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Most of the visible universe: 
Turbulent magnetized plasmas 

Black hole accretion disks 

Stellar activity 



The “big power law” in the sky 
No. 1, 2010 EXTENDING THE BIG POWER LAW IN THE SKY WITH WHAM 857

Figure 5. WHAM estimation for electron density overplotted on the figure of
the Big Power Law in the sky figure from Armstrong et al. (1995). The range
of statistical errors is marked with gray color.

in Armstrong et al. (1995) agrees well with the spectrum of the
density fluctuations measured at scales of 1017 m, if we assume
that the scale height of the free–free emitting layer is 1800 pc.
The found spectrum amplitude F0 = 3 × 10−4m−20/3 is within
the error bar from the value 3.2 × 10−4m−20/3 found by Cordes
et al. (1991) from pulsar scintillations. This is a remarkable
extension of the Big Power Law in the sky.

This is suggestive of the energy being injected at scales of
40÷150 pc in the Galaxy and cascading up to very small scales.
Below we discuss whether this case is a plausible one.

Does this picture of the large-scale turbulent energy cascade
look reasonable? Density information alone cannot answer
this question. Turbulence is a dynamical process in which
density can be used only as a tracer. More direct information
is available through velocity studies. Our estimation is also in
agreement with the expected value of 100 pc associated with
supernova explosions (see for instance Haverkorn et al. 2008).
Studies in Chepurnov et al. (2009) of the velocity turbulence
using the velocity coordinate spectrum (VCS) provide a good
fitting of the turbulence model when the injection scale is
taken to be 140 ± 80 pc (VCS uses Fourier-transformed over
velocity coordinate spectral data to get analytically predictable
data measure, see Lazarian & Pogosyan 2000). In addition,
MHD simulations in Cho & Lazarian (2003) indicate that
for subsonic turbulence the density spectrum follows well the
velocity spectrum, which is Kolmogorov. This is, however, not
true for supersonic MHD turbulence, for which, according to
Beresnyak et al. (2005), the density spectrum gets shallow.

We feel that the issue of the spectral slope does require
further study. With our limited dynamical range we could test
the consistency of the spectral index to the Kolmogorov one.
Discontinuous structures, e.g., ionized ridges of clouds make
the spectrum more shallow.

What is the Mach number of the free–free emitting layer in our
Galaxy? This question was addressed by Hill et al. (2008), who

compared the PDFs obtained via MHD simulations in Kowal
et al. (2007) and the PDFs of WHAM data. As a result, a
conclusion that the sonic Mach number of turbulence in the
free–free emitting layer, which is also frequently called the
Reynolds layer, is around 2. This is close to the subsonic range
and therefore we do not expect to see substantial deviations from
the Kolmogorov scaling for the random density.

All in all, the arguments above are consistent with the idea
that the large scale turbulence in the Reynolds layer and small
scale turbulence constituting the Big Power Law in Armstrong
et al. (1995) are the parts of the universal turbulence cascade.
This is also consistent with other arguments; for instance, with
the theoretical arguments on the energy injection in turbulence.
Both of the leading ideas on the injection of turbulent energy,
i.e., via supernovae explosions and via the magnetorotational
instability, inject energy at a large scale, e.g., larger than 30 pc.
This energy is bound to create a cascade in high Reynolds
number interstellar medium. Therefore the emergence of the
extended turbulent cascade is expected.

The present study shows the consistency of the data with
the Kolmogorov cascade in interstellar gas spanning over 10
decades. Further studies combining various data sets, including
those of velocity and magnetic field will clarify the nature of
the turbulence cascade in the Galaxy.

We thank the WHAM team for their great work and for
making the data publically available. The Wisconsin H-Alpha
Mapper is funded by the National Science Foundation. We
acknowledge the NSF grant AST 0808118 and the support from
the NSF funded Center for Magnetic Self-Organization. We
thank the anonymous referee for the useful comments which
improved our paper substantially.

APPENDIX

REMOVING THE SYSTEMATIC ERROR

The column density WHAM map suffers from systematic
error, related to uncertainty of zero levels in different observation
blocks. It can be corrected by introducing artificial constant
shifts for each observation block, which are set by minimization
of signal differences on block borders.

Let us denote the initial signal level difference between the
ith and jth blocks by cij , if they have a common border3

(cij = −cji), di—correction shift to be found for the ith
block, 1/wij —weight for adjusting of involvement of the border
between the ith and jth blocks (wij = wji), Ω ≡ {(i, j )|∃cij },
Ωi ≡ {j |∃cij }. With these definitions a function to minimize is
as follows:

L =
∑

Ω

1
w2

ij

(cij + di − dj )2. (A1)

Taking derivative over dn, we have at the minimum

∂L

∂dn

=
∑

Ωn

4
w2

nj

(cnj + dn − dj ) = 0 (A2)

which gives us a set of linear equations for di:

dn

∑

Ωn

1
w2

nj

−
∑

Ωn

1
w2

nj

dj = −
∑

Ωn

cnj

w2
nj

. (A3)

3 Otherwise cij is undefined.
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Electron density 
fluctuations in the 
interstellar medium 
of our galaxy: 
 
A (near) power law 
spanning over 10 
decades 



Energy confinement time is determined by plasma turbulence 

Plasma turbulence and fusion energy 
Idea: Abundant, low-carbon energy for future generations 

Magnetic field lines span 
nested toroidal surfaces; 
cross-field transport due 
to collisions & turbulence 



ExB drift velocity 

(random walk/mixing 
length estimates) 

potential contours 
= 

streamlines of ExB velocity 

Typical heat and particle diffusivities are of the order of 1 m2/s  

Turbulent mixing in magnetoplasmas 

Gradients 
 → fluctuations 
  → transport 



The next step: ITER 

www.iter.org 
Key challenge: Understand 

and control plasma turbulence 



The turbulence challenge 
A general view of turbulence: 
Self-organized non-equilibrium state mediated by the nonlinear 
coupling of many degrees of freedom in an open system 
 
Examples: 

•  Simple & complex fluids 
•  Chemical & biological systems 
•  Astrophysical & laboratory plasmas 

 
Challenge: Complex interplay between order and disorder; 
largely defies an ab initio analytical treatment up to now 

„There might be some hope to 'break the deadlock' by 
extensive, but well-planned, computational efforts...“ 

     John von Neumann 

minimize oxygen gradients that may cause anisotropic streaming
of the oxytactic B. subtilis bacteria (2). To study the effects of
dimensionality and boundary conditions, experiments were per-
formed with two different setups: quasi-2D microfluidic chambers
with a vertical heightH less or equal to the individual body length
of B. subtilis (approximately 5 μm) and 3D chambers with
H ≈ 80 μm (SI Appendix, Figs. S6 and S8 and Movies S7–S10).
To focus on the collective dynamics of the microorganisms rather
than the solvent flow (24, 50), we determined the mean local
motion of B. subtilis directly using particle imaging velocimetry
(PIV; see also SI Appendix). A typical snapshot from a quasi-2D
experiment is shown in Fig. 2A. As evident from the inset, local
density fluctuations that are important in the swarming/flocking
regime (48, 49, 51) become suppressed at very high filling fractions
(SI Appendix, Fig. S5). The corresponding flow fields (Fig. 2B and
SI Appendix, Fig. S8) were used for the statistical analysis pre-
sented below.

Continuum Theory. The analytical understanding of turbulence
phenomena hinges on the availability of simple yet sufficiently
accurate continuum models (27). Considerable efforts have been
made to construct effective field theories for active systems (15–
17, 19, 31, 32, 52–54), but most of them have yet to be tested
quantitatively against experiments. Many continuum models dis-
tinguish solvent velocity, bacterial velocity and/or orientational
order parameter fields, resulting in a prohibitively large number
of phenomenological parameters and making comparison with
experiments very difficult. Aiming to identify a minimal hydro-
dynamic model of self-sustained meso-scale turbulence, we study
a simplified continuum theory for incompressible active fluids,
by focusing solely on the experimentally accessible velocity field
vðt; rÞ. By construction, the theory will not be applicable to re-
gimes where density fluctuations are large (e.g., swarming or
flocking), but it can provide a useful basis for quantitative
comparisons with particle simulations and experiments at high
concentrations.

We next summarize the model equations; a detailed motiva-
tion is given in SI Appendix. Because our experiments suggest that
density fluctuations are negligible (Fig. 2A) we postulate incom-
pressibility, ∇ · v ¼ 0. The dynamics of v is governed by an incom-
pressible Toner–Tu equation (15–17), supplemented with a Swift–
Hohenberg-type fourth-order term (45),

ð∂t þ λ0v · ∇Þv ¼ −∇pþ λ1∇v2 − ðαþ βjvj2Þvþ Γ0∇2v

− Γ2ð∇2Þ2v; [1]

where p denotes pressure, and general hydrodynamic considera-
tions (52) suggest that λ0 > 1; λ1 > 0 for pusher-swimmers like B.
subtilis (see SI Appendix). The ðα; βÞ-terms in Eq. 1 correspond to
a quartic Landau-type velocity potential (15–17). For α > 0 and
β > 0, the fluid is damped to a globally disordered state with
v ¼ 0, whereas for α < 0 a global polar ordering is induced. How-
ever, such global polar ordering is not observed in suspensions of
swimming bacteria, suggesting that other instability mechanisms
prevail (53). A detailed stability analysis (SI Appendix) of Eq. 1
implies that the Swift–Hohenberg-type ðΓ0; Γ2Þ-terms provide the
simplest generic description of self-sustained meso-scale turbu-
lence in incompressible active flow: For Γ0 < 0 and Γ2 > 0,
the model exhibits a range of unstable modes, resulting in turbu-
lent states as shown in Fig. 2D. Intuitively, the ðΓ0; Γ2Þ-terms de-
scribe intermediate-range interactions, and their role in Fourier
space is similar to that of the Landau potential in velocity space
(SI Appendix). We therefore expect that Eq. 1 describes a wide
class of quasi-incompressible active fluids. To compare the con-
tinuum model with experiments and SPR simulations, we next
study traditional turbulence measures.

Velocity Structure Functions. Building on Kolmogorov’s seminal
work (55), a large part of the classical turbulence literature (27,
34, 36–38, 40, 41) focuses on identifying the distribution of the
flow velocity increments δvðt; r; RÞ ¼ vðt; rþ RÞ − vðt; rÞ. Their
statistics is commonly characterized in terms of the longitudinal
and transverse projections, δv‖ ¼ R̂ · δv and δv⊥ ¼ T̂ · δv, where
T̂ ¼ ðϵijR̂jÞ denotes a unit vector perpendicular to the unit shift
vector R̂ ¼ R∕jRj. The separation-dependent statistical moments
of δv‖ and δv⊥ define the longitudinal and transverse velocity
structure functions

Sn
‖;⊥ðRÞ ≔ hðδv‖;⊥Þni; n ¼ 1; 2;…: [2]

These functions have been intensely studied in turbulent high-Re
fluids (27, 34, 35, 41) but are unknown for active flow. For
isotropic steady-state turbulence, spatial averages h·i as in Eq. 2
become time-independent, and the moments Sn

‖;⊥ reduce to func-
tions of the distance R ¼ jRj.

Velocity distributions, increment distributions, and structure
functions for our numerical and experimental data are summar-
ized in Fig. 3. For the SPR model, the velocity statistics can be
calculated either from the raw particle data or from pre-binned
flow field data. The two methods produce similar results,
and Fig. 3 shows averages based on individual particle velocities.
Generally, we find that both the 2D SPR model and the 2D con-
tinuum simulations are capable of reproducing the experimen-
tally measured quasi-2D flow histograms (Fig. 3 A and B) and
structure functions (Fig. 3C). The maxima of the even transverse
structure S2n

⊥ signal a typical vortex size Rv, which is substantially
larger in 3D bulk flow than in quasi-2D bacterial flow. Unlike
their counterparts in high-Re Navier–Stokes flow (27, 34), the
structure functions of active turbulence exhibit only a small re-
gion of power law growth for ℓ ≲ R ≪ Rv and flatten at larger
distances (Fig. 3C).

Fig. 2. Experimental snapshot (A) of a highly concentrated, homogeneous
quasi-2D bacterial suspension (see also Movie S7 and SI Appendix, Fig. S8).
Flow streamlines vðt; rÞ and vorticity fields ωðt; rÞ in the turbulent regime,
as obtained from (B) quasi-2D bacteria experiments, (C) simulations of the
deterministic SPR model (a ¼ 5, ϕ ¼ 0.84), and (D) continuum theory. The
range of the simulation data in D was adapted to the experimental field
of view (217 μm × 217 μm) by matching the typical vortex size. (Scale bars,
50 μm.) Simulation parameters are summarized in SI Appendix.

Wensink et al. PNAS Early Edition ∣ 3 of 6
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Plasma turbulence: Basic questions 

What are the fundamental nonlinear equations? 
  

What are the drive, damping, and nonlinear redistribution 
processes of the fluctuation (free) energy? 
  

Plasmas tend to sustain many different types of linear waves; 
what is their role and nature in a turbulent environment? 
  

How to characterize and the quasi-stationary turbulent state? 
  

Which dimensional reduction techniques may be applied?  

This talk: A snapshot! 



