Λ〉〉” gives a time- and volume-
averaged Λ value in the final state of each simulation. Unlike
Rm, Λ will change with the evolving magnetic field strength.
Beginning with Equation (10), we write

β = 2c2
s 〈ρ〉

〈B2〉
(12)

to give

〈Λ〉 = Rm

c2
s

〈B2〉
〈ρ〉

, (13)

where the angled brackets denote a volume average. One could
also volume average the square of the Alfvén speed in the
calculation of β instead of averaging B2 and ρ separately (e.g.,
β = 2c2

s /〈v2
A〉). We have calculated 〈Λ〉 using both types of

averages for several frames in the saturated state of a few
simulations. We have found at most a factor of 2 difference
between the different calculations. Since 〈B2〉 varies by a similar
factor in the saturated state (see Figure 4), this factor of 2
difference is within the uncertainty of Λ at any given time. The
time average of the volume-averaged Elsasser number, 〈〈Λ〉〉,
as given in the table, is calculated from orbit 50 until the end
of the simulation. For the decayed turbulence simulations in
which the turbulence has not fully decayed by orbit 50, the
time average is calculated onward from a point at which the
volume-averaged magnetic energy is constant in time. Note that
for these decayed turbulence simulations, 〈〈Λ〉〉 should equal the
β = 100 value associated with the net toroidal field, as given
in Table 2. However, because of the evolution of the net By (see
Section 2), the value of 〈〈Λ〉〉 after the turbulence has decayed
will be slightly different than the β = 100 value.

Since the magnetic field varies within the domain, the local
value of Λ can also vary from the overall average. Histograms
showing the number of grid zones with v2

A of a certain value
reveal that the percentage of grid zones that have Λ < 1 is at
most ∼0.01%. For the sustained turbulence models, 〈〈Λ〉〉 is
typically on the order of 100–1000; the smallest value for a run
with sustained turbulence is 106, and the largest value associated
with a run that decays is 30.

The behavior of the MRI is often characterized by the
vertical component of the Alfvén speed, and as such, we have
also calculated the Elsasser number using only the vertical
component of the magnetic field,

〈Λz〉 = Rm

c2
s

〈B2
z 〉

〈ρ〉
, (14)

where the angled brackets denote a volume average. We have
calculated the time average of this number, 〈〈Λz〉〉, onward from
orbit 50 for all the sustained turbulence YN simulations. This
number is displayed in the last column of Table 3. The decayed
turbulence simulations have Bz approaching zero, and we do not
calculate a vertical Elsasser number for these. Again, we cal-
culated the vertical Elsasser number both by averaging B2

z and
ρ separately as well as by averaging the ratio B2

z /ρ. We com-
pared the two calculations for several frames and found at most
a factor of 1.3 difference between them.

The 〈〈Λz〉〉 values for the runs that have Rm closest to the
critical value are on the order unity, with the smallest value
being 3.87. As touched upon by Fleming et al. (2000), growth
of the vertical field MRI is largely suppressed for v2

Az/(ηΩ) ! 1

Figure 4. Time evolution of volume-averaged magnetic energy density normal-
ized by the gas pressure for the YN runs with Re = 25600 (black curve) and
Re = 1600 (colored curves). The volume average is calculated over the entire
simulation domain. The colors indicate Pm; green corresponds to Rm = 800
(Pm = 0.5), light blue to Rm = 1600 (Pm = 1), red to Rm = 3200 (Pm = 2),
and dark blue to Rm = 6400 (Pm = 4). Increasing Rm (Pm) leads to enhanced
turbulence.
(A color version of this figure is available in the online journal.)

(i.e., for vertical Elsasser numbers less than unity). That we
find 〈〈Λz〉〉 ∼ 1 close to the “decayed turbulence” regime
may suggest that the vertical field MRI plays an important
role in the sustained nonlinear turbulence of these toroidal
field simulations. One trend to note from these data is that
the ratio of 〈〈Λz〉〉 to 〈〈Λ〉〉 increases with both decreasing ν
and decreasing η; the vertical magnetic energy becomes a larger
fraction of the total magnetic energy as either dissipation term is
reduced.

