VIRIATO: a Fourier-Hermite spectral code for strongly magnetised, fluid-kinetic plasma dynamics

> N. F. Loureiro (IPFN, IST Portugal) Collaborators: W. Dorland, <u>A. Kanekar</u>, <u>A. Mallet</u>, A. Schekochihin, M. S. Vilelas, A. Zocco

Stability, Energetics, and Turbulent Transport in Astrophysical, Fusion, and Solar Plasmas Princeton, 8th April 2013

Introduction

- Key problems (e.g., **turbulence**, **reconnection**) have seen tremendous progress over the last decade or so due to a combination of *reduced descriptions* [e.g., gyrokinetics (GK)] and *high-performance-computing*.
- GK is (numerically) simpler than full kinetics but twospecies, multiscale simulations remain very challenging.
- This talk focuses on a new reduced-GK model (KREHM) + new code (VIRIATO). Only 4D (3+1). Goal is *insight*.
- Usefulness of this approach exemplified with detailed analysis of the energetics of reconnection in weakly collisional, strongly magnetised plasmas.

The Krehm model

[Zocco & Schekochihin, PoP **18**, 102309 (2011)]

- Minimal set of fluid-kinetic equations; captures electron Landau damping in *low beta, strongly magnetised* plasmas.
- Rigorous limit of the GK equation when $\beta \sim m_e/m_i$; fully GK ions.

The Krehm model

[Zocco & Schekochihin, PoP **18**, 102309 (2011)]

- Minimal set of fluid-kinetic equations; captures electron Landau damping in *low beta, strongly magnetised* plasmas.
- Rigorous limit of the GK equation when $\beta \sim m_e/m_i$; fully GK ions.

$$\frac{d}{dt}\frac{Z}{\tau}\left(1-\hat{\Gamma}_{0}\right)\frac{e\varphi}{T_{0e}} = \hat{\mathbf{b}}\cdot\nabla\frac{e}{cm_{e}}\,d_{e}^{2}\nabla_{\perp}^{2}A_{\parallel} \qquad Vorticity\ equation$$

The KREHM model

[Zocco & Schekochihin, PoP **18**, 102309 (2011)]

- Minimal set of fluid-kinetic equations; captures electron Landau damping in *low beta, strongly magnetised* plasmas.
- Rigorous limit of the GK equation when $\beta \sim m_e/m_i$; fully GK ions.

$$\frac{d}{dt}\frac{Z}{\tau}(1-\hat{\Gamma}_0)\frac{e\varphi}{T_{0e}} = \hat{\mathbf{b}}\cdot\nabla\frac{e}{cm_e}d_e^2\nabla_{\perp}^2A_{\parallel} \qquad Vorticity \ equation$$

$$\frac{d}{dt} \left(A_{\parallel} - d_e^2 \nabla_{\perp}^2 A_{\parallel} \right) = \eta \nabla_{\perp}^2 A_{\parallel} - c \frac{\partial \varphi}{\partial z} - \frac{c T_{0e}}{e} \,\hat{\mathbf{b}} \cdot \nabla \left[\frac{Z}{\tau} \left(1 - \hat{\Gamma}_0 \right) \frac{e \varphi}{T_{0e}} - \frac{\delta T_{\parallel e}}{T_{0e}} \right]$$

Ohm's law

The KREHM model

[Zocco & Schekochihin, PoP **18**, 102309 (2011)]

- Minimal set of fluid-kinetic equations; captures electron Landau damping in *low beta, strongly magnetised* plasmas.
- Rigorous limit of the GK equation when $\beta \sim m_e/m_i$; fully GK ions.