Fundamental 
nonlinear equations 



Vlasov (collisionless Boltzmann) equations (α=species label) 

Charged plasma particles undergo mostly 
small-angle (distant) Coulomb collisions. 

 
Hot and/or dilute plasmas are almost collisionless. 

Here, MHD is not applicable; one must use a kinetic description! 

From magneto-hydrodynamics to kinetics 
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...from Liouville equation via BBGKY hierarchy 

…plus Maxwell’s equations (w/o displacement current) 



Basic idea of gyrokinetics: 
  

Remove the fast gyromotion 
  

Introduce charged rings as quasiparticles; 
go from particle to gyrocenter coordinates 

From kinetics to gyrokinetics Chapter 2. Theoretical Background

Figure 2.11: Full Lorentz motion of a particle in an electrostatic potential. Left:
Small Larmor radius. Right: Larger Larmor radius

structure, we may further restrict to the E×B drift part. So in dimensionless
units and flux tube coordinates, the differential equation is

ẋ(t) = vE(t),

v̇E(t) = −∇φ(x, t) × ez =
(
−∂yφ

∂xφ

)
. (2.61)

This means that, for a static potential, the particle moves on equipotential lines.
To include finite Larmor radius effects, φ has to be replaced by the gyroaveraged
potential φeff , as described in Sec. 2.1.4. In Fig. 2.11, the full Lorentz motion
of a particle is shown for a static potential. Whereas for a small gyroradius
(left picture) the particle follows the equipotential lines strictly, for a larger
gyroradius this is only roughly the case, since the structure of the gyroaveraged
potential is different to the original one. We note in passing that, in Eq. (2.61), x
and y are canonical conjugate variables. This means that, although the problem
is 2D, there is only one degree of freedom, wherefore the problem is completely
integrable, which can be seen in Fig. 2.11.

It is clear that for the E×B drift to induce a diffusive particle motion,
the stream function φ has to be time dependent. If the vortex structure is
changing, no closed trajectories are possible any more, and - if the changes are
irregular - the particle moves in a random, i.e. diffusive, manner. In Fig. 2.12,
the (Lorentz) trajectory of a particle in a weakly time dependent potential is
shown. The particle circles its initial vortex several times. When the vortex
decays, the particle gets free and follows an open equipotential line, until a new
vortex emerges and traps the particle again. The question which now arises is:
How can the diffusivity be determined from the scales of the stream function?
It will turn out that there are two distinct regimes, which can be distinguished
by the so-called Kubo number (Kubo, 1963; Vlad et al., 1998)

K ≡ V τc

λc
≡ τc

τfl
. (2.62)

32

Strong magnetic field (points into the plane) 
 
Electrostatic potential fluctuations (color-coded) 
 
Particle orbit = fast gyromotion + slow (ExB) drift 



A Lagrangian approach 

Can be derived from Lagrangian 

Phase space trajectories (characteristics) 

f = const  along: 

Add low-frequency, anisotropic, small-amplitude fluctuations 



Transition to gyrocenter coordinates 

New Lagrangian (using Lie transforms) 

Euler-Lagrange equations 

Remark: The overbar denotes a gyroaveraging operation 

magnetic moment 
(adiabatic invariant) 



Appropriate field equations (from Maxwell) 

X = gyrocenter position 
Vװ = parallel velocity 
µ = magnetic moment 

The nonlinear gyrokinetic equations 

Nonlinear 5D equations; removal of irrelevant space-time scales  

Saves a factor of more than 1010 for ITER computations... 



Charney-Hasegawa-Mima equation 
Hasegawa & Mima, PRL 1977 

In a certain limiting case (in particular: cold ions), gyrokinetics leads 
to the CHM equation which is closely related to the 2D NS equation; 
used in geophysics already since 1948... 

One-field model (for the 
electrostatic potential); 
no linear drive/damping J. G. Charney 



Nonlinear gyrokinetics 
on large supercomputers: 
Some (surprising) findings 



Gyrokinetic simulation & GENE code 
Nonlinear gyrokinetic simulations 
  

•  1983: First particle-in-cell („PIC“) codes 
•  1999: First grid-based („Vlasov“) codes [GS2, GENE] 
•  2013: Numerous applications to laboratory & natural plasmas 

The GENE code 
  

•  Mix of appropriate CFD-type 
numerical methods 

•  Automatic adaptation to 
chosen platform and 
grid layout 
 

http://gene.rzg.mpg.de 

Strong scaling on BlueGene/P 

Linear scaling from 
65536 to 262144 cores 



Self-organization: Zonal flow generation 



Zonal flows in planetary atmospheres 



Self-organization: Electron-scale turbulence 

Simulation of electron internal transport barrier in TCV with GENE 
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This simulation: ~10 million core-hours 



Nonuniversal power law spectra? 

V. FREQUENCY SPECTRA AND PHASE VELOCITIES

Another turbulence characteristic which is rather acces-
sible experimentally is a !nonlinear" spectrum of frequencies
or phase velocities. Fortunately, as we will see, these quan-
tities are often closely linked to the respective linear quanti-
ties, such that one can infer relevant information already
from rather inexpensive linear gyrokinetic simulations.
However, nonlinear effects may change the dominant
mode within a certain k range with respect to the linear ex-
pectations. Such phenomena have to be taken into account
when attempting to compare results from experiments and
simulations.

According to the growth rate and frequency spectra cor-
responding to the multiscale simulations !A"–!C", as pre-
sented in Fig. 8, we see that different turbulence types are
expected to dominate in different wavenumber regimes. This
is most pronounced in case !A" where a steep ion tempera-
ture gradient excites ITG modes which can be identified by a
positive sign in real frequency and dominate up to a binor-
mal wavenumber of ky!s#0.4. The abrupt change of sign in
real frequency at higher wavenumbers suggests that trapped

electron modes drifting in the electron diamagnetic direction
take over before they transition into ETG modes. The latter
can be clearly identified by their spatio-temporal separation
compared to TEM and ITG modes which is given by the
square root of ion to electron mass ratio, here 20. However,
this plot only shows the most dominant mode for each wave-
number while, in general, several unstable modes may exist
at the same wavenumber. In particular, if the strongest sub-
dominant mode is very close to the dominant one, it may
alter the nonlinear behavior significantly. Therefore, the
GENE code has been recently extended to also operate as an
eigenvalue solver, enabling the calculation of subdominant
modes.29 The dominant and first subdominant mode for case
!A" are presented in Fig. 9. Due to the real frequency’s sign
of the dominant mode the highest growth rate at ky!s"0.5
can easily be assigned to an ITG mode. At higher wavenum-
bers, a mode with negative frequency takes over, which may
be labelled a TEM-ETG mode since it smoothly transitions
from a low-k TEM to a high-k ETG mode. Such a transition
is not surprising, given that all kinds of microinstabilities
may be connected to each other.29
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FIG. 6. !Color online" Squared electron density fluctuations evaluated at
kx!s=0 and averaged over the parallel direction and time for !a" pure turbu-
lence cases, cf. Fig. 3!b", and !b" turbulence mixtures, cf. Fig. 4!b".
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FIG. 7. !Color online" Squared electrostatic potential !a" and perpendicular
temperature !b" fluctuations averaged over the radial and parallel direction
and time for the multiscale simulations !A"–!C".
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Electrostatic 
potential 

fluctuations 

Görler & Jenko 2008 

clude that the modification of the binormal spectra is caused
by the ETG modes, cf. Fig. 3. Outside of this wavenumber
range, the observed power laws match more or less those
known from pure turbulence simulations, except for case
!A", where an unusually small exponent appears at the high-
est ky values. This is likely to be a numerical effect, however,
which is expected to disappear when the perpendicular reso-
lution is increased. In any case, a pronounced bulge in the
binormal density spectrum as it occurs in case !C" violates
the often assumed isotropy of the density spectrum at high-k
modes. This can clearly be seen in Fig. 5 where the density
spectra for cases !A" and !C" are plotted in kx−ky space.
While the former exhibits a more or less circular shape at
kx!s#ky!s#1.0, the latter displays an elongation in binor-
mal direction in this mode range. As mentioned in Sec. III,
where a similar deformation has been observed in Fig. 1, this
is due to the existence of ETG-scale streamers which seem to
be hampered by the presence of strong ITG modes.16 Of
course, this anisotropy is not restricted to turbulence mix-
tures and may also be present in pure turbulence cases as can

be seen by comparing the power law exponents in Fig. 3 in
kx and ky.

Such deviations from isotropy at short wavelengths
should be taken into account when comparing numerical
with experimental results. This is true, in particular, because
in the latter case, the measured ky spectra often have kx$0,17

while in simulations, it is common to average the squared
amplitudes over the radial direction. In order to make com-
parisons easier, we have also evaluated the ky spectra for
kx=0. The corresponding binormal spectra are shown in Fig.
6. As expected, they differ from those presented in Fig. 3!b"
and Fig. 4!b", especially with respect to the power law ex-
ponents. One now finds exponents up to a#5, and if a fit is
applied to the range 4"ky!s"7 in the pure ETG turbulence
case, one even arrives at a=7.4. These values are quite close
to the experimental findings17 where a#3.5 was found at
low-k, and a#6.5–7 in the high-k regime. Such character-
istics are actually in good qualitative agreement with those of
case !C", but the power law exponents do not match. One
finds a#1.9 at 0.15#ky!s#2 and a#5.0 at 4#ky!s#10.
The inclusion of Debye shielding effects might reduce the
difference since they may steepen the spectrum at high
wavenumbers !see, e.g., Ref. 27". A change of plasma param-
eters or magnetic geometry may also lead to better agree-
ment. Similar arguments apply to the radial direction where
Gurchenko and co-workers report a power law transition
from a#2.5 to a#6.2 at ky!s#9.28

Concluding this section, we would like to emphasize that
a signature of strong ETG activity is that it tends to flatten
the density spectra in the ky!e$0.1 region. !Note that for a
realistic mass ratio of mi /me=1836 or mi /me=3670, this cor-
responds to ky!s$4 and ky!s$6, respectively." If the long-
wavelength dynamics is dominated by ITG modes, the falloff
up to that point will still be substantial, however, and pre-
sumably no high-k peaks are to be expected. Nevertheless,
the ETG-induced contributions to the total electron heat flux
can be large since most of it is driven by the positive corre-
lations between fluctuations of the electrostatic potential and
the electron temperature, the latter of which tends to decay
more slowly than the density fluctuations. The respective
spectra of these quantities are shown in Fig. 7, but they can-
not be measured in current experiments.
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FIG. 4. !Color online" Squared electron density fluctuations averaged over
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FIG. 5. !Color online" Squared electron density fluctuations as function of
kx and ky from the multiscale simulations !A" and !C".
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Gyrokinetic turbulence: 
The cast 



Trapped Electron modes 

Electron Temperature Gradient 
             (ETG) modes 

Ion Temperature Gradient (ITG) modes 

                 

Primary instabilities (key players) 



•  Large-amplitude primaries are Kelvin-Helmholtz unstable 
 [Cowley at al. 1991; Dorland & Jenko PRL 2000] 

•  This secondary instability contains a zonal-flow component 
•  Near-equivalence to 4-mode approach (here: CHM equation) 

Secondary instabilities (zonal flows!) 

ETG modes saturate at higher amplitudes 

IV. NUMERICAL STUDIES

In the following, we will present numerical solutions of
both the classic as well as the generalized HM equation. For
this, we use a code that is based on a dealiased pseudospec-
tral spatial discretization together with a fourth-order Runge-
Kutta time stepper. For simplicity, we consider the large-
amplitude limit !cf. Eqs. "14# and "15#$. In the spatial
domain, we usually take 32!128 or 64!256 grid points.
The code has been tested extensively. Both the time step as
well as the grid size have been scanned to ensure conver-
gence. Also the total energy and enstrophy have been mea-
sured as a function of time and found to be constant, as
required. Moreover, the computed four-mode growth rates
and relative amplitudes for both models agree very well with
the analytical results described in the previous section.

In terms of physics, we are interested in the nonlinear
response of the system to the quasiequilibrium established by
a large-amplitude streamer with "kx ,ky#= "0,q#. Since the
streamer has no structure in the x direction, the responses for
different values of kx decouple as long as the amplitudes of
the responding modes remain sufficiently small. We are thus
free to choose a particular value of kx, say kx= p. And since
the streamer equilibrium is periodic in the y direction, Flo-
quet theory tells us that the secondary instability will have
only ky components that are multiples of q. Thus, an appro-
priate minimum setup representing the secondary mode con-
sists of three modes: the zonal flow with "kx ,ky#= "p ,0# and
the sidebands "kx ,ky#= "p , ±q#. One may then add more side-
bands, "kx ,ky#= "p , ±2q#, "kx ,ky#= "p , ±3q# , . . . This ap-
proach allows us to study the transition from a four-mode
analysis as described above to a full secondary instability
analysis as has been performed, e.g., in Ref. 4. The latter is

FIG. 1. Relative amplitudes of the first sideband " with respect to the
amplitude of the zonal flow "0 in the ETG case with q=0.1. The curves for
four "stars#, eight "diamonds#, and twelve "circles# modes are plotted. The
analytical result "dot-dashed curve# is also shown. Here, #= p /q=kx /ky.