The evolution of the magnetic energy in a typical set of
simulations is shown in Figure 4. For these runs, Re = 1600
and Rm varies by factors of 2 from Rm = 800 to 6400.
The black line shows the initial evolution of YLRe25600Pm4,
whose state at 36 orbits serves as the initial condition. It is
clear that decreasing the resistivity (increasing the Pm number)
enhances the saturation level, and for a large enough resistivity,
the turbulence decays.

To quantify the dependence of the saturation amplitude on the
dissipation coefficients, we plot the α values for the ensemble
of simulations as a function of Re, Rm, and Pm. Figure 5 shows
α versus Rm; the color indicates Re value, and the symbols
correspond to the Pm value. The simulations with α = 0 are
those where the turbulence decayed away, which include all
simulations with Rm " 800 and the Re = 400, Rm = 1600
simulation. Overall there is a general trend of increasing α value
with decreasing resistivity.

The dependence of α on Re is shown in Figure 6. Here, the
color indicates the Rm value, whereas Pm is again represented by
a symbol. Evidently, if the resistivity is low enough, increasing
the viscosity will increase the α values. However, consider the
YN simulations with Rm = 1600. These simulations suggest
that if the resistivity is close to some critical value, increasing
the viscosity will cause the turbulence to decay. Another
feature of note is that as Re increases, the range of α for
different Rm values becomes smaller, and α appears to converge
to ∼0.02–0.04 for all Rm. This could indicate that as ν
and η decrease, their influence on the turbulence level might
decrease. However, for large values of Re or Rm, the dissipation
lengthscales are under-resolved, and higher resolution is needed
to test this possibility.

We plot the dependence of α on Pm in Figure 7. In this figure,
the colors represent varying Rm, while the symbols denote
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MRI simulations
Simulations with no mean field

aka «MRI dynamo»

Fromang et al. 2007

1130 S. Fromang et al.: MHD turbulence in accretion disks. II.
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Fig. 11. Summary of the state (turbulent or not) of the flow in an (Re,Pm) plane (left panel) and in an (Re,ReM) plane (right panel) for the
models presented in this paper. In the later, the dashed line represents the Pm = 1 case. On both panels, “YES” means that a non vanishing
transport coefficient α was measure while “NO” means that MHD turbulence eventually decays: α = 0. All cases use a resolution (Nx,Ny, Nz) =
(128, 200, 128), except the models appearing in a solid squared box, for which the resolution was doubled. The model appearing in a dashed line
squared box corresponds to the marginal model described in Fig. 7.

Fig. 12. Snapshots of By in the (x, z) plane at time t = 66 in
model 256Re12500Pm2. The structure of the flow and the typical length
scale of the fluctuations are similar to that obtained in model STD128 in
Paper I (see the middle panel of Fig. 4 in Paper I with which the present
figure should be compared).

Paper I, we found a time averaged value Ly(By) = 0.045, very
close to the value 0.04 we obtained for model STD128.

It is also possible to compare the results of model STD64
of Paper I to the results of the present paper. We recall here
that we found the rate of angular momentum transfer in this
model to be such that α ∼ 0.004 when time averaged over
the simulation. For model STD64, we estimated in Paper I that
ReM ∼ 104 and a similar value for the magnetic Prandtl num-
ber as for model STD128. This would correspond to Reynolds
number somewhat smaller than 10 000. In the present paper,
we found that α ∼ 0.01 for model 128Re3125Pm4, for which
Re = 3125 and Pm = 4, while model 128Re3125Pm2, hav-
ing Re = 3125 and Pm = 2 was shown to decay. It is there-
fore tempting to identify model STD64 with a model that would
be intermediate between the last two cases. Using the PENCIL
code, we ran such a model, having Re = 3125 and Pm = 3, and
found α = 0.007 which is close to the result of model STD64.

We want to stress, however, that it would be dangerous to
push such comparisons further than that. Indeed, we demon-
strated in Paper I that numerical dissipation generally departs
from a pure Laplacian dissipation in ZEUS. Moreover, we
stressed in Paper I that an accurate estimate for the magnetic
Prandtl number is difficult to obtain for a given simulation, as it
depends on the nature of the flow itself. A one to one compari-
son between the results of Papers I and II is therefore difficult to
carry and may not bear much significance.

5.2. Small scales

The results of this paper together with Paper I indicate the impor-
tance of flow phenomena occurring at the smallest scales avail-
able in a simulation, at least at currently feasible resolutions. In
fact the importance of small scales determined by the transport
coefficients is not unexpected when one considers previous work
on the maintenance of a kinematic magnetic dynamo.