$$\frac{d}{dt}\frac{Z}{\tau}(1-\hat{\Gamma}_0)\frac{e\varphi}{T_{0e}} = \hat{\mathbf{b}}\cdot\nabla\frac{e}{cm_e}\,d_e^2\nabla_{\perp}^2A_{\parallel} \qquad Vorticity\ equation$$

$$\frac{d}{dt} \left(A_{\parallel} - d_e^2 \nabla_{\perp}^2 A_{\parallel} \right) = \eta \nabla_{\perp}^2 A_{\parallel} - c \frac{\partial \varphi}{\partial z} - \frac{c T_{0e}}{e} \hat{\mathbf{b}} \cdot \nabla \left[\frac{Z}{\tau} \left(1 - \hat{\Gamma}_0 \right) \frac{e \varphi}{T_{0e}} - \frac{\delta T_{\parallel e}}{T_{0e}} \right]$$

$$\begin{aligned} \frac{dg_e}{dt} + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla \left(g_e - \frac{\delta T_{\parallel e}}{T_{0e}} F_{0e} \right) &= C[g_e] \\ + \left(1 - \frac{2v_{\parallel}^2}{v_{\text{the}}^2} \right) F_{0e} \hat{\mathbf{b}} \cdot \nabla \frac{e}{cm_e} \, d_e^2 \nabla_{\perp}^2 A_{\parallel}, \end{aligned}$$

$$\frac{\delta T_{\parallel e}}{T_{0e}} = \frac{1}{n_{0e}} \int d^3 \mathbf{v} \, \frac{2v_{\parallel}^2}{v_{\text{the}}^2} \, g_e$$

Electron drift-kinetic equation

Hermite expansion

$$\begin{aligned} \frac{dg_e}{dt} + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla \left(g_e - \frac{\delta T_{\parallel e}}{T_{0e}} F_{0e} \right) &= C[g_e] \\ + \left(1 - \frac{2v_{\parallel}^2}{v_{\text{the}}^2} \right) F_{0e} \hat{\mathbf{b}} \cdot \nabla \frac{e}{cm_e} \, d_e^2 \nabla_{\perp}^2 A_{\parallel}, \end{aligned}$$

Note no explicit dependence on \mathcal{V}_{\perp} If such a dependence is not introduced by the coll. op., \mathcal{V}_{\perp} can be integrated out => 4D description!

Hermite expansion

$$\begin{aligned} \frac{dg_e}{dt} + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla \left(g_e - \frac{\delta T_{\parallel e}}{T_{0e}} F_{0e} \right) &= C[g_e] \\ + \left(1 - \frac{2v_{\parallel}^2}{v_{\text{the}}^2} \right) F_{0e} \hat{\mathbf{b}} \cdot \nabla \frac{e}{cm_e} \, d_e^2 \nabla_{\perp}^2 A_{\parallel}, \end{aligned}$$

It is convenient to introduce the Hermite expansion of $g_{e:}$

Note no explicit dependence on v_{\perp} If such a dependence is not introduced by the coll. op., v_{\perp} can be integrated out => 4D description!

$$g_e(x, y, t, v_{\parallel}) = \sum_{m=0}^{\infty} H_m(v_{\parallel}/v_{\text{the}})g_m(x, y, t) \frac{F_{0e}(v_{\parallel})}{\sqrt{2^m m!}}$$

Hermite expansion

$$\begin{aligned} \frac{dg_e}{dt} + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla \left(g_e - \frac{\delta T_{\parallel e}}{T_{0e}} F_{0e} \right) &= C[g_e] \\ + \left(1 - \frac{2v_{\parallel}^2}{v_{\text{the}}^2} \right) F_{0e} \hat{\mathbf{b}} \cdot \nabla \frac{e}{cm_e} \, d_e^2 \nabla_{\perp}^2 A_{\parallel}, \end{aligned}$$

It is convenient to introduce the Hermite expansion of $g_{e:}$

Note no explicit dependence on v_{\perp} If such a dependence is not introduced by the coll. op., v_{\perp} can be integrated out => 4D description!

$$g_e(x, y, t, v_{\parallel}) = \sum_{m=0}^{\infty} H_m(v_{\parallel}/v_{\text{the}})g_m(x, y, t) \frac{F_{0e}(v_{\parallel})}{\sqrt{2^m m!}}$$

$$\frac{d\hat{g}_m}{dt} + v_{\text{th}e}\hat{\mathbf{b}} \cdot \nabla \left(\sqrt{\frac{m+1}{2}}\hat{g}_{m+1} + \sqrt{\frac{m}{2}}\hat{g}_{m-1} - \delta_{m,1}\hat{g}_2\right)$$
$$= -\sqrt{2}\delta_{m,2}\hat{\mathbf{b}} \cdot \nabla \frac{e}{cm_e}d_e^2 \nabla_{\perp}^2 A_{\parallel} - \nu_{ei}\left(m\hat{g}_m - 2\delta_{m,2}\hat{g}_2\right).$$

Coupled set of fluidlike equations for the Hermite coeficients

Closure

- In a simulation, must chose how many m's to keep. What to do about g_{M+1} ?
- Lots of work done on this in the past (Hammett, Dorland, Beer, Smith, etc.)
- Adding collisions/hyper-collisions may provide a satisfactory way to close the system, regardless of the actual closure, though convergence may require many m's.