FIG. 2. Semilogarithmic plot of the relative amplitudes for the twelve-mode
ETG case with q=0.1. The amplitudes " of all sidebands relative to the
zonal flow amplitude "0 are plotted. Sidebands with smaller amplitude cor-
respond to larger values of %ky%. Here, #= p /q=kx /ky.

FIG. 3. Zonal flow and sideband growth rates $ in the ETG case with q
=0.1. The curves for four "stars#, eight "diamonds#, and twelve "circles#
modes are plotted. The dot-dashed line is the analytical solution for the
growth rate with four modes. Here, #= p /q=kx /ky.

FIG. 4. Same as Fig. 1, but for q=0.5.
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Damped eigenmodes 

K. Malevich, Black Square (1915) 

Largely unnoticed 
until fairly recently 
 
Requires a change 
of perspective 
 
Helps explain some 
longstanding puzzles, 
physical & numerical 



Unstable plasma waves 
in a turbulent environment 



Example: Trapped electron modes 
In the long-wavelength (drive) range,  

nonlinear and linear modes match closely 
 

linear 

nonlinear 

Merz & Jenko, PRL 2008 



  
 ExB nonlinearity in the low-ky range: large transport contributions; 
small random noise, while the coherent part can be written as: 

Statistical analysis of the ExB nonlinearity 

~ky
2 

Merz & Jenko, 
PRL 2008 



Role of damped 
gyrokinetic eigenmodes 



Characteristics of eigenvalue spectra 

No 
Collisions

Collisions

No 
Gradient

Gradient x

kx=0.0
ky=0.24
kz=0.3

ITG mode: 
Relation between f0 and f2 ==> large drive
smooth velocity space structure (low order 
Hermites):
low collisionality

unstable ITG mode 

unstable 
ITG mode stable 

drift wave 

Linear eigenvalue spectrum for 
(weakly collisional) gyrokinetic 
system (homogeneous B field) 

Only two dominant eigenmodes 
(ITG mode & drift wave) have a 
smooth velocity space structure 

Note: fixed wavenumber! 

Hermite representation 
of parallel velocity 



Nonlinear versus linear spectra 

•Typically one mode near ITG
•One near ISW
•One or more with negative Q
•Typically 3-5 modes contribute to 
energy balance.
•Landau-like roots not a significant 
player

Direct decomposition of nonlinear data in terms of (highly non-orthogonal) 
linear eigenmodes is not helpful; instead, compute pseudospectra of POD 
modes (for each k), i.e., minimize 

Negative Q is still observed in pseudo spectrum
Same region as mirror mode in collisionless linear spectrum!

ITG mode and drift wave 
can be clearly identified 
 
In addition, approximate 
c.c. mirror image of ITG 
mode (re-)appears (!!!) 

collisionless system 
Trefethen-Science, New Series, Vol. 261, No. 5121. (Jul. 30, 1993), pp. 578-584.
Trefethen-SIAM REV. Vol. 39, No. 3, pp. 383–406, September 1997

“. . . even if all of the eigenvalues of a linear system are 
distinct and lie well inside the lower half plane, inputs to 

that system may be amplified by arbitrarily large factors if 
the eigenfunctions are not orthogonal to one another.”

Classic Example:



Sec. III), there is at most one unstable eigenmode per wave-
vector (kx; ky). The remaining linear eigenmodes are stable. In
either case (one or multiple linear instabilities), the majority
of subdominant modes in a mode decomposition are damped
modes and dissipate energy from the fluctuations. This work
expands on the results presented in Ref. 14, and together
these studies represent the first quantitative analysis of
the effects of subdominant stable modes in gyrokinetic
simulations.

This type of mode analysis adds an extra dimension to
some of the more standard ways of interpreting the dynamics
of plasma microturbulence. For example, things such as
energy transfer or nonlinear coupling are often examined
only in the two-dimensional space of perpendicular wavevec-
tors (kx; ky). A mode decomposition allows one to consider
energy transfer in an extra dimension of subdominant modes.
Nonlinear interactions involve not only coupling between dif-
ferent wavevectors but also coupling between a variety of
modes [f ðnÞkx; ky

ðz; tjj; lÞ] at different wavevectors. This is illus-
trated schematically in Fig. 1, where the upper plane repre-
sents the most unstable eigenmode at different wavevectors
and the lower planes represent subdominant stable modes
defined on the same space of wavevectors. We will show that
this extra dimension of energy transfer is crucial for under-
standing how plasma microturbulence saturates.

This work grows out of extensive studies of eigenmode
decompositions of local fluid models.15–19 Simple fluid mod-
els with only two or three eigenmodes permit detailed non-
linear analysis. These studies established that any damped
root of the linear dispersion relation is universally excited by
nonlinear mode coupling and grows exponentially from an
initial state in which amplitudes are infinitesimally small.17

It was also established that damped eigenmodes can saturate
the instability, absorbing energy at a rate that is comparable

to the energy input rate,15,16 that they modify transport
fluxes,15,18 and that they can modify cascade directions.19

From analysis of a diverse set of instability models, it has
been established that damped eigenmode excitation is intrin-
sic to many physical systems and parameter regimes.16 The
question of whether the damped eigenmode physics of
reduced fluid models extends to comprehensive models like
gyrokinetics is one of the motivations for the present work.

This paper will proceed as follows: In Sec. II, we will
discuss in what sense mode analyses of the gyrokinetic
model are a natural extension of the eigenmode decomposi-
tions in fluid models. We will also discuss two methods for
constructing a mode decomposition of the form of Eq. (1):
(1) projection of the gyrokinetic distribution function onto a
basis of linear eigenmodes, and (2) proper orthogonal
decomposition (POD) of the gyrokinetic distribution func-
tion. In the remaining sections, we will discuss two impor-
tant effects of subdominant modes. In Sec. III, we will
present a detailed mode analysis of the saturation of ITG tur-
bulence and demonstrate that the excitation of subdominant
modes causes energy dissipation to peak at the same scales
as the turbulent drive. This is in contrast with the common
implicit assumption that dissipation peaks at small perpen-
dicular scales. In Sec. IV, the effect of subdominant modes
on magnetic fluctuations will be discussed. Recent electro-
magnetic gyrokinetic studies have shown that magnetic fluc-
tuations cause magnetic stochasticity even at very low
values of plasma b (Ref. 20) (the ratio of magnetic pressure
to plasma pressure). The most unstable eigenmodes are not
resonant and cannot break magnetic flux surfaces. We show
that the dominant mechanism for the development of sto-
chasticity is subdominant modes with tearing parity that are
excited in the nonlinear state. A summary and conclusions
are provided in Sec. V.

II. MODE DECOMPOSITIONS

A mode decomposition can be constructed by postpro-
cessing data from a nonlinear gyrokinetic simulation. One
can output the distribution function for selected wavevectors
(kx; ky) of interest. This distribution function is then projected
onto a set of modes. In this section, we will discuss different
sets of basis modes and the methods for creating mode
decompositions.

Previous work has studied the effect of subdominant
damped eigenmode excitation in two and three field fluid
models of plasma microturbulence.15–19 These fluid models
are systems of coupled ordinary differential equations
(ODEs). For example, a two field model for trapped electron
mode turbulence (TEM) (Ref. 15) evolves two equations—
one each for the vorticity and the fluctuating electron den-
sity. The linear system can be solved analytically for the two
linear eigenmodes each of which is defined by linear combi-
nations of the two fields. One of the eigenmodes is unstable
for a range of wavenumbers, and the other eigenmode is sta-
ble for all wavenumbers. Fluctuation data can be projected
onto this basis of eigenmodes, and the contribution of each
eigenmode to physical processes such as transport can calcu-
lated. In general, the linear eigenmodes are not orthogonal,

FIG. 1. (Color online) Schematic representation of damped mode paradigm.
Energy transfer and nonlinear coupling occur between a series of modes at
the same perpendicular scales.
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Nonlinear excitation of stable eigenmodes 

Nonlinear interaction 
and energy transfer 
between a series of 
modes at the same 
perpendicular scales 



Turbulence in fluids and plasmas – 
Three basic scenarios 



Turbulent free energy: 
Nonlinear redistribution, 

dissipation, and power laws 



Ideal quadratic invariants 

Kinetics:   Free energy 

4. FREE ENERGY CASCADE IN GYROKINETIC TURBULENCE

energy balance equation for gyrokinetics, in particular, within the framework of

the formalism used in Gene. Then, in Sec 4.4 the resulting free energy balance

equation is presented. It will be also shown in the case of adiabatic electrons and

in the case of adiabatic ions. In Section 4.5, the numerical results are presented.

Finally, the conclusions and the chapter summary are given in Sec. 4.6.

4.2 Free energy in kinetic systems

Let us first introduce the general expression of the free energy E for kinetic

systems:

E = U − T0 S = K + EE + EM − T0 S. (4.1)

Here, U is the total energy of the system, which it is composed of the kinetic K,

the electric EE and magnetic EM energy. They are given by:
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where f̃j(x,v) is the particle distribution function and the integration is per-

formed over the whole six-dimensional phase space d
3
x d

3
v. Moreover, T0 repre-

sents the total temperature of the species considered. Finally, S corresponds to

the entropy of the system:
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If we split the distribution function f̃j into a Maxwellian distribution function F0j

and a first order fluctuation part f̃1j, the entropy part in the free energy equation

can be re-expressed as:
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by keeping only terms up to order two in f̃1j.
The first term in the above equation
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exactly cancels the kinetic energy K in the expression for E . The second term

in Eq. (4.4) simply represents the normalization of the fluctuating distribution
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4.3 Derivation of the balance equation

function and is assumed to be a constant that will disappear from the free energy

balance equation. Only the last term contributes to the entropy part:
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Grouping all the terms together, the free energy for kinetic systems can then be

re-written as:
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4.3 Derivation of the balance equation

In gyrokinetics, the free energy balance equation can be obtained by applying a

free energy operator denoted by Ξh to the gyrokinetic equation (GK) (2.126) and

adding its complex conjugate part (cc):

Ξh[eq : GK] + cc :=
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where we have used the following definition for the z − average:
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, ∀A(z). (4.9)

Also, for simplicity of the presentation we use the notation
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k
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where j labels the species (electron or ion) and k = (kx, ky) denotes the Fourier

components in the perpendicular directions. The summation is performed over

all k values, from −kmax to +kmax where the minus k index denotes the complex

conjugate part of the unknown quantities. Furthermore, the summation over

repeated k index is not assumed in the following.

4.3.1 Time derivative

Regarding the part of the time derivative we have to compute:
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Finally, the conclusions and the chapter summary are given in Sec. 4.6.

4.2 Free energy in kinetic systems

Let us first introduce the general expression of the free energy E for kinetic

systems:

E = U − T0 S = K + EE + EM − T0 S. (4.1)

Here, U is the total energy of the system, which it is composed of the kinetic K,

the electric EE and magnetic EM energy. They are given by:

K =

�
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�
d
3
x d

3
vf̃j(x,v)m

v
2

2
, EE =

�
d
3
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2

8π
, and EM =
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d
3
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B

2

8π
.

(4.2)

where f̃j(x,v) is the particle distribution function and the integration is per-

formed over the whole six-dimensional phase space d
3
x d

3
v. Moreover, T0 repre-

sents the total temperature of the species considered. Finally, S corresponds to

the entropy of the system:

S = −
�

j

�
d
3
x d

3
v f̃j ln f̃j. (4.3)

If we split the distribution function f̃j into a Maxwellian distribution function F0j

and a first order fluctuation part f̃1j, the entropy part in the free energy equation

can be re-expressed as:
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by keeping only terms up to order two in f̃1j.
The first term in the above equation

�
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3
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�
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d
3
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�

� �� �
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m
v
2

2
= −K,

(4.5)

exactly cancels the kinetic energy K in the expression for E . The second term

in Eq. (4.4) simply represents the normalization of the fluctuating distribution
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4.4 The free energy balance equation

We group all terms playing a role on the free energy balance and we obtain:

∂tE = ∂t (Ef + Eφ + EA) = G +D. (4.45)

and LK = L� = N = 0. (4.46)

The entropic Ef , electrostatic Eφ and magnetic EA contributions are given by:

Ef =

�

j,k

�
πB0n0jT0j

�
dµ dv�
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, (4.47)
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EA =

�

k

�
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. (4.49)

The sources are due the equilibrium gradients G and the sinks are the due to

hyperdiffusions D:

G =

�

j

�
T0j

�
ωnj −

3

2
ωTj

�
Γj + ωTjQj

�
, (4.50)

D =

�

j,k

��
dµ dv� πB0n0j

�
T0j

F0j
g−kj + qjχ−kj

�
D[gkj]

�

z

. (4.51)

Here, the free energy is given in units of nrefTrefρ2ref/L
2
ref . We would like to remark

that E is the same quantity that was obtained for kinetic systems in the previous

section (see Eq. 4.7) but expressed in terms of the gyro-center distribution func-

tion fkj, the potentials φ1k, A1�k, and properly normalized in the Gene units.

For a detailed calculation see Appendix B.

