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Introduction

•  Key problems (e.g., turbulence, reconnection) have 
seen tremendous progress over the last decade or so due 
to a combination of  reduced descriptions [e.g., gyrokinetics 
(GK)] and high-performance-computing.

•  GK is (numerically) simpler than full kinetics but two-
species, multiscale simulations remain very challenging.

•  This talk focuses on a new reduced-GK model (KREHM) 
+ new code (VIRIATO).  Only 4D (3+1). Goal is insight.  

•  Usefulness of  this approach exemplified with detailed 
analysis of  the energetics of  reconnection in weakly 
collisional, strongly magnetised plasmas. 



The KREHM model�
[Zocco & Schekochihin, PoP 18, 102309 (2011)]

•  Minimal set of  fluid-kinetic equations; captures electron Landau 
damping in low beta, strongly magnetised plasmas.

•  Rigorous limit of  the GK equation when β ~ me/mi ; fully GK ions.
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Coupled set of  fluid-
like equations for the 
Hermite coeficients



Closure

•  In a simulation, must chose how many m’s to 
keep. What to do about gM+1?

•  Lots of  work done on this in the past 
(Hammett, Dorland, Beer, Smith, etc.)

•  Adding collisions/hyper-collisions may provide 
a satisfactory way to close the system, 
regardless of  the actual closure, though 
convergence may require many m’s.



Closure

Eq. for gm couples to gm+1. How to close the system at some m=M?
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Nonlinear closure:



Closure: linear tests

KAW dispersion relation reproduced exactly with M=15 
using hypercollisions 

(with regular collisions, for                       need a few 
hundred m’s)

Dm = νH(m/M)4

νeiτA = 0.1



VIRIATO 
Versatile code to solve three different sets of  eqs.: 

•  Zocco/Schekochihin reduced GK eqs. [Phys. 
Plasmas 18, 102309 (2011)]

•  Kinetic long wavelength slow mode eqs. 
[Schekochihin et al., ApJ 182:310 (2009)]

•  RMHD eqs. [Strauss, PoF 19, 134 (1976)]

Spectral in x-y (Fourier) and v|| (Hermite). Grid in 
z (MacCormack scheme). Parallel in x-y and z. 
Strang-split to handle separately perpendicular 
and parallel terms.
Good scalability (weak and strong) to few 
thousand processors.
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Number of processors

Strong Scaling; Problem size 2563x15; HPC-FF



VIRIATO reproduces KAW correctly

Alfred Mallet



VIRIATO agrees with AstroGK

(see Numata et al., Phys. Plasmas 2011)

Linear tearing mode 
benchmark



 Simulations
•  2D doubly-periodic tearing mode 

setup. Finite amount of  energy 
available.

•  Initial magnetic field:

Beq = Bz êz +By êy

•  Spatial hyper-diffusion in all eqs. 
•  Hyper-collisions in the gm eqs. ∼ (m/M)4

∼ (k⊥/k
max
⊥ )6
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 Simulations
•  2D doubly-periodic tearing mode 

setup. Finite amount of  energy 
available.

•  Initial magnetic field:

Beq = Bz êz +By êy

•  Spatial hyper-diffusion in all eqs. 
•  Hyper-collisions in the gm eqs. ∼ (m/M)4

∼ (k⊥/k
max
⊥ )6

Even small amount of  collisions is enough to make the system 
irreversible. 
What happens to the converted magnetic energy?
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Typical configuration

Lines are contours of  
magnetic flux, A||.

Colors are temperature 
fluctuations – extended 
along separatrix, where 
spatial gradients are 
sharper

X 

Y 



Weakly collisional �
tearing mode saturation

-  Saturation is independent 
of  collisions as long as Wsat 
exceeds the kinetic scales; 
RMHD solution recovered.

- This implies that the same 
amount of  magnetic 
energy is converted 
during the evolution of  
the tearing mode, 
independent of  
collisions. How does it 
dissipate in the kinetic 
case?
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Reconnection and dissipation rates

arXiv:1301.0338

Rec. rate independent 
of  colls.

Landau damping is 
the dominant 
damping channel

Time lag: Peak 
dissipation occurs 
later than max rec. 
rate
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Equation for the spectrum

Define the Hermite spectrum as                            . Linearise; for m>>1 Em = |gm|2/2
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Equation for the spectrum

•  Since               as the tearing mode approaches 
saturation, there will always be a time when

•  From then onwards, cutoff  is determined by

•  In our simulations, this happens before the time of  
maximum dissipation rate, independent of  M, so the 
cutoff  should be determined by   
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Maximum dissipation

The value of  m=mpeak at which most energy is dissipated is 
the solution of:

This yields: 

d(νcollm
4Em)/dm = 0, mγ � mc

mpeak = (9/7)2/9mc



Maximum dissipation
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the solution of:

This yields: 

d(νcollm
4Em)/dm = 0, mγ � mc

mpeak = (9/7)2/9mc

The electron heating we 
observe is the result of  
linear phase-mixing
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Maximum dissipation

The value of  m=mpeak at which most energy is dissipated is 
the solution of:

This yields: 

d(νcollm
4Em)/dm = 0, mγ � mc

mpeak = (9/7)2/9mc

Lag shows weak, 
logarithmic dependence 
on collisions: dissipation 
occurs in finite time even for 
weak collisionality. 

arXiv:1301.0338



Dissipation occurs on the separatrices

System at time of  
max. reconnection 
rate

System at time of  
max. dissipation 
rate



Spectra and �
distribution function

arXiv:1301.0338

Electron free 
energy spectra

Dissipation 
spectra

Reduced 
distribution 
function
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Weakly collisional �
tearing mode saturation

- Saturation is 
independent of  collisions 
as long as Wsat exceeds 
the kinetic scales; RMHD 
solution recovered.

- Electron inertia scale 
appears to set a lower 
limit on the saturation 
size. Could have 
important implications 
for e.m turbulence 
(suggests existence of  a 
minimum fluctuation 
amplitude)

Flux contained by 
island of  width de



Conclusions
•  Reduced (4D) gyrokinetic formalism of  Zocco & Schekochihin 

[“KREHM”, Phys. Plasmas 18, 102309 (2011)]: nimble tool for 
exploring phase-space dynamics of  strongly magnetised plasmas.

•  VIRIATO: new Fourier-Hermite code, reduced kinetic-fluid 
description (4D) --- can be used for reconnection, turbulence, slow 
modes (see A. Kanekar’s poster), etc. 

•  Weakly collisional tearing mode reconnection: reconnection and 
heating are causally related, but spatially and temporally 
disconnected: heating happens after most flux has reconnected, and 
along the separatrices, not in the current sheet

•  Heating in weakly collisional tearing mode reconnection occurs via 
linear phase-mixing / Landau damping