Closure

Eq. for g_m couples to g_{m+1} . How to close the system at some m=M?

$$\frac{dg_{M+1}}{dt} + v_{\text{th}e}\hat{\mathbf{b}} \cdot \nabla\left(\sqrt{\frac{M+2}{2}}g_{M+2} + \sqrt{\frac{M+1}{2}}g_M\right) = D_{M+1}g_{M+1}$$

For sufficiently large m=M, must have $D_M \gg \omega \Rightarrow \frac{g_{M+1}}{g_M} \ll 1$

Nonlinear closure:

$$g_{M+1} = \frac{v_{\text{th}e}}{D_{M+1}} \mathbf{\hat{b}} \cdot \nabla \sqrt{\frac{M+1}{2}} g_M$$

Closure: linear tests

KAW dispersion relation reproduced exactly with M=15 using hypercollisions $D_m = \nu_H (m/M)^4$

(with regular collisions, for $\nu_{ei}\tau_A = 0.1$ need a few hundred m's)

VIRIATO

Versatile code to solve three different sets of eqs.:

- Zocco/Schekochihin reduced GK eqs. [Phys. Plasmas **18**, 102309 (2011)]
- Kinetic long wavelength slow mode eqs. [Schekochihin *et al.*, ApJ **182**:310 (2009)]
- RMHD eqs. [Strauss, PoF 19, 134 (1976)]

Spectral in *x-y* (Fourier) and $v_{||}$ (Hermite). Grid in z (MacCormack scheme). Parallel in *x-y* and z. Strang-split to handle separately perpendicular and parallel terms. Good scalability (weak and strong) to few thousand processors.

VIRIATO reproduces KAW correctly

Alfred Mallet

VIRIATO agrees with AstroGK

Linear tearing mode benchmark

(see Numata et al., Phys. Plasmas 2011)

Simulations

- 2D doubly-periodic tearing mode setup. Finite amount of energy available.
- Initial magnetic field:

$$B_{eq} = B_z \hat{e}_z + B_y \hat{e}_y$$

• Hyper-collisions in the g_m eqs. $\sim (m/M)^4$

Simulations

- 2D doubly-periodic tearing mode setup. Finite amount of energy available.
- Initial magnetic field:

$$B_{eq} = B_z \hat{e}_z + B_y \hat{e}_y$$

- Spatial hyper-diffusion in all eqs. $\sim (k_{\perp}/k_{\perp}^{max})^6$
- Hyper-collisions in the g_m eqs. $\sim (m/M)^4$

Total number of Hermite moments kept. M is proxy for collisions: higher M, less colls.

Simulations

- 2D doubly-periodic tearing mode setup. Finite amount of energy available.
- Initial magnetic field:

$$B_{eq} = B_z \hat{e}_z + B_y \hat{e}_y$$

- Spatial hyper-diffusion in all eqs. $\sim (k_{\perp}/k_{\perp}^{max})^6$
- Hyper-collisions in the g_m eqs. $\sim (m/M)^4$

Even small amount of collisions is enough to make the system irreversible.

What happens to the converted magnetic energy?

Y

Lines are contours of magnetic flux, $A_{||}$.

Colors are temperature fluctuations – extended along separatrix, where spatial gradients are sharper

Weakly collisional tearing mode saturation

 Saturation is independent of collisions as long as W_{sat} exceeds the kinetic scales;
 RMHD solution recovered.

-This implies that the same amount of magnetic energy is converted during the evolution of the tearing mode, independent of collisions. How does it dissipate in the kinetic case?