4.4.1 Free energy balance: Adiabatic electrons

We will consider now a simplified case of adiabatic electrons response. In this

model, the magnetic fluctuations are neglected as well as the factor λ2
D. Therefore,

the general form remains the same, except now there is not a magnetic fluctuation

term:

∂t (Ef + Eφ) = G +D. (4.52)
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Recall that in the electrostatic case gkj = fkj and χkj = J0kjφ1k. Therefore, the
different terms can be simplified as follows:

Ef =
�

k

�
πB0n0iT0i

�
dµ dv�

|fki|2

2F0i

�

z

, (4.53)
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and

G =ωT iQi, (4.55)

D =
�

k

��
dµ dv�πB0n0i

�
T0i

F0i
g−ki + qiχ−ki

�
D[gki]

�
. (4.56)

In the adiabatic approximation, it can be shown that due to the am-bipolar
diffusion, the ion particle flux vanish identically, Γi = 0, giving a simplified
expression of the source term.

4.4.2 Free energy balance: Adiabatic ions

Taking into account the adiabatic ion response, the electrostatic free energy bal-
ance equation reads:

∂t (Ef + Eφ) = G +D (4.57)

where the different contributions are defined as follows:

Ef =
�
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and

G =ωTeQe, (4.60)
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�
T0e

F0e
g−ke + qeχ−ke

�
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�

z

. (4.61)

4.5 Simulation results: Cyclone Base Case

The free energy balance equations defined in the preceding section have been
evaluated from a numerical simulation usingGene. The physical parameters used
in the following corresponds to the standard case of collisionless ion temperature
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In the adiabatic approximation, it can be shown that due to the am-bipolar
diffusion, the ion particle flux vanish identically, Γi = 0, giving a simplified
expression of the source term.

4.4.2 Free energy balance: Adiabatic ions

Taking into account the adiabatic ion response, the electrostatic free energy bal-
ance equation reads:

∂t (Ef + Eφ) = G +D (4.57)

where the different contributions are defined as follows:
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4.5 Simulation results: Cyclone Base Case

The free energy balance equations defined in the preceding section have been
evaluated from a numerical simulation usingGene. The physical parameters used
in the following corresponds to the standard case of collisionless ion temperature
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and take over from the force as the dominant effect (char-
acteristic time wise) for smaller scales, the nonlinear cas-
cade process occurs inside a dissipation range [14,15]. All
these effects add a novel quality and nontrivial complica-
tions to the present study, compared to classical fluid
turbulence.

Gyrokinetic simulations.—In the present work, numeri-
cal solutions of the nonlinear gyrokinetic equations in
flux-tube (ŝ! !) geometry [16] are analyzed using a
field-aligned coordinate system (x, y, z, vk, ") with (256,
128, 16, 48, 16) points in each direction, respectively. In
this nonorthogonal coordinate system, the x label refers to
the magnetic flux surface and the y label identifies different
field lines lying on the same flux surface, while the
ẑ"rx#ry direction coincides with that of the equilib-
rium magnetic guide field (B). The solutions are obtained
by the use of the GENE code [17] for ion-temperature
gradient driven GK turbulence with physical parameters
corresponding to the Cyclone base case (CBC) [18]. For a
better understanding of the nonlinear dynamics involved,
the analysis is limited to the simple scenario of electro-
static fluctuations generated by a single ion species (the
species index will be omitted) and adiabatic electrons. For
more technical details see Ref. [14].

Considering that the total ion distribution function F is
split into an appropriately normalized Maxwellian part F0

and a perturbed part f, the nonadiabatic contribution of the
ion distribution function is given as h ¼ fþ ðZ !#1=T0ÞF0,
where !#1 is the gyroaveraged self-consistent electrostatic
potential (linear in f) found from the gyrokinetic Poisson
equation, T0 is the ion background temperature (normal-
ized to the electron temperature), and Z is the electric
charge. Symbolically, the time (t) evolution equation for
the perturbed distribution function reads

@f

@t
¼ G½f) þ LC½f) þ Lk½f) þD½f) þ N½f; f); (1)

where G½f) is the contribution from the normalized back-
ground density (n0) and temperature gradients. It repre-
sents the driving mechanism for GK turbulence and it is
responsible for the injection of free energy into the system.
The second term, LC½f), appears due to magnetic curvature
and gradients and the third term, Lk½f), contains the par-
allel dynamics involving magnetic trapping and linear
Landau damping and pumping effects. The fourth term,
D½f), contains the effects due to collisions through the use
of a linearized Landau collision operator for ion-ion self-
collisions [19]. The last term represents the E# B non-
linear term,

N½f; f) ¼ !vE * rh ¼ @ !#1

@y

@h

@x
! @ !#1

@x

@h

@y
; (2)

where vE ¼ ẑ#r !#1 has been used. For the explicit forms
of the terms entering Eq. (1) see Refs. [8,14].

Free energy balance.—In this formulation, the
global free energy contained in the system is defined as
E ¼ 1

2

R
dxdyd" T0

F0
hf where d" ¼ ð$B0n0Þdzdvkd". To

analyze the excitation degree of perpendicular turbulent
scales, an integral over the d" infinitesimal element and a
Fourier decomposition of the remaining (x, y) space are
performed. Each scale of length (‘?) can now be easily
identified by the norm (k" ‘!1

? ) of the wave vector (k +
k?) based in the kx, ky space (units of inverse ion Larmor
radius). As for any quadratic quantity, the free energy
spectral density can be considered (E ¼ P

kEk), for which
the balance equation reads

@tEk ¼ Gk þLk þDk þT k; (3)

where in the rhs of Eq. (3) the terms Ak + fGk;Lk;Dkg
are found asAk ¼ R

d" T0

F0
hkA!k using the spectral form

of the evolution equation for the perturbed distribution
function Eq. (1), with Ak + fGk; Lk ¼ Lk

C þ Lk
k ; D

kg.
While in Eq. (3) the linear quantities G, L, and D are
defined involving only k local modes and their complex
conjugates, for the term generated by the nonlinear product
T k different wave number modes enter in the definition,

T k ¼
X

p

X

q

T k;p;q%kþpþq: (4)

The Kronecker delta %kþpþq selects only interactions that
occur between a triad of modes which obey the resonance
condition, kþ pþ q ¼ 0. The transfer that takes place for
a single triad, known as the triad transfer, is defined as

T k;p;q ¼
Z

d"
T0

2F0
½qxpy!qypx)½ !#q

1h
p! !#p

1h
q)hk; (5)

where the symmetry in modes q and p is written explicitly
[20]. At the triad level, the free-energy conservation
by the nonlinear interaction can be written as,
T k;p;q þT p;q;k þT q;k;p ¼ 0.
Shell transfers.—Although the triad transfers contain the

complete physical information related to the energetic
coupling of scales, the sheer number of transfers involved
makes them impractical in any direct manner. To ease our
work, we decompose the spectral space into a series of
structures (which are field aligned as a result of our coor-
dinate system choice) and analyze the transfers that occur
among them. The structure boundaries sK + ðkK!1; kK) are
typically given as a power law in terms of the wave number
k, here kK ¼ k0 # 2ðK!1Þ=#. The filtered ion distribution
function hK and filtered electric potential !#K are found
to be

fh; !#1gKðkÞ ¼
! fh; !#1gðkÞ; k 2 sK
0; k =2 sK

: (6)

For the CBC simulation considered, k0 ¼ 0:258 and select-
ing # ¼ 5 results in N ¼ 30 shells. In real space, the total
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and take over from the force as the dominant effect (char-
acteristic time wise) for smaller scales, the nonlinear cas-
cade process occurs inside a dissipation range [14,15]. All
these effects add a novel quality and nontrivial complica-
tions to the present study, compared to classical fluid
turbulence.

Gyrokinetic simulations.—In the present work, numeri-
cal solutions of the nonlinear gyrokinetic equations in
flux-tube (ŝ! !) geometry [16] are analyzed using a
field-aligned coordinate system (x, y, z, vk, ") with (256,
128, 16, 48, 16) points in each direction, respectively. In
this nonorthogonal coordinate system, the x label refers to
the magnetic flux surface and the y label identifies different
field lines lying on the same flux surface, while the
ẑ"rx#ry direction coincides with that of the equilib-
rium magnetic guide field (B). The solutions are obtained
by the use of the GENE code [17] for ion-temperature
gradient driven GK turbulence with physical parameters
corresponding to the Cyclone base case (CBC) [18]. For a
better understanding of the nonlinear dynamics involved,
the analysis is limited to the simple scenario of electro-
static fluctuations generated by a single ion species (the
species index will be omitted) and adiabatic electrons. For
more technical details see Ref. [14].

Considering that the total ion distribution function F is
split into an appropriately normalized Maxwellian part F0

and a perturbed part f, the nonadiabatic contribution of the
ion distribution function is given as h ¼ fþ ðZ !#1=T0ÞF0,
where !#1 is the gyroaveraged self-consistent electrostatic
potential (linear in f) found from the gyrokinetic Poisson
equation, T0 is the ion background temperature (normal-
ized to the electron temperature), and Z is the electric
charge. Symbolically, the time (t) evolution equation for
the perturbed distribution function reads

@f

@t
¼ G½f) þ LC½f) þ Lk½f) þD½f) þ N½f; f); (1)

where G½f) is the contribution from the normalized back-
ground density (n0) and temperature gradients. It repre-
sents the driving mechanism for GK turbulence and it is
responsible for the injection of free energy into the system.
The second term, LC½f), appears due to magnetic curvature
and gradients and the third term, Lk½f), contains the par-
allel dynamics involving magnetic trapping and linear
Landau damping and pumping effects. The fourth term,
D½f), contains the effects due to collisions through the use
of a linearized Landau collision operator for ion-ion self-
collisions [19]. The last term represents the E# B non-
linear term,

N½f; f) ¼ !vE * rh ¼ @ !#1

@y

@h

@x
! @ !#1

@x

@h

@y
; (2)

where vE ¼ ẑ#r !#1 has been used. For the explicit forms
of the terms entering Eq. (1) see Refs. [8,14].

Free energy balance.—In this formulation, the
global free energy contained in the system is defined as
E ¼ 1

2

R
dxdyd" T0

F0
hf where d" ¼ ð$B0n0Þdzdvkd". To

analyze the excitation degree of perpendicular turbulent
scales, an integral over the d" infinitesimal element and a
Fourier decomposition of the remaining (x, y) space are
performed. Each scale of length (‘?) can now be easily
identified by the norm (k" ‘!1

? ) of the wave vector (k +
k?) based in the kx, ky space (units of inverse ion Larmor
radius). As for any quadratic quantity, the free energy
spectral density can be considered (E ¼ P

kEk), for which
the balance equation reads

@tEk ¼ Gk þLk þDk þT k; (3)

where in the rhs of Eq. (3) the terms Ak + fGk;Lk;Dkg
are found asAk ¼ R

d" T0

F0
hkA!k using the spectral form

of the evolution equation for the perturbed distribution
function Eq. (1), with Ak + fGk; Lk ¼ Lk

C þ Lk
k ; D

kg.
While in Eq. (3) the linear quantities G, L, and D are
defined involving only k local modes and their complex
conjugates, for the term generated by the nonlinear product
T k different wave number modes enter in the definition,

T k ¼
X

p

X

q

T k;p;q%kþpþq: (4)

The Kronecker delta %kþpþq selects only interactions that
occur between a triad of modes which obey the resonance
condition, kþ pþ q ¼ 0. The transfer that takes place for
a single triad, known as the triad transfer, is defined as

T k;p;q ¼
Z

d"
T0

2F0
½qxpy!qypx)½ !#q

1h
p! !#p

1h
q)hk; (5)

where the symmetry in modes q and p is written explicitly
[20]. At the triad level, the free-energy conservation
by the nonlinear interaction can be written as,
T k;p;q þT p;q;k þT q;k;p ¼ 0.
Shell transfers.—Although the triad transfers contain the

complete physical information related to the energetic
coupling of scales, the sheer number of transfers involved
makes them impractical in any direct manner. To ease our
work, we decompose the spectral space into a series of
structures (which are field aligned as a result of our coor-
dinate system choice) and analyze the transfers that occur
among them. The structure boundaries sK + ðkK!1; kK) are
typically given as a power law in terms of the wave number
k, here kK ¼ k0 # 2ðK!1Þ=#. The filtered ion distribution
function hK and filtered electric potential !#K are found
to be

fh; !#1gKðkÞ ¼
! fh; !#1gðkÞ; k 2 sK
0; k =2 sK

: (6)

For the CBC simulation considered, k0 ¼ 0:258 and select-
ing # ¼ 5 results in N ¼ 30 shells. In real space, the total
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and take over from the force as the dominant effect (char-
acteristic time wise) for smaller scales, the nonlinear cas-
cade process occurs inside a dissipation range [14,15]. All
these effects add a novel quality and nontrivial complica-
tions to the present study, compared to classical fluid
turbulence.

Gyrokinetic simulations.—In the present work, numeri-
cal solutions of the nonlinear gyrokinetic equations in
flux-tube (ŝ! !) geometry [16] are analyzed using a
field-aligned coordinate system (x, y, z, vk, ") with (256,
128, 16, 48, 16) points in each direction, respectively. In
this nonorthogonal coordinate system, the x label refers to
the magnetic flux surface and the y label identifies different
field lines lying on the same flux surface, while the
ẑ"rx#ry direction coincides with that of the equilib-
rium magnetic guide field (B). The solutions are obtained
by the use of the GENE code [17] for ion-temperature
gradient driven GK turbulence with physical parameters
corresponding to the Cyclone base case (CBC) [18]. For a
better understanding of the nonlinear dynamics involved,
the analysis is limited to the simple scenario of electro-
static fluctuations generated by a single ion species (the
species index will be omitted) and adiabatic electrons. For
more technical details see Ref. [14].