Although a kinematic dynamo considers only the induction
equation with an imposed velocity field, some issues arising in
that case may be relevant, especially if one wishes to consider
the likely behaviour of turbulence driven by the MRI when the
transport coefficients are reduced to very small values.

If a dynamo is to be maintained in a domain such as a shear-
ing box with no net flux, one would expect that the magnitude of
a magnetic field could be amplified from a small value through
the action of some realised velocity field. Furthermore if such an
amplification occurs within a specified time scale and for arbi-
trarily small resistivity, it would be classified as a fast dynamo.
In the special case when the imposed velocity field is stationary
Moffatt & Proctor (1985) have shown that the field produced by
such a dynamo must have a small spatial scale determined by
the resistivity. A well known example of this type is generated
by the so called “ABC” flow (see Teyssier et al. 2006, and ref-
erences therein). This example also shows that certain quantities
such has the growth rate of the dynamo do not have a simple de-
pendence on magnetic Reynolds number when that is relatively
small and thus caution should be exercised in making any simple
extrapolation.

Although the case of a steady state velocity field is rather
special, the result can be very easily seen to hold more generally

See also F. Rincon’s talk
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MRI simulations
Typical spectrum

for kinetic energy?K�3/2

Mean z field, Pm=1/4
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S. Fromang: High resolution simulations of the MRI

Fig. 2. Top panel: kinetic (solid line) and magnetic (dashed line) energy
power spectrum for model Re12500, time averaged over twenty snap-
shots between t = 90 and t = 120. The dotted line shows a power law
line with index −3/2 for the purpose of comparison. Bottom panel: ki-
netic energy power spectra compensated by 1 (dotted line), 3/2 (solid
line) and 5/3 (dashed line). Both panels are suggestive of a k−3/2 spec-
trum in the range 30 < k < 100.

the dotted line shows a pure power-law with the index −3/2 that
nicely fits the solid line of the plot. By analogy with hydrody-
namic turbulence it is tempting to associate the large scale end
of the power-law part of the spectrum with an injection length
linj ∼ 2π/kmin ∼ 0.3 H. Similarly, the small scale end can be
associated with the viscous cut-off length and is found to be
lvisc ∼ 2π/kvisc ∼ 0.06 H. This is about 32 cells at that reso-
lution and is thus well-resolved by the code. Furthermore, re-
sults obtained in the kinematic regime of incompressible and
homogeneous MHD turbulence suggest that the resistive length
lres ∼ Pm−1/2lvisc (Schekochihin et al. 2004). Thus, lres is of or-
der 16 cells and also well resolved, which shows that numeri-
cal dissipation is most likely negligible in this simulation. Given
the still limited resolution of model Re12500, the reliability of
the power-law exponent mentioned above can however be ques-
tioned: for that purpose, the bottom panel of Fig. 2 displays three
compensated spectra of EK, kEK (dotted line), k3/2EK (solid line)
and k5/3EK (dashed line) respectively. First, the figure illustrates
the difficulty of a reliable determination of the exponent. Indeed,
the power-law extends over less than a decade in wavenumber.
Nevertheless, the dashed line, which unambiguously rises over
the interval of 10 < k < 100, excludes a k−5/3 spectrum and
rather suggests an exponent larger than −5/3. The dotted line on
the other hand suggests −1 as an upper limit. Finally, the solid
line suggests k−3/2 as a tentative fit for the power-law range of the
spectrum (30 < k < 100). Finally, Fig. 3 (top panel) compares
the shape of EK in model Re3125 (dotted line), Re6250 (dashed
line) and Re12500 (solid line). For all models, the kinetic energy
power spectrum peaks at k ∼ 10–20. For larger wavenumbers,

Fig. 3. Top panel: plot of EK for model Re3125 (dotted line), Re6250
(dashed line) and Re12500 (solid line). The dotted line shows a power-
law line with the index −3/2 for comparison. As Re and Rm increase,
the kinetic energy display an increasing region well-fitted by a power
law with the index −3/2, while the viscous cut-off region moves to
higher k values. Bottom panel: same as the top panel, but for the quan-
tity kEM. On both panels the insets reproduce the results of Fromang
& Papaloizou (2007) for model STD64 (dotted line), STD128 (dashed
line) and STD256 (solid line).