Dissipation spectra

Dissipation spectra

Equation for the spectrum

$$\frac{dg_m}{dt} = \frac{v_{the}}{B_z} \left(\sqrt{\frac{m+1}{2}} \left\{ A_{\parallel}, g_{m+1} \right\} + \sqrt{\frac{m}{2}} \left\{ A_{\parallel}, g_{m-1} \right\} \right) - \nu_{coll} m^4 g_m$$

Define the Hermite spectrum as $E_m = |g_m|^2/2$. Linearise; for m>>1

$$\frac{\partial E_m}{\partial t} = -|k_y| \frac{B_y}{B_z} v_{\rm the} \frac{\partial}{\partial m} \sqrt{2m} E_m - 2\nu_{coll} m^4 E_m$$

Setting $\partial E_m/\partial t = 2\gamma E_m$, we obtain

$$E_m = rac{C(k_y)}{\sqrt{m}} \exp\left[-\left(rac{m}{m_\gamma}
ight)^{1/2} - \left(rac{m}{m_c}
ight)^{9/2}
ight],$$

$$m_{\gamma} = \left(k_y \frac{B_y}{B_z} \frac{v_{the}}{2\sqrt{2}\gamma}\right)^2 \qquad m_c = \left(\frac{9}{2\sqrt{2}} k_y \frac{B_y}{B_z} \frac{v_{the}}{\nu_{coll}}\right)^{2/9}$$

Equation for the spectrum

$$m_{\gamma} = \left(k_y \frac{B_y}{B_z} \frac{v_{the}}{2\sqrt{2\gamma}}\right)^2$$

$$m_c = \left(\frac{9}{2\sqrt{2}}k_y \frac{B_y}{B_z} \frac{v_{the}}{\nu_{coll}}\right)^{2/9}$$

Does NOT depend on collisions

While the mode is strongly growing, there can be no collisional dissipation

Equation for the spectrum

$$m_{\gamma} = \left(k_y \frac{B_y}{B_z} \frac{v_{the}}{2\sqrt{2\gamma}}\right)^2$$

$$m_c = \left(\frac{9}{2\sqrt{2}}k_y \frac{B_y}{B_z} \frac{v_{the}}{\nu_{coll}}\right)^{2/9}$$

Does NOT depend on collisions

While the mode is strongly growing, there can be no collisional dissipation

- Since $\gamma \to 0$ as the tearing mode approaches saturation, there will always be a time when $m_{\gamma} > m_c$
- From then onwards, cutoff is determined by m_c
- In our simulations, this happens before the time of maximum dissipation rate, independent of M, so the cutoff should be determined by m_c

Maximum dissipation

The value of $m=m_{\text{peak}}$ at which most energy is dissipated is the solution of:

$$d(\nu_{coll}m^4 E_m)/dm = 0, \qquad m_\gamma \gg m_c$$

This yields:

$$m_{peak} = (9/7)^{2/9} m_c$$

Maximum dissipation

The value of $m=m_{peak}$ at which most energy is dissipated is the solution of:

Maximum dissipation

The value of $m=m_{peak}$ at which most energy is dissipated is the solution of:

Dissipation occurs on the separatrices

System at time of max. reconnection rate

System at time of max. dissipation rate

Spectra and distribution function

Weakly collisional tearing mode saturation

- Saturation is independent of collisions as long as W_{sat} exceeds the kinetic scales; RMHD solution recovered.

Weakly collisional tearing mode saturation

- Saturation is independent of collisions as long as W_{sat} exceeds the kinetic scales; RMHD solution recovered.

- Electron inertia scale appears to set a lower limit on the saturation size. Could have important implications for e.m turbulence (suggests existence of a minimum fluctuation amplitude)

Conclusions

- Reduced (4D) gyrokinetic formalism of Zocco & Schekochihin [*"KREHM"*, Phys. Plasmas **18**, 102309 (2011)]: nimble tool for exploring phase-space dynamics of strongly magnetised plasmas.
- VIRIATO: new Fourier-Hermite code, reduced kinetic-fluid description (4D) --- can be used for reconnection, turbulence, slow modes (see A. Kanekar's poster), etc.
- Weakly collisional tearing mode reconnection: reconnection and heating are causally related, but spatially and temporally disconnected: heating happens after most flux has reconnected, and along the separatrices, not in the current sheet
- Heating in weakly collisional tearing mode reconnection occurs via *linear* phase-mixing / Landau damping