Considering that the total ion distribution function F is
split into an appropriately normalized Maxwellian part F0

and a perturbed part f, the nonadiabatic contribution of the
ion distribution function is given as h ¼ fþ ðZ !#1=T0ÞF0,
where !#1 is the gyroaveraged self-consistent electrostatic
potential (linear in f) found from the gyrokinetic Poisson
equation, T0 is the ion background temperature (normal-
ized to the electron temperature), and Z is the electric
charge. Symbolically, the time (t) evolution equation for
the perturbed distribution function reads

@f

@t
¼ G½f) þ LC½f) þ Lk½f) þD½f) þ N½f; f); (1)

where G½f) is the contribution from the normalized back-
ground density (n0) and temperature gradients. It repre-
sents the driving mechanism for GK turbulence and it is
responsible for the injection of free energy into the system.
The second term, LC½f), appears due to magnetic curvature
and gradients and the third term, Lk½f), contains the par-
allel dynamics involving magnetic trapping and linear
Landau damping and pumping effects. The fourth term,
D½f), contains the effects due to collisions through the use
of a linearized Landau collision operator for ion-ion self-
collisions [19]. The last term represents the E# B non-
linear term,

N½f; f) ¼ !vE * rh ¼ @ !#1

@y

@h

@x
! @ !#1

@x

@h

@y
; (2)

where vE ¼ ẑ#r !#1 has been used. For the explicit forms
of the terms entering Eq. (1) see Refs. [8,14].

Free energy balance.—In this formulation, the
global free energy contained in the system is defined as
E ¼ 1

2

R
dxdyd" T0

F0
hf where d" ¼ ð$B0n0Þdzdvkd". To

analyze the excitation degree of perpendicular turbulent
scales, an integral over the d" infinitesimal element and a
Fourier decomposition of the remaining (x, y) space are
performed. Each scale of length (‘?) can now be easily
identified by the norm (k" ‘!1

? ) of the wave vector (k +
k?) based in the kx, ky space (units of inverse ion Larmor
radius). As for any quadratic quantity, the free energy
spectral density can be considered (E ¼ P

kEk), for which
the balance equation reads

@tEk ¼ Gk þLk þDk þT k; (3)

where in the rhs of Eq. (3) the terms Ak + fGk;Lk;Dkg
are found asAk ¼ R

d" T0

F0
hkA!k using the spectral form

of the evolution equation for the perturbed distribution
function Eq. (1), with Ak + fGk; Lk ¼ Lk

C þ Lk
k ; D

kg.
While in Eq. (3) the linear quantities G, L, and D are
defined involving only k local modes and their complex
conjugates, for the term generated by the nonlinear product
T k different wave number modes enter in the definition,

T k ¼
X

p

X

q

T k;p;q%kþpþq: (4)

The Kronecker delta %kþpþq selects only interactions that
occur between a triad of modes which obey the resonance
condition, kþ pþ q ¼ 0. The transfer that takes place for
a single triad, known as the triad transfer, is defined as

T k;p;q ¼
Z

d"
T0

2F0
½qxpy!qypx)½ !#q

1h
p! !#p

1h
q)hk; (5)

where the symmetry in modes q and p is written explicitly
[20]. At the triad level, the free-energy conservation
by the nonlinear interaction can be written as,
T k;p;q þT p;q;k þT q;k;p ¼ 0.
Shell transfers.—Although the triad transfers contain the

complete physical information related to the energetic
coupling of scales, the sheer number of transfers involved
makes them impractical in any direct manner. To ease our
work, we decompose the spectral space into a series of
structures (which are field aligned as a result of our coor-
dinate system choice) and analyze the transfers that occur
among them. The structure boundaries sK + ðkK!1; kK) are
typically given as a power law in terms of the wave number
k, here kK ¼ k0 # 2ðK!1Þ=#. The filtered ion distribution
function hK and filtered electric potential !#K are found
to be

fh; !#1gKðkÞ ¼
! fh; !#1gðkÞ; k 2 sK
0; k =2 sK

: (6)

For the CBC simulation considered, k0 ¼ 0:258 and select-
ing # ¼ 5 results in N ¼ 30 shells. In real space, the total
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and take over from the force as the dominant effect (char-
acteristic time wise) for smaller scales, the nonlinear cas-
cade process occurs inside a dissipation range [14,15]. All
these effects add a novel quality and nontrivial complica-
tions to the present study, compared to classical fluid
turbulence.

Gyrokinetic simulations.—In the present work, numeri-
cal solutions of the nonlinear gyrokinetic equations in
flux-tube (ŝ! !) geometry [16] are analyzed using a
field-aligned coordinate system (x, y, z, vk, ") with (256,
128, 16, 48, 16) points in each direction, respectively. In
this nonorthogonal coordinate system, the x label refers to
the magnetic flux surface and the y label identifies different
field lines lying on the same flux surface, while the
ẑ"rx#ry direction coincides with that of the equilib-
rium magnetic guide field (B). The solutions are obtained
by the use of the GENE code [17] for ion-temperature
gradient driven GK turbulence with physical parameters
corresponding to the Cyclone base case (CBC) [18]. For a
better understanding of the nonlinear dynamics involved,
the analysis is limited to the simple scenario of electro-
static fluctuations generated by a single ion species (the
species index will be omitted) and adiabatic electrons. For
more technical details see Ref. [14].

Considering that the total ion distribution function F is
split into an appropriately normalized Maxwellian part F0

and a perturbed part f, the nonadiabatic contribution of the
ion distribution function is given as h ¼ fþ ðZ !#1=T0ÞF0,
where !#1 is the gyroaveraged self-consistent electrostatic
potential (linear in f) found from the gyrokinetic Poisson
equation, T0 is the ion background temperature (normal-
ized to the electron temperature), and Z is the electric
charge. Symbolically, the time (t) evolution equation for
the perturbed distribution function reads

@f

@t
¼ G½f) þ LC½f) þ Lk½f) þD½f) þ N½f; f); (1)

where G½f) is the contribution from the normalized back-
ground density (n0) and temperature gradients. It repre-
sents the driving mechanism for GK turbulence and it is
responsible for the injection of free energy into the system.
The second term, LC½f), appears due to magnetic curvature
and gradients and the third term, Lk½f), contains the par-
allel dynamics involving magnetic trapping and linear
Landau damping and pumping effects. The fourth term,
D½f), contains the effects due to collisions through the use
of a linearized Landau collision operator for ion-ion self-
collisions [19]. The last term represents the E# B non-
linear term,

N½f; f) ¼ !vE * rh ¼ @ !#1

@y

@h

@x
! @ !#1

@x

@h

@y
; (2)

where vE ¼ ẑ#r !#1 has been used. For the explicit forms
of the terms entering Eq. (1) see Refs. [8,14].

Free energy balance.—In this formulation, the
global free energy contained in the system is defined as
E ¼ 1

2

R
dxdyd" T0

F0
hf where d" ¼ ð$B0n0Þdzdvkd". To

analyze the excitation degree of perpendicular turbulent
scales, an integral over the d" infinitesimal element and a
Fourier decomposition of the remaining (x, y) space are
performed. Each scale of length (‘?) can now be easily
identified by the norm (k" ‘!1

? ) of the wave vector (k +
k?) based in the kx, ky space (units of inverse ion Larmor
radius). As for any quadratic quantity, the free energy
spectral density can be considered (E ¼ P

kEk), for which
the balance equation reads

@tEk ¼ Gk þLk þDk þT k; (3)

where in the rhs of Eq. (3) the terms Ak + fGk;Lk;Dkg
are found asAk ¼ R

d" T0

F0
hkA!k using the spectral form

of the evolution equation for the perturbed distribution
function Eq. (1), with Ak + fGk; Lk ¼ Lk

C þ Lk
k ; D

kg.
While in Eq. (3) the linear quantities G, L, and D are
defined involving only k local modes and their complex
conjugates, for the term generated by the nonlinear product
T k different wave number modes enter in the definition,

T k ¼
X

p

X

q

T k;p;q%kþpþq: (4)

The Kronecker delta %kþpþq selects only interactions that
occur between a triad of modes which obey the resonance
condition, kþ pþ q ¼ 0. The transfer that takes place for
a single triad, known as the triad transfer, is defined as

T k;p;q ¼
Z

d"
T0

2F0
½qxpy!qypx)½ !#q

1h
p! !#p

1h
q)hk; (5)

where the symmetry in modes q and p is written explicitly
[20]. At the triad level, the free-energy conservation
by the nonlinear interaction can be written as,
T k;p;q þT p;q;k þT q;k;p ¼ 0.
Shell transfers.—Although the triad transfers contain the

complete physical information related to the energetic
coupling of scales, the sheer number of transfers involved
makes them impractical in any direct manner. To ease our
work, we decompose the spectral space into a series of
structures (which are field aligned as a result of our coor-
dinate system choice) and analyze the transfers that occur
among them. The structure boundaries sK + ðkK!1; kK) are
typically given as a power law in terms of the wave number
k, here kK ¼ k0 # 2ðK!1Þ=#. The filtered ion distribution
function hK and filtered electric potential !#K are found
to be

fh; !#1gKðkÞ ¼
! fh; !#1gðkÞ; k 2 sK
0; k =2 sK

: (6)

For the CBC simulation considered, k0 ¼ 0:258 and select-
ing # ¼ 5 results in N ¼ 30 shells. In real space, the total
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and take over from the force as the dominant effect (char-
acteristic time wise) for smaller scales, the nonlinear cas-
cade process occurs inside a dissipation range [14,15]. All
these effects add a novel quality and nontrivial complica-
tions to the present study, compared to classical fluid
turbulence.

Gyrokinetic simulations.—In the present work, numeri-
cal solutions of the nonlinear gyrokinetic equations in
flux-tube (ŝ! !) geometry [16] are analyzed using a
field-aligned coordinate system (x, y, z, vk, ") with (256,
128, 16, 48, 16) points in each direction, respectively. In
this nonorthogonal coordinate system, the x label refers to
the magnetic flux surface and the y label identifies different
field lines lying on the same flux surface, while the
ẑ"rx#ry direction coincides with that of the equilib-
rium magnetic guide field (B). The solutions are obtained
by the use of the GENE code [17] for ion-temperature
gradient driven GK turbulence with physical parameters
corresponding to the Cyclone base case (CBC) [18]. For a
better understanding of the nonlinear dynamics involved,
the analysis is limited to the simple scenario of electro-
static fluctuations generated by a single ion species (the
species index will be omitted) and adiabatic electrons. For
more technical details see Ref. [14].

Considering that the total ion distribution function F is
split into an appropriately normalized Maxwellian part F0

and a perturbed part f, the nonadiabatic contribution of the
ion distribution function is given as h ¼ fþ ðZ !#1=T0ÞF0,
where !#1 is the gyroaveraged self-consistent electrostatic
potential (linear in f) found from the gyrokinetic Poisson
equation, T0 is the ion background temperature (normal-
ized to the electron temperature), and Z is the electric
charge. Symbolically, the time (t) evolution equation for
the perturbed distribution function reads

@f

@t
¼ G½f) þ LC½f) þ Lk½f) þD½f) þ N½f; f); (1)

where G½f) is the contribution from the normalized back-
ground density (n0) and temperature gradients. It repre-
sents the driving mechanism for GK turbulence and it is
responsible for the injection of free energy into the system.
The second term, LC½f), appears due to magnetic curvature
and gradients and the third term, Lk½f), contains the par-
allel dynamics involving magnetic trapping and linear
Landau damping and pumping effects. The fourth term,
D½f), contains the effects due to collisions through the use
of a linearized Landau collision operator for ion-ion self-
collisions [19]. The last term represents the E# B non-
linear term,

N½f; f) ¼ !vE * rh ¼ @ !#1

@y

@h
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! @ !#1
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; (2)

where vE ¼ ẑ#r !#1 has been used. For the explicit forms
of the terms entering Eq. (1) see Refs. [8,14].