the k−3/2 power-law becomes more and more apparent as the
Reynolds number increases. The bottom panel of Fig. 3 plots the
quantity kEM for the three simulations. The peak of each curve
thus provides an estimate of the scale at which magnetic energy
is located. It is found to lie at kpeak ∼ 30–40, 50–60 and 70–80
respectively when Re = 3125, 6250 and 12500. In other words,
the scale at which most of the magnetic energy is located moves
toward smaller and smaller scales as Rm is increased. This is
different from the results reported by Haugen et al. (2003), but
not unexpected given existing theories of small scale dynamos
with large Pm (Schekochihin et al. 2002a,b). On both panels, the
small insets plot the spectra obtained by Fromang & Papaloizou
(2007) without explicit dissipation. Aside from the decrease of
their amplitude with resolution, the most noticable differences
with the results presented here are twofold: first, the kinetic en-
ergy power-spectra appear flatter at intermediate wavenumbers.
In addition, there is more energy (both kinetic and magnetic) at
the smallest scales of the box.

3.3. Correlation length

The shape of the kinetic energy power-spectrum described above
suggests an injection length linj that appears to be independent
of Re for the range of the Reynolds numbers investigated here.
However, the shell average involved in its derivation washes out
all information about the anisotropy of the turbulence. This can

Page 3 of 4

No mean field, Pm=4

Lesur & Longaretti 2011
Fromang 2010
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Energy injection

• Injection scale not well defined

• MRI is active on a broad range of scales
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Anisotropy

G. Lesur and P.-Y. Longaretti: MRI non-linear energy transfers. I.
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Fig. 2. Energy Injection spectrum at Pm = 0.0625 (left) and Pm = 0.25 (right). Although the injection is significantly reduced at small Pm, shape
of the spectrum is similar and dominated by the largest scale.
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Fig. 3. Bidimensional magnetic energy spectra at Pm = 0.25. Left: (kx, kz) spectrum, averaged in ky. Centre: (kx, ky) spectrum, averaged in kz. Right:
(ky, kz) spectrum averaged in kx . Each contour correspond to a factor 10 in magnetic energy.

the IK phenomenology. Moreover, the magnetic field spectrum
does not follow any well-defined power law, as expected from
the wide and overlapping injection (see below) and dissipation
spectra, indicating that the spectrum we get is not an inertial
spectrum. We are therefore forced to conclude that although the
kinetic spectrum looks like an IK or Kolmogorov spectrum, it
is described neither by the IK or Kolmogorov phenomenologies
nor by recent extensions (Boldyrev 2005).

Changing the magnetic Prandtl number does not change the
power-law index for the kinetic energy. We note, however, two
major effects: the overall spectra amplitudes are reduced and
the dissipation scales move to larger scale as one reduces Pm.
These two effects are expected since it is known that smaller Pm
turbulence is associated with lower transport efficiency hence a
weaker injection of energy in the cascade. This effect is con-
firmed by the injection spectra (Fig. 2), which are significantly
reduced at smaller Pm.

We note that the energy injection peaks at the largest scale
of the box, although injection still exists at k ∼ 10. Therefore,
although a power-law spectrum is found for 2 < k < 10, this
spectrum cannot be described as an “inertial range” since energy
is still injected at these intermediate scales.

We present in Fig. 3 bidimensional spectra of magnetic en-
ergy for Pm = 0.25. Kinetic spectra are not shown as they

share essentially the same properties. These spectra were ob-
tained by averaging 3D energy spectra over 40 orbits and tak-
ing the average in the kx, ky, or kz directions. We first note a
strong anisotropy in the (kx, ky) plane which indicates that trail-
ing shearing waves (kxky > 0) have more energy than leading
shearing waves (kxky < 0). As we see below, this results in non-
zero shear transfer terms.

Looking at the aspect ratio of the energy contours, we see
that turbulence is slightly less anisotropic at large k than at small
k (the contours are less “elongated” at large k), although com-
plete isotropy is not yet reached in this simulation. Let us, how-
ever, point out that the spectral truncation (due to the finite res-
olution) tends to deform the contours at large k, which might
accelerate the return to isotropy. One should therefore perform
higher resolution runs (or at least double Ny) in order to confirm
this return to isotropy. In principle, one would expect a return
to isotropy at small scales if the non-linear transfer terms domi-
nate all the other terms (injection, body forces) at large enough
k. However, this is not always the case (e.g. in the presence of a
strong mean magnetic field).