Free energy balance.—In this formulation, the
global free energy contained in the system is defined as
E ¼ 1

2

R
dxdyd" T0

F0
hf where d" ¼ ð$B0n0Þdzdvkd". To

analyze the excitation degree of perpendicular turbulent
scales, an integral over the d" infinitesimal element and a
Fourier decomposition of the remaining (x, y) space are
performed. Each scale of length (‘?) can now be easily
identified by the norm (k" ‘!1

? ) of the wave vector (k +
k?) based in the kx, ky space (units of inverse ion Larmor
radius). As for any quadratic quantity, the free energy
spectral density can be considered (E ¼ P

kEk), for which
the balance equation reads

@tEk ¼ Gk þLk þDk þT k; (3)

where in the rhs of Eq. (3) the terms Ak + fGk;Lk;Dkg
are found asAk ¼ R

d" T0

F0
hkA!k using the spectral form

of the evolution equation for the perturbed distribution
function Eq. (1), with Ak + fGk; Lk ¼ Lk

C þ Lk
k ; D

kg.
While in Eq. (3) the linear quantities G, L, and D are
defined involving only k local modes and their complex
conjugates, for the term generated by the nonlinear product
T k different wave number modes enter in the definition,

T k ¼
X

p

X

q

T k;p;q%kþpþq: (4)

The Kronecker delta %kþpþq selects only interactions that
occur between a triad of modes which obey the resonance
condition, kþ pþ q ¼ 0. The transfer that takes place for
a single triad, known as the triad transfer, is defined as

T k;p;q ¼
Z

d"
T0

2F0
½qxpy!qypx)½ !#q

1h
p! !#p

1h
q)hk; (5)

where the symmetry in modes q and p is written explicitly
[20]. At the triad level, the free-energy conservation
by the nonlinear interaction can be written as,
T k;p;q þT p;q;k þT q;k;p ¼ 0.
Shell transfers.—Although the triad transfers contain the

complete physical information related to the energetic
coupling of scales, the sheer number of transfers involved
makes them impractical in any direct manner. To ease our
work, we decompose the spectral space into a series of
structures (which are field aligned as a result of our coor-
dinate system choice) and analyze the transfers that occur
among them. The structure boundaries sK + ðkK!1; kK) are
typically given as a power law in terms of the wave number
k, here kK ¼ k0 # 2ðK!1Þ=#. The filtered ion distribution
function hK and filtered electric potential !#K are found
to be

fh; !#1gKðkÞ ¼
! fh; !#1gðkÞ; k 2 sK
0; k =2 sK

: (6)

For the CBC simulation considered, k0 ¼ 0:258 and select-
ing # ¼ 5 results in N ¼ 30 shells. In real space, the total
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information can be recovered by summing over the inverse
Fourier transform of each shell-filtered contribution.

The triple-shell transfer occurring between the shell
filtered quantities can be computed as

SK;P;Q ¼
X

q2sQ

X

p2sP

X

k2sK

T k;p;q!kþpþq; (7)

and represents the basic information available to us for
analysis. Knowing SK;P;Q allows us to compute all other
relevant nonlinear transfer quantities. By summing over all
possible shells Q we can obtain the shell-to-shell transfer
(PK;P; implicitly defined below and analyzed previously
[8]) and the nonlinear transfer spectra by summing fur-
thermore over P,

T K ¼
X

P

PK;P ¼
X

P

X

Q

SK;P;Q: (8)

Numerically, when summing the transfer [Eq. (8)] over K,
which is equivalent to integrating the nonlinear transfer
over the entire space, we obtain zero (comparable to ma-
chine precision).

The spectral density contributions entering in the free
energy balance equation, for perpendicular characteristic
scales kc (units of inverse ion Larmor radius) are presented
in Fig. 1(a). It is interesting to note that while the spectral
density Lk

C is found to be zero, the Lk
k term, although it

integrates to zero globally, contributes to the overall linear
term (Lk) spectral form for time saturated states. This is
important as the nonlinear transfer spectral density T k is
balanced by the sum of all the linear terms. Here, the
transition from a net energy injection to a net energy
dissipation regime occurs at kc # 1. The subsequent non-
linear transfers between scales can be seen as taking place
under the constraint of a given transfer spectra.

From Fig. 1(a), the presence of the dissipation term at all
scales is obvious. The fact that a driving mechanism
(occurring through the unstable eigenmodes) acts at the
same scale as the dissipative effects (occurring through the
stable, damped eigenmodes) signifies that the information
injected into the system (mainly in the kc < 1 range) and
the information cascaded down nonlinearly are different.
Moreover, since both stable and unstable eigenmodes are a
result of the same GK system of equations, the two effects
are intertwined, which prevents us from modifying the
drive without modifying the dissipation. This represents a
big change compared to classical turbulence where the two
terms act primarily at different wave numbers and are
unlinked. Therefore, we refer to GK turbulence as having
a nontrivial dissipative nature.

Locality functions.—The locality functions are defined
from the triple transfers as a way to measure the non-
locality degree of the triads which contribute to the
energy scale flux. The flux through a scale (here, shell
boundaries kc) is defined by partially summing the trans-
fer spectra T K,

!ðkcÞ ¼
XN

K¼cþ1

T K ¼
XN

K¼cþ1

XN

P¼1

XN

Q¼1

SK;P;Q: (9)

In Fig. 1(b) we show the free energy flux across the perpen-
dicular shell wave numbers kc. Since the source term con-
tributionGk is spread over a large interval, the flux across a
scale kc builds up slowly to its cascade saturated value
(achieved at kc # 1). Moreover, since the dissipation range
is quite wide and permeates into the injection range, a true
inertial range flux value cannot be identified as the plateau
on the flux, Fig. 1(b). In fact, the scale flux plateau level is
given byLþ, representing the sumof the positive part of the
linear contribution Gk þLk þDk, here the first 10 shells.
TheLþ=D ratio clearly shows that only a fraction (54%) of
the energy injected into the system contributes to the non-
linear cascade.
From the definition given in Eq. (9), we see that the scale

flux through kc depends on all the scales with wave num-
bers smaller than kc giving energy to all the possible scales
denoted by wave numbers larger than kc. However, is this
contribution to the flux arising primarily from scales close
in value to kc or from scales with much smaller wave
number values? And, regardless of where the energy comes
from in respect to kc, is this energy going to scales of
immediately larger wave numbers or scales of much larger
wave numbers? These two questions represent fundamen-
tal questions for any nonlinear system and are answered
through the use of locality functions. Intuitively, these
functions measure a flux constructed by disregarding a
given range of scales. The ratio compared to the total
physical scale flux indicates the importance of the removed
scales to the nonlinear interaction process.
Formally, knowing the flux, the infrared (IR) locality

function is defined by taking a probe wave number bound-
ary kp, so that kp & kc,

FIG. 1 (color online). The free energy rhs terms [of Eq. (3)]
spectra (a) and the free energy flux across the shell boundaries
(b) normalized by the total dissipation rate D. The vertical
dashed lines represent the shell boundaries. The insert picture
(c) depicts the shell-to-shell transfer for this run (negative values
for P> K); for details see Ref. [8].
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information can be recovered by summing over the inverse
Fourier transform of each shell-filtered contribution.

The triple-shell transfer occurring between the shell
filtered quantities can be computed as

SK;P;Q ¼
X

q2sQ

X

p2sP

X

k2sK

T k;p;q!kþpþq; (7)

and represents the basic information available to us for
analysis. Knowing SK;P;Q allows us to compute all other
relevant nonlinear transfer quantities. By summing over all
possible shells Q we can obtain the shell-to-shell transfer
(PK;P; implicitly defined below and analyzed previously
[8]) and the nonlinear transfer spectra by summing fur-
thermore over P,

T K ¼
X

P

PK;P ¼
X

P

X

Q

SK;P;Q: (8)

Numerically, when summing the transfer [Eq. (8)] over K,
which is equivalent to integrating the nonlinear transfer
over the entire space, we obtain zero (comparable to ma-
chine precision).

The spectral density contributions entering in the free
energy balance equation, for perpendicular characteristic
scales kc (units of inverse ion Larmor radius) are presented
in Fig. 1(a). It is interesting to note that while the spectral
density Lk

C is found to be zero, the Lk
k term, although it

integrates to zero globally, contributes to the overall linear
term (Lk) spectral form for time saturated states. This is
important as the nonlinear transfer spectral density T k is
balanced by the sum of all the linear terms. Here, the
transition from a net energy injection to a net energy
dissipation regime occurs at kc # 1. The subsequent non-
linear transfers between scales can be seen as taking place
under the constraint of a given transfer spectra.

From Fig. 1(a), the presence of the dissipation term at all
scales is obvious. The fact that a driving mechanism
(occurring through the unstable eigenmodes) acts at the
same scale as the dissipative effects (occurring through the
stable, damped eigenmodes) signifies that the information
injected into the system (mainly in the kc < 1 range) and
the information cascaded down nonlinearly are different.
Moreover, since both stable and unstable eigenmodes are a
result of the same GK system of equations, the two effects
are intertwined, which prevents us from modifying the
drive without modifying the dissipation. This represents a
big change compared to classical turbulence where the two
terms act primarily at different wave numbers and are
unlinked. Therefore, we refer to GK turbulence as having
a nontrivial dissipative nature.

Locality functions.—The locality functions are defined
from the triple transfers as a way to measure the non-
locality degree of the triads which contribute to the
energy scale flux. The flux through a scale (here, shell
boundaries kc) is defined by partially summing the trans-
fer spectra T K,

!ðkcÞ ¼
XN

K¼cþ1

T K ¼
XN

K¼cþ1

XN

P¼1

XN

Q¼1

SK;P;Q: (9)

In Fig. 1(b) we show the free energy flux across the perpen-
dicular shell wave numbers kc. Since the source term con-
tributionGk is spread over a large interval, the flux across a
scale kc builds up slowly to its cascade saturated value
(achieved at kc # 1). Moreover, since the dissipation range
is quite wide and permeates into the injection range, a true
inertial range flux value cannot be identified as the plateau
on the flux, Fig. 1(b). In fact, the scale flux plateau level is
given byLþ, representing the sumof the positive part of the
linear contribution Gk þLk þDk, here the first 10 shells.
TheLþ=D ratio clearly shows that only a fraction (54%) of
the energy injected into the system contributes to the non-
linear cascade.
From the definition given in Eq. (9), we see that the scale

flux through kc depends on all the scales with wave num-
bers smaller than kc giving energy to all the possible scales
denoted by wave numbers larger than kc. However, is this
contribution to the flux arising primarily from scales close
in value to kc or from scales with much smaller wave
number values? And, regardless of where the energy comes
from in respect to kc, is this energy going to scales of
immediately larger wave numbers or scales of much larger
wave numbers? These two questions represent fundamen-
tal questions for any nonlinear system and are answered
through the use of locality functions. Intuitively, these
functions measure a flux constructed by disregarding a
given range of scales. The ratio compared to the total
physical scale flux indicates the importance of the removed
scales to the nonlinear interaction process.
Formally, knowing the flux, the infrared (IR) locality

function is defined by taking a probe wave number bound-
ary kp, so that kp & kc,

FIG. 1 (color online). The free energy rhs terms [of Eq. (3)]
spectra (a) and the free energy flux across the shell boundaries
(b) normalized by the total dissipation rate D. The vertical
dashed lines represent the shell boundaries. The insert picture
(c) depicts the shell-to-shell transfer for this run (negative values
for P> K); for details see Ref. [8].

PRL 109, 235003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

235003-3

Quadratic nonlinearity: 

Logarithmically spaced shells 
in perp. wavenumber space: 



Multiscale dissipative processes 

information can be recovered by summing over the inverse
Fourier transform of each shell-filtered contribution.

The triple-shell transfer occurring between the shell
filtered quantities can be computed as

SK;P;Q ¼
X

q2sQ

X

p2sP

X

k2sK

T k;p;q!kþpþq; (7)

and represents the basic information available to us for
analysis. Knowing SK;P;Q allows us to compute all other
relevant nonlinear transfer quantities. By summing over all
possible shells Q we can obtain the shell-to-shell transfer
(PK;P; implicitly defined below and analyzed previously
[8]) and the nonlinear transfer spectra by summing fur-
thermore over P,

T K ¼
X

P

PK;P ¼
X

P

X

Q

SK;P;Q: (8)

Numerically, when summing the transfer [Eq. (8)] over K,
which is equivalent to integrating the nonlinear transfer
over the entire space, we obtain zero (comparable to ma-
chine precision).

The spectral density contributions entering in the free
energy balance equation, for perpendicular characteristic
scales kc (units of inverse ion Larmor radius) are presented
in Fig. 1(a). It is interesting to note that while the spectral
density Lk

C is found to be zero, the Lk
k term, although it

integrates to zero globally, contributes to the overall linear
term (Lk) spectral form for time saturated states. This is
important as the nonlinear transfer spectral density T k is
balanced by the sum of all the linear terms. Here, the
transition from a net energy injection to a net energy
dissipation regime occurs at kc # 1. The subsequent non-
linear transfers between scales can be seen as taking place
under the constraint of a given transfer spectra.

From Fig. 1(a), the presence of the dissipation term at all
scales is obvious. The fact that a driving mechanism
(occurring through the unstable eigenmodes) acts at the
same scale as the dissipative effects (occurring through the
stable, damped eigenmodes) signifies that the information
injected into the system (mainly in the kc < 1 range) and
the information cascaded down nonlinearly are different.
Moreover, since both stable and unstable eigenmodes are a
result of the same GK system of equations, the two effects
are intertwined, which prevents us from modifying the
drive without modifying the dissipation. This represents a
big change compared to classical turbulence where the two
terms act primarily at different wave numbers and are
unlinked. Therefore, we refer to GK turbulence as having
a nontrivial dissipative nature.

Locality functions.—The locality functions are defined
from the triple transfers as a way to measure the non-
locality degree of the triads which contribute to the
energy scale flux. The flux through a scale (here, shell
boundaries kc) is defined by partially summing the trans-
fer spectra T K,

!ðkcÞ ¼
XN

K¼cþ1

T K ¼
XN

K¼cþ1

XN

P¼1

XN

Q¼1

SK;P;Q: (9)

In Fig. 1(b) we show the free energy flux across the perpen-
dicular shell wave numbers kc. Since the source term con-
tributionGk is spread over a large interval, the flux across a
scale kc builds up slowly to its cascade saturated value
(achieved at kc # 1). Moreover, since the dissipation range
is quite wide and permeates into the injection range, a true
inertial range flux value cannot be identified as the plateau
on the flux, Fig. 1(b). In fact, the scale flux plateau level is
given byLþ, representing the sumof the positive part of the
linear contribution Gk þLk þDk, here the first 10 shells.
TheLþ=D ratio clearly shows that only a fraction (54%) of
the energy injected into the system contributes to the non-
linear cascade.
From the definition given in Eq. (9), we see that the scale

flux through kc depends on all the scales with wave num-
bers smaller than kc giving energy to all the possible scales
denoted by wave numbers larger than kc. However, is this
contribution to the flux arising primarily from scales close
in value to kc or from scales with much smaller wave
number values? And, regardless of where the energy comes
from in respect to kc, is this energy going to scales of
immediately larger wave numbers or scales of much larger
wave numbers? These two questions represent fundamen-
tal questions for any nonlinear system and are answered
through the use of locality functions. Intuitively, these
functions measure a flux constructed by disregarding a
given range of scales. The ratio compared to the total
physical scale flux indicates the importance of the removed
scales to the nonlinear interaction process.
Formally, knowing the flux, the infrared (IR) locality

function is defined by taking a probe wave number bound-
ary kp, so that kp & kc,

FIG. 1 (color online). The free energy rhs terms [of Eq. (3)]
spectra (a) and the free energy flux across the shell boundaries
(b) normalized by the total dissipation rate D. The vertical
dashed lines represent the shell boundaries. The insert picture
(c) depicts the shell-to-shell transfer for this run (negative values
for P> K); for details see Ref. [8].
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information can be recovered by summing over the inverse
Fourier transform of each shell-filtered contribution.

The triple-shell transfer occurring between the shell
filtered quantities can be computed as

SK;P;Q ¼
X

q2sQ

X

p2sP

X

k2sK

T k;p;q!kþpþq; (7)

and represents the basic information available to us for
analysis. Knowing SK;P;Q allows us to compute all other
relevant nonlinear transfer quantities. By summing over all
possible shells Q we can obtain the shell-to-shell transfer
(PK;P; implicitly defined below and analyzed previously
[8]) and the nonlinear transfer spectra by summing fur-
thermore over P,

T K ¼
X

P

PK;P ¼
X

P

X

Q

SK;P;Q: (8)

Numerically, when summing the transfer [Eq. (8)] over K,
which is equivalent to integrating the nonlinear transfer
over the entire space, we obtain zero (comparable to ma-
chine precision).

The spectral density contributions entering in the free
energy balance equation, for perpendicular characteristic
scales kc (units of inverse ion Larmor radius) are presented
in Fig. 1(a). It is interesting to note that while the spectral
density Lk

C is found to be zero, the Lk
k term, although it

integrates to zero globally, contributes to the overall linear
term (Lk) spectral form for time saturated states. This is
important as the nonlinear transfer spectral density T k is
balanced by the sum of all the linear terms. Here, the
transition from a net energy injection to a net energy
dissipation regime occurs at kc # 1. The subsequent non-
linear transfers between scales can be seen as taking place
under the constraint of a given transfer spectra.

From Fig. 1(a), the presence of the dissipation term at all
scales is obvious. The fact that a driving mechanism
(occurring through the unstable eigenmodes) acts at the
same scale as the dissipative effects (occurring through the
stable, damped eigenmodes) signifies that the information
injected into the system (mainly in the kc < 1 range) and
the information cascaded down nonlinearly are different.
Moreover, since both stable and unstable eigenmodes are a
result of the same GK system of equations, the two effects
are intertwined, which prevents us from modifying the
drive without modifying the dissipation. This represents a
big change compared to classical turbulence where the two
terms act primarily at different wave numbers and are
unlinked. Therefore, we refer to GK turbulence as having
a nontrivial dissipative nature.

Locality functions.—The locality functions are defined
from the triple transfers as a way to measure the non-
locality degree of the triads which contribute to the
energy scale flux. The flux through a scale (here, shell
boundaries kc) is defined by partially summing the trans-
fer spectra T K,

!ðkcÞ ¼
XN

K¼cþ1

T K ¼
XN

K¼cþ1

XN

P¼1

XN

Q¼1

SK;P;Q: (9)

In Fig. 1(b) we show the free energy flux across the perpen-
dicular shell wave numbers kc. Since the source term con-
tributionGk is spread over a large interval, the flux across a
scale kc builds up slowly to its cascade saturated value
(achieved at kc # 1). Moreover, since the dissipation range
is quite wide and permeates into the injection range, a true
inertial range flux value cannot be identified as the plateau
on the flux, Fig. 1(b). In fact, the scale flux plateau level is
given byLþ, representing the sumof the positive part of the
linear contribution Gk þLk þDk, here the first 10 shells.
TheLþ=D ratio clearly shows that only a fraction (54%) of
the energy injected into the system contributes to the non-
linear cascade.
From the definition given in Eq. (9), we see that the scale

flux through kc depends on all the scales with wave num-
bers smaller than kc giving energy to all the possible scales
denoted by wave numbers larger than kc. However, is this
contribution to the flux arising primarily from scales close
in value to kc or from scales with much smaller wave
number values? And, regardless of where the energy comes
from in respect to kc, is this energy going to scales of
immediately larger wave numbers or scales of much larger
wave numbers? These two questions represent fundamen-
tal questions for any nonlinear system and are answered
through the use of locality functions. Intuitively, these
functions measure a flux constructed by disregarding a
given range of scales. The ratio compared to the total
physical scale flux indicates the importance of the removed
scales to the nonlinear interaction process.
Formally, knowing the flux, the infrared (IR) locality

function is defined by taking a probe wave number bound-
ary kp, so that kp & kc,

FIG. 1 (color online). The free energy rhs terms [of Eq. (3)]
spectra (a) and the free energy flux across the shell boundaries
(b) normalized by the total dissipation rate D. The vertical
dashed lines represent the shell boundaries. The insert picture
(c) depicts the shell-to-shell transfer for this run (negative values
for P> K); for details see Ref. [8].
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The corresponding shell-to-shell free energy transfer
terms are shown in Fig. 2, and various interesting features
can be observed there: (i) The entropy transfer is larger
than the electrostatic energy transfer by 2 orders of mag-
nitude. This is in line with the fact that only Ef is driven

directly, while E! is fed via linear transfer terms. Just a

small fraction of the free energy is passed on to E!.

(ii) While the electrostatic energy exhibits an inverse and
less local cascade behavior, this property hardly affects the
overall free energy dynamics, given the dominance of Ef

over E! and of Tf over T!. (iii) The entropy transfer (and

therefore also the free energy transfer) is from large scales
to small ones; it is negative for ‘0 > ‘ and, due to the
antisymmetry property, positive otherwise. (iv) The free
energy transfer is very local in wave number space. Indeed,

only values of T‘;‘0
tot with ‘ close to ‘0 are significantly

different from zero. In practice, for j‘! ‘0j> 5 the free
energy transfers almost vanish. This corresponds to a ratio
of wave numbers between the two shells of the order of 2.
(v) For ‘ > 15, the total transfers are found to depend
mainly on ‘! ‘0, not on the two indices separately. This
suggests the existence of an asymptotic self-similarity
range, despite finite dissipation (see Fig. 1). Given that,
in contrast to the damping rates, the nonlinear frequencies
characterizing the free energy transfer increase with ‘ (see
also Ref. [16]), cascade dynamics is allowed to develop.

Interestingly, as is shown in Fig. 3, the wave number
spectra of Ef and E! exhibit power laws at k? > 1, indica-
tive of self-similarity. Dimensional analysis based on
two-dimensional gyrokinetics lead Schekochihin and co-

workers [3] to the predictions Efðk?Þ / k!4=3
? and

E!ðk?Þ / k!10=3
? which are displayed for comparison.

One finds that the measured spectra are relatively close
to these expectations, regardless of the fact that terms
related to parallel free streaming, magnetic curvature,
and inherent drive and damping are all neglected in this
theory, and that Ef and E! are conserved independently of

each other in two dimensions. Clearly, future work will
have to further unravel the underlying physics.
In summary, the spectral transfer of free energy in

gyrokinetic turbulence displays various similarities with
the kinetic energy transfer in fully developed Navier-
Stokes turbulence, although this is not at all obvious
a priori. In particular, being dominated by the entropy
contribution, the free energy is subject to a (strongly) local,
forward cascade—despite the absence of a strict inertial
range. Moreover, the wave number spectra of the entropic
and electrostatic parts of the free energy exhibit power laws
with exponents which are close to the predictions from a
simplified two-dimensional analysis.
Insights like these may be expected to guide the appli-

cation of large-eddy-simulation techniques [17] to gyroki-
netics. Here, the idea is to only retain the dynamics of the
largest scales while the smallest ones are modeled. Indeed,
if the smallest scales are proven to act systematically as a
sink of free energy like it was the case here, it is reasonable
to propose a dissipative model for these small scales and
consequently reduce as much as possible the numerical
resolution. On such a basis, it may well become possible to
reduce the computational effort for gyrokinetic turbulence
simulations by a significant amount. The present work
represents a relevant step in that direction.
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A modified version of the Kuramoto-Sivashinsky equation

A simple one dimensional model for turbulent behaviour is the Kuramoto-Sivashinsky equa-

tion [1, 2]

∂u(x, t)

∂t
= −u(x, t)

∂u(x, t)

∂x
− µ

∂2u(x, t)

∂x2
− ν

∂4u(x, t)

∂x4
, (1)

where µ, ν ∈ R+. (All our numerical analysis is done after setting µ = 1 = ν.) It is a

fourth order nonlinear partial differential equation and very similar to the Burgers equation.

Eq. (1), in general, describes extended physical systems driven far from equilibrium by in-

ternal instabilities. The linear terms on the right hand-side provide an energy source and

sink, respectively. Similarly as in Navier-Stokes turbulence we have energy injection on large

scales and energy dissipation on small scales. The nonlinear term is responsible for the cou-

pling between different scales and transfers the energy from small to large scales where it

is dissipated. However, in contrast to Navier-Stokes turbulence the turbulent field u(x, t) is

compressible. In physical terms this means that the solutions of Eq. (1) develop shock waves.

We are going to examine Eq. (1) on the finite domain x ∈ [0, L] and consider only functions

that belong to C4
([0, L])∩L2

([0, L]) with respect to x and to C1
(R) with respect to time and

fulfil the periodic boundary conditions u(x = 0, t) = u(x = L, t) for all t ∈ R+. Since u2 has

the physical interpretation of the energy density of the system, the condition that u(x, t) is

square integrable over the domain x ∈ [0, L] ensures that the system has a finite energy. The

periodic boundary conditions suggest representation in terms of Fourier series defined as

u(x, t) =
�

n∈Z
�u(kn, t)eiknx ⇔ �u(kn, t) =

1

L

L�

0

u(x, t)e−iknxdx , (2)

where the wave numbers kn = n2π/L are discrete and n ∈ Z. From the condition that u(x, t)
is real follows that �u(kn, t) = �u(−kn, t) where the overbear denotes complex conjugation.

Expressing Eq. (1) in terms of Fourier coefficients gives

∂�u(kn, t)
∂t

= −1

2
ikn

�

m∈Z
�u(kn − km, t)�u(km, t) + (µk2n − νk4n)�u(kn, t) . (3)

The convolution sum on the right hand-side arises from the nonlinearity and describes the

coupling between different modes. Without it every mode would develop in time as e(µk
2
n−νk4n)t

and the modes with n <
�
µ/νL/(2π) would grow infinitely. Modes with a value of n higher

than this are damped and the damping rate goes as νk4n for k → ±∞. The nonlinear term

does not produce or dissipate energy, i.e., summed over n it gives zero, but only redistributes

it among the modes. We modify the linear term by introducing the factor a + bk4n in the

denominator, i.e., µk2n − νk4n → (µk2n − νk4n)/(a+ bk4n) where a, b ∈ R+. The new linear term

provides a constant damping rate of 1/b in the limit of high wave number. The parameter a
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Nonlinear energy transfer 

controls the energy injection range and we will set a = 1 for the reminder of this work. Note

that the real representation of the modified linear term is well defined for all functions in the

domain C4([0, L]) ∩ L2([0, L]). Multiplying Eq. (3) by �u(kn, t) and adding to it its complex

conjugate equation gives us the energy budget equation for the modified version of Eq. (3)

which in Fourier space reads

∂E(kn, t)

∂t
=

�

m∈Z
kn�

�
�u(kn, t)�u(kn − km, t)�u(km, t)

�

� �� �
=:T (kn,km,t)

+2
µk2n − νk4n
1 + bk4n

E(kn, t) , (4)

where E(kn, t) := |�u(kn, t)|2 is the energy of the kn-mode. T (kn, km, t) we refer to as the

nonlinear energy transfer function. Note that, in contrast to incompressible fluid turbulence,

it is not antisymmetric with respect to an interchange of kn and km. On the above equation

one sees explicitly the three-wave interaction that transfers energy between different modes

and the selection rule that two modes, say kn and km, couple via a mode with the wave

number kn − km.