The (kx, kz) spectrum shows that turbulence is essentially
isotropic at large k in that plane. For k ∼ 1, we find a slight
anisotropy where modes with kz ! 0 are favoured. This is prob-
ably a result of large-scale MRI unstable modes, which all have

A17, page 5 of 10

• No anisotropy associated to the guide field (         )

• Strong x-y anisotropy due to the shear
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Magnetic & Cross helicity

Magnetic helicity cascade 
arguments seem to be 

irrelevant
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Probing the turbulent cascade

Consider the energy budget for a given Fourier mode

Energy transfers are due to nonlinear terms

k

p q In the triad interaction, energy 
is transferred from k to q. 

p is an intermediate.

@tv = �v ·rv +B ·rB + . . .

@tB = �v ·rB +B ·rv + . . .

@t
|v̂k|2

2
= �

X

q+p=k

i(v̂⇤
k · v̂q)(v̂p · k) +

X

q+p=k

i(v̂⇤
k · b̂q)(b̂p · k) + . . .

@t
|B̂k|2

2
= �

X

q+p=k

i(b̂⇤k · b̂q)(v̂p · k) +
X

q+p=k

i(b̂⇤k · v̂q)(b̂p · k) + . . .
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Probing the turbulent cascade

One defines spectral transfer functions as Alexakis et al. (2007):

Introduce shell filtered fields

BK(x) =

X

K<|k|K+1

b
B(k) exp(ik · x)

• Tij(Q,K): Transfer rate of energy (kinetic or magnetic) from shell Q to shell K

• CAUTION: Transfer functions should be computed with the same numerical algorithm as the 
one used to evolve the flow

vK(x) =

X

K<|k|K+1

b
v(k) exp(ik · x)

Tvv(Q,K) = �
Z

vK · (v ·rvQ) dx
3

Tbb(Q,K) = �
Z

BK · (v ·rBQ) dx
3

Tbv(Q,K) =

Z
vK · (B ·rBQ) dx

3

Tvb(Q,K) =

Z
BK · (B ·rvQ) dx

3
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1/H k1/lν

ET(k)

Q K

Tij(Q,K) > 0

Transfers: visual definition
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Turbulent energy fluxes

Energy fluxes in spectral space:
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(4)
Energy fluxes driven by the mean shear (specific to shearing waves)

k(t) = k0 + q⌦k0ytexwith:
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Shear flux interpretation
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Nonlinear transfer: Fluxes

• No inertial range

• Dominated by Magnetic energy flux
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Nonlinear transfers: locality

✤ Tuu and Tbb are local.

Transfer function Tuu and Tbb: K=1; 5; 20
A&A 528, A17 (2011)
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Fig. 7. Transfers function Tvv(Q,K) and Tbb(Q,K) in the Pm = 0.25 run for K = 1; 5; 20. These transfers are local in Fourier space (see text).
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Fig. 8. Transfers function Tvb(Q,K) and Tbv(Q,K) in the Pm = 0.25 run for K = 1; 5; 20. These transfers are non-local in Fourier space (see text).

through non-linear terms. This direct interaction could of course
explain the correlation observed between Pm and the turbulent
transport of angular momentum α (Longaretti & Lesur 2010).
However, it should be pointed out that non-local transfers have
already been found in isotropic MHD turbulence (e.g. Alexakis
et al. 2007). Therefore, MRI turbulence is not special regarding
the nature of these non-linear transfers.

Although some non-linear terms are found to directly con-
nect injection and dissipation scales in current simulations, one
might wonder if this could be true in a more realistic setup where
the injection and dissipation scales are separated by a wide range
of scales (typically 1010). In other words, what is the maximum
scale separation these terms can connect? A partial answer to
this question is given by Aluie & Eyink (2010). To describe their
result, let us define the structure functions:

δvl,p = 〈|u(x + l) − u(x)|p〉. (24)