The numerical solution of Eq. (3) that we used is based on the Exponential Time Differencing
fourth-order Runge-Kutta (ETDRK4) scheme proposed in [3] and improved in [4]. The code

used can be found in [4] which we rewrote in Fortran and dealiased. The numerical simulations

showed that the energy dissipation at small scales balances the energy injection at small wave

numbers and after some transient time the total energy of the system fluctuates around a

time-independent value. Therefore, the tedious ensemble average can be substituted with a

time average defined as

�f(t)�τ := lim
τ→∞

T0+τ�

T0

f(t)dt . (5)

Applying this time average on Eq. (4) one arrives at

kn
�

m∈Z
�
�
��u(kn, t)�u(kn − km, t)�u(km, t)�τ

�
+ 2

µk2n − νk4n
1 + bk4n

E(kn) = 0 (6)

which determines the time averaged energy spectrum E(kn). We search for an approximation

of this equation for large wave numbers and a convenient way to accomplish this is to express

the first term as a function of the energy spectrum. For this we take a closer look at the

numerical solution for �T (kn, km, t)�τ displayed in Fig. 1a. |�u(kn, t)| decreases rapidly with kn,
therefore, we have normalized T over the energy spectrum which makes it possible that details

are visible also for high wave numbers. The energy transfer in that limit is realized primarily

between two high wave numbers and mediated via one small wave number that is in the order

of 1. This is a completely different picture compared to ordinary fluid dynamics where the

triplets consists of two nearly equal wave numbers and one that is twice as large. Looking

at the form of T (kn, km, t) in Eq. (4), it is clear that such a combination for fixed kn can be

realized in two different ways: km ≈ kn and kn−km small or km small and kn−km ≈ kn. A slice

of �T (kn, km, t)�τ for a given kn is displayed in Fig. 1b. The two structures are mirror images

of each other, so we focus our study on the part where km ≈ kn. Defining for convenience

kq = km − kn, the nonlinearity becomes kn
�

q∈Z�
�
��u(kn, t)�u(kq, t)�u(kn + kq, t)�τ

�
. A plot

of the summand (red) normalized properly is shown in Fig. 2. Note that for high kn the

form of this triple correlation is practically independent of kn as one can show numerically.

2
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Figure 2: (a) Triple correlation (red) as a function of kq at a given high kn normalized over
the energy of the (kn + kmin

q )-mode compared to the model f(kq)/E(kn − kmin
q ); (b) fit of a

power law (blue) to the high-k end of the energy spectrum (red).

functions and kmin
q ≈ 1/

√
2, we can write

�

q∈Z
f(kq) ≈

1

∆k

+∞�

−∞

f(q)dq =
1

∆k

√
πa1a2

√
a3

�
E(kn − 1/

√
2)− E(kn + 1/

√
2)
�

. (8)

For high kn one can write E(kn−1/
√
2)−E(kn+1/

√
2) ≈ −

√
2dE/dk where we have assumed

that we have a continuum of wave numbers. The latter is approximately true for ∆k � 1
and will allow us to construct a differential equation for E(k) which is easier to work with
than a difference equation. The nonlinearity equals 2

�
q∈Z f(kq) where the factor 2 takes into

account that we modelled only one of the two identical structures in Fig. 1b. Substituting
this approximation into Eq. (6) we arrive at

−2
a1a2
∆k

√
2πa3k

dE

dk
+ 2

µk2 − νk4

1 + bk4
E(k) = 0 . (9)

The solution of the above differential equation is readily as obtained as

E(k) = �E0 exp

�
λµ√
b
arctan(

√
bk2)− λν

2b
ln(1 + bk4)

�
(10)

where we have substituted λ = ∆k/(2a1a2
√
2πa3). In the limit of large wave numbers the

second term in the exponent dominates and leads to

E(k) = E0k
−2λν/b , (11)

where E0 is a constant of integration. This is a power law with respect to k where the power
depends on the damping parameter b. With the values of the free parameters given above
one obtains for b = 0.036 an exponent of ≈ −22.02. By numerically computing the energy
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functions and kmin
q ≈ 1/

√
2, we can write

�

q∈Z
f(kq) ≈

1

∆k

+∞�

−∞

f(q)dq =
1

∆k

√
πa1a2

√
a3

�
E(kn − 1/

√
2)− E(kn + 1/

√
2)
�

. (8)

For high kn one can write E(kn−1/
√
2)−E(kn+1/

√
2) ≈ −

√
2dE/dk where we have assumed

that we have a continuum of wave numbers. The latter is approximately true for ∆k � 1
and will allow us to construct a differential equation for E(k) which is easier to work with
than a difference equation. The nonlinearity equals 2

�
q∈Z f(kq) where the factor 2 takes into

account that we modelled only one of the two identical structures in Fig. 1b. Substituting
this approximation into Eq. (6) we arrive at

−2
a1a2
∆k

√
2πa3k

dE

dk
+ 2

µk2 − νk4

1 + bk4
E(k) = 0 . (9)

The solution of the above differential equation is readily as obtained as

E(k) = �E0 exp

�
λµ√
b
arctan(

√
bk2)− λν

2b
ln(1 + bk4)

�
(10)

where we have substituted λ = ∆k/(2a1a2
√
2πa3). In the limit of large wave numbers the

second term in the exponent dominates and leads to

E(k) = E0k
−2λν/b , (11)

where E0 is a constant of integration. This is a power law with respect to k where the power
depends on the damping parameter b. With the values of the free parameters given above
one obtains for b = 0.036 an exponent of ≈ −22.02. By numerically computing the energy

4

Nonuniversal power laws 
An analytical closure yields... 

The exact solution of this equation reads... 

High-k limit: 

Spectral exponent is proportional to high-k damping rate! 



Confirmation by numerical simulation 

Direct numerical simulations 
confirm analytical prediction 

Bottom line: Nonuniversal power laws in a certain spectral range if the ratio 
of nonlinear and linear (damping) time scales is (roughly) scale-independent. 



Future challenges 



Gyrokinetics for laboratory plasmas 

Simulation of ASDEX Upgrade with GENE (http://gene.rzg.mpg.de) 



Dimensional reduction in gyrokinetics 
3
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FIG. 1. Schematic view of a Large Eddy Simulation: The
smallest scales (grey area between dashed-dotted and dotted
lines) are retained only in a DNS, while they are modeled in
a LES model; LES only retain the area inside the dashed-
dotted line; alternatively or additionally, a test filter can be
used (hatched area, solid line).

B. Free energy and sub-grid term

As has been shown both theoretically14–17 and

numerically18–20, the free energy is a relevant quantity

for studying gyrokinetic turbulence. The free energy is

defined as:

E =
n0iT0i

V T0e

�

kx

�

ky

�
πdzdv�dµ

h−kifki
2F0i

, (10)

with the volume V =
�

kx

�
ky

�
dz/B0.

The dynamics of the quantity E can be derived from

Eq. (1) by the action of the “free energy operator” Ξ on

the distribution function fki: E =
1
2Ξ[fki] with

Ξ[ξk] =
n0iT0i

V T0e

�

kx

�

ky

�
πdzdv�dµ

h−ki

F0i
ξk . (11)

One thus obtains:

∂tE = G −D , (12)

with the definitions

G = Ξ [LG[fki]] , D = Ξ [D[fki]] . (13)

This balance is of particular relevance for the design

of a good model. As pointed out in Ref.15, Eq. (12)

involves only quantities which are quadratic in the dis-

tribution function, like the kinetic energy in fluid turbu-

lence. Moreover, like the latter quantity, the free energy

is injected at large scales by the background gradients

and dissipated at various smaller scales by the dissipation

terms D. It is important to note in this context that the

parallel advection term (L�), the magnetic term (LB0),

and the nonlinear term (N) have a null contribution to

the total free energy balance.

III. DEVELOPING A GYROKINETIC LES MODEL

As is well known, a naive truncation of small scales

can lead to a pile-up of free energy at the smallest

scales which are retained in the filtered simulation.6 A

good LES model is thus required to dissipate the correct

amount of free energy. In the following, the role of sub-

grid terms in the free energy balance will be studied in

detail. A model will then be developed which agrees as

much as possible with the desired sub-grid properties.

A. Sub-grid term and dissipation of free energy

The nonlinear term has the fundamental role of trans-

ferring free energy across perpendicular scales, as well

as across parallel space scales and perpendicular velocity

scales, that are of lower interest in the present work with

respect to the aim of filtering out perpendicular scales.

These transfers have a globally null contribution to the

free energy:

Ξ [N [φk, fk]] = 0 , (14)

simply reflecting the fact that the nonlinearity has a Pois-

son bracket structure and, consequently, it vanishes upon

integration. For the same reason, if a filter is introduced,

the following property holds:

Ξ
�
N [φk, fk]

�
= 0 , (15)

where Ξ is the filtered free energy operator defined in

the filtered space. On the contrary, the filtered free en-

ergy operator has a non vanishing contribution when it

is applied to the sub-grid term:

T∆,∆DNS = Ξ[T∆,∆DNS ] = Ξ
�
N [φk, fk]−N [φk, fk]

�

= Ξ
�
N [φk, fk]

�
. (16)

The filtered free energy balance can then be expressed

as

∂tE = G + T∆,∆DNS −D , (17)

where filtered quantities are obtained from the action of

the filtered free energy operator Ξ on the filtered gyroki-

netic equation (8).

Recalling that the free energy is assumed to be injected

at large scales, then transferred to smaller scales and dis-

sipated there, one can expect that the sub-grid contribu-

tion to free energy balance (16) will be negative. Indeed,

Schematic of „dynamic procedure“ 7

0 0.5 1 1.5
0

50

100

150

200

250

300

k
x
 ρ

i

F
re

e 
E

n
er

g
y

 

 
DNS 128 x 64
LES M4 48 x 32
LES M0 48 x 32

0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

300

350

k
y
 ρ

i

F
re

e 
E

n
er

g
y

 

 
DNS 128 x 64
LES M4 48 x 32
LES M0 48 x 32

FIG. 4. Free energy spectra (Ekx at top, Eky at bottom) for
the fourth-order model (M4) at reduced resolution, compared
with a highly resolved DNS and the case without a model
(M0).

bustness of the LES approach is tested for two values of

the temperature gradient which differ from the nominal

value; these correspond to a weakly driven turbulence

case (ωTi = 6.0) and to a strongly driven turbulence case

(ωTi = 8.0).
The case of weakly driven ITG turbulence is shown in

Fig. 5. The M4 model yields a very reasonable agreement

with the DNS regarding both the free energy spectrum

Eky and the free energy injection spectrum Gky . The

total values EM4 = 0.99 EDNS and QM4 = 0.75QDNS are

also in good agreement. Without a model, one obtains

EM0 = 1.79 EDNS and QM0 = 1.04QDNS. The latter result

is accidental, however, and results from a compensation

between an underestimation at large scales and an over-

estimation at small ones.

Fig. 6 displays the results for the case of strongly driven

ITG turbulence. The LES is found to systematically

overestimate the DNS free energy spectrum Eky , while

the prediction of the free energy injection spectrum Gky

is in reasonable agreement. One finds EM4 = 1.67 EDNS
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FIG. 5. Wavenumber spectra Eky (at top) and Gky (at bot-
tom): Comparison between DNS and LES for the case of
weakly driven ITG turbulence at ωTi = 6.0.

and QM4 = 1.14QDNS, whereas the values exhibit a

substantial disagreement without a model, according to

EM0 = 3.00 EDNS and QM0 = 1.42QDNS.

In summary, the LES model leads to a far better agree-

ment with the reference DNS than the runs without a

model. As far as the overall heat flux levels (which are of

prime importance) are concerned, the relative error with

respect to the reference DNS is acceptable, amounting to

less than 30% in all three cases considered. The model

amplitudes cx and cy computed dynamically are found

to be quite robust when varying the temperature gra-

dient. The mean values are cx = 0.0155, cy = 0.0179
in the weakly driven case, cx = 0.0140, cy = 0.0212 for

the CBC, and cx = 0.0140, cy = 0.0219 for the strongly

driven case.

C. Robustness while varying the magnetic shear

Next, we would like to investigate the robustness

of the LES approach with respect to variations of

Free energy spectra 
(w/ and w/o model) 

Morel et al., 
PoP 2011  

LES techniques are likely to reduce the simulation effort 
substantially without introducing many free parameters. 

This offers interesting perspectives… 



(Gyro-)Kinetics for natural plasmas:       
The solar wind dissipation range 

Sahraoui et al., PRL 2009 Howes et al., PRL 2011 

Cluster spacecraft measurements Gyrokinetic simulations below ρi 

Role of linear waves in a turbulent environment? 



Some other turbulence-wave systems 

Turbulence in planetary 
atmospheres: Rossby waves  

Turbulence in quantum fluids: 
Kelvin waves on vortex filaments 

Turbulence in oceans: 
Water surface waves 



Beyond Richardson and Kolmogorov: 
Multi-scale driven/damped turbulence 
n  Turbulence behind space-filling 

 square fractal grids 
n  Turbulence in biological systems 
n  Instability-driven turbulence in 

 laboratory and astrophysical 
 plasmas 

FRACTAL SQUARE GRIDS

. – p.8/45

Turbulence... 
  

...a fascinating and challenging 
example of nonlinear dynamics 
in non-equilibrium systems 
  

...our view keeps evolving 