In the inertial range the structure function depends only on |l| and
δvl,p ∝ lζp , where ζp is the structure function index of order p. It
is then possible to derive an upper bound to the non-linear trans-
fer terms thanks to the Hölder inequality. Applying this proce-
dure to the non-local transfer Tub, Aluie & Eyink (2010) found

|Tub(Q,K)| < (const.)Q1−ζu
3 /3K−2ζb

3 /3, (25)

where Q and K are dyadic (octave) wavenumbers and K > Q/2.
Similar terms can be obtained for Tbu and K < Q/2. If one as-
sumes Iroshnikov-Kraichnan theory, one has ζu

3 = ζ
b
3 = 3/4. In

constrast, considering Goldreich-Sridhar (GS) phenomenology,
which should be valid for MRI turbulence, one gets ζu

3‖ = ζ
b
3‖ =

3/2 and ζu
3⊥ = ζ

b
3⊥ = 1. In all these cases, (25) indicates that the

non-locality of these transfer terms cannot extend over several
decades, with a typical scaling Tub(Q,K) ∼ ε(K/Q)−2/3 for GS
turbulence (with ε the usual turbulence energy injection rate).

We therefore conclude that the non-locality in Fourier space
is somewhat relative. Although Tub and Tbu are non-local com-
pared to Tuu and Tbb, these terms should be local when one

considers transfers over several decades. Unfortunately, sepa-
rating the injection scale from the dissipative scales by several
decades is numerically difficult. It is even harder for MRI tur-
bulence since the injection term is rather broad in spectral space
compared to forced turbulence. Assuming the injection and dis-
sipation scales, both spread over one decade in Fourier space,
one typically needs 20 0003 simulations to get a 2-decade iner-
tial range in which non-local transfers are significantly reduced.
This kind of resolution is for the moment out of reach of the best
computational facilities.

Nevertheless, we can conjecture that if the Pm−α correlation
is actually due to the non-local transfers, then it should vanish
when the injection and dissipation scales are well separated, as is
the case in some accretion discs. Although this conclusion looks
rather reassuring for the relevance of today simulations regard-
ing small-scale dissipation, it tells us neither what the asymptotic
value of α is in this limit nor how MRI turbulence behaves when
the scale separation is not achieved, a situation that probably oc-
curs in the inner regions of protoplanetary discs where Λη is not
very large.

Appendix A: Shearing-wave approach to the shear
transfer term

The shell-filter decomposition can be properly defined using a
projector operator Π on the field F in the sheared frame:

[ΠK j (F)](x′, t) =
∑

k′∈Σ j(t)

Fk′ (t) exp
(
ik′ · x′) (A.1)

where Σ j is the shell containing all the shearing waves with a
norm between Kj − δK/2 and Kj + δK/2:

Σ j(t) =
{
Kj − δK/2 < |k′ + qΩk′ytex | ≤ Kj + δK/2

}
. (A.2)

Our notation indicates that the projected F is function of space
and time. Also, [ΠK j (F)] is real for real fields F.

A17, page 8 of 10
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Nonlinear transfers: locality

• Tub and Tbb have large «wings»: non locality (see also Alexakis et al. 2007).

• Direct communication from the largest scales to the dissipation scales.

• Non locality is a plausible explanation to the Pm-α effect observed.

Transfer function Tub and Tbu: K=1; 5; 20

A&A 528, A17 (2011)
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Fig. 7. Transfers function Tvv(Q,K) and Tbb(Q,K) in the Pm = 0.25 run for K = 1; 5; 20. These transfers are local in Fourier space (see text).
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Fig. 8. Transfers function Tvb(Q,K) and Tbv(Q,K) in the Pm = 0.25 run for K = 1; 5; 20. These transfers are non-local in Fourier space (see text).

through non-linear terms. This direct interaction could of course
explain the correlation observed between Pm and the turbulent
transport of angular momentum α (Longaretti & Lesur 2010).
However, it should be pointed out that non-local transfers have
already been found in isotropic MHD turbulence (e.g. Alexakis
et al. 2007). Therefore, MRI turbulence is not special regarding
the nature of these non-linear transfers.

Although some non-linear terms are found to directly con-
nect injection and dissipation scales in current simulations, one
might wonder if this could be true in a more realistic setup where
the injection and dissipation scales are separated by a wide range
of scales (typically 1010). In other words, what is the maximum
scale separation these terms can connect? A partial answer to
this question is given by Aluie & Eyink (2010). To describe their
result, let us define the structure functions:

δvl,p = 〈|u(x + l) − u(x)|p〉. (24)

In the inertial range the structure function depends only on |l| and
δvl,p ∝ lζp , where ζp is the structure function index of order p. It
is then possible to derive an upper bound to the non-linear trans-
fer terms thanks to the Hölder inequality. Applying this proce-
dure to the non-local transfer Tub, Aluie & Eyink (2010) found

|Tub(Q,K)| < (const.)Q1−ζu
3 /3K−2ζb

3 /3, (25)

where Q and K are dyadic (octave) wavenumbers and K > Q/2.
Similar terms can be obtained for Tbu and K < Q/2. If one as-
sumes Iroshnikov-Kraichnan theory, one has ζu

3 = ζ
b
3 = 3/4. In

constrast, considering Goldreich-Sridhar (GS) phenomenology,
which should be valid for MRI turbulence, one gets ζu

3‖ = ζ
b
3‖ =

3/2 and ζu
3⊥ = ζ

b
3⊥ = 1. In all these cases, (25) indicates that the

non-locality of these transfer terms cannot extend over several
decades, with a typical scaling Tub(Q,K) ∼ ε(K/Q)−2/3 for GS
turbulence (with ε the usual turbulence energy injection rate).

We therefore conclude that the non-locality in Fourier space
is somewhat relative. Although Tub and Tbu are non-local com-
pared to Tuu and Tbb, these terms should be local when one

considers transfers over several decades. Unfortunately, sepa-
rating the injection scale from the dissipative scales by several
decades is numerically difficult. It is even harder for MRI tur-
bulence since the injection term is rather broad in spectral space
compared to forced turbulence. Assuming the injection and dis-
sipation scales, both spread over one decade in Fourier space,
one typically needs 20 0003 simulations to get a 2-decade iner-
tial range in which non-local transfers are significantly reduced.
This kind of resolution is for the moment out of reach of the best
computational facilities.

Nevertheless, we can conjecture that if the Pm−α correlation
is actually due to the non-local transfers, then it should vanish
when the injection and dissipation scales are well separated, as is
the case in some accretion discs. Although this conclusion looks
rather reassuring for the relevance of today simulations regard-
ing small-scale dissipation, it tells us neither what the asymptotic
value of α is in this limit nor how MRI turbulence behaves when
the scale separation is not achieved, a situation that probably oc-
curs in the inner regions of protoplanetary discs where Λη is not
very large.

Appendix A: Shearing-wave approach to the shear
transfer term

The shell-filter decomposition can be properly defined using a
projector operator Π on the field F in the sheared frame:

[ΠK j (F)](x′, t) =
∑

k′∈Σ j(t)

Fk′ (t) exp
(
ik′ · x′) (A.1)

where Σ j is the shell containing all the shearing waves with a
norm between Kj − δK/2 and Kj + δK/2:

Σ j(t) =
{
Kj − δK/2 < |k′ + qΩk′ytex | ≤ Kj + δK/2

}
. (A.2)

Our notation indicates that the projected F is function of space
and time. Also, [ΠK j (F)] is real for real fields F.
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The MRI turbulent cascade

• nonlocal transfers observed in MRI turbulence

• Energy injection on a broad range of scale

• The global behaviour of MRI (and MHD) turbulence depends on small scale physics!
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A Limitation to nonlocal transfers?

• One can show (Aluie & Eyink 2010) that non local transfers are bounded:

• Which gives for Goldreich-Sridhar phenomenology:

• If the scale separation is wide enough, one looses direct energy transfers 
between transport and dissipation scales

Structure function indices

One should loose the Pm-alpha correlation at large enough Rm.
However, this requires ~10,0003 grid points.

dv_p(l)=<|v(x+l)-v(x)|^p>

Structure function index:
dv_p(l) \propto l^xi_p

where xi_p is the function 

|Tub(Q,K)| < (const.)Q1�⇣u
3 /3K�2⇣b

3/3

|Tub(Q,K)| ⇠ "(K/Q)�2/3
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Conclusions

• MRI driven turbulence is highly sensitive to small scale processes

• Strong anisotropy at all scales due to the shear

• Energy injection happens on a wide range of scales

• Helicities (magnetic & cross) don’t seem to be important

• Non-local energy transfers are clearly identified between the box scale and 
the dissipation scales

Current numerical results are biased by the 
absence of a proper scale separation
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Thank you for your attention


