Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas

Michael Barnes

Plasma Science & Fusion Center Massachusetts Institute of Technology

Collaborators: W. Dorland (Maryland), F. I. Parra (MIT), G. W. Hammett (PPPL), I. G. Abel, A. A. Schekochihin (Oxford), S. C. Cowley (Culham), T. Gorler (IPP-Garching), F. Jenko (IPP-Garching), ...

- Collisionless plasma dynamics are hard
- Let's make life simpler: a mean field approach for turbulence and transport/heating in tokamak plasmas
- Numerical modeling approach: multiscale, hybrid kinetic/fluid code Trinity
- Issues and opportunities

Hot, magnetized plasmas

What do we want?

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{\Gamma} = \dots$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{P} = \dots$$

. . .

A tempting thought

"Think? Why think?! We have computers to do that for us."

-- Jean Rostand

Range of scales

Expense (brute force)

Velocity grid: ~10 grid points x $3-D = 10^3$ grid points

Total: ~10³⁴ total grid points

Scale separation

Multiscale, multiphysics

Fast camera image of MAST plasma

Equilibrium macroscale spatial profile

Microscale fluctuations

GYRO simulation J. Candy and R. Waltz

Equilibrium macroscale speed distribution

Microscale fluctuations

GS2 simulation

Scale separation

Macro drives micro

Micro feeds back into macro

Coarse-grain average

In space...

...and in time...

...and moment approach in velocities

Multiscale model

Turbulent fluctuations calculated in small regions of fine space-time grid embedded in coarse grid for mean quantities (implemented in TRINITY code)

Gyrokinetic description of dynamics

$$\frac{\partial f_s}{\partial t} + \frac{d\mathbf{r}}{dt} \cdot \frac{\partial f_s}{\partial \mathbf{r}} + \frac{d\mathbf{v}}{dt} \cdot \frac{\partial f_s}{\partial \mathbf{v}} = C[f_s]$$

- Average over fast gyromotion and follow 'guiding center' position
- Eliminates fast time scale and gyro-angle variable (6-D --> 5-D)

Multiscale gyrokinetics

Decompose f into mean and fluctuating components:

$$f = F + \delta f$$

Mean varies perpendicular to mean field on system size while fluctuations vary on scale of gyro-radius:

$$\nabla_{\perp} \ln F \sim L^{-1} \qquad \nabla_{\perp} \ln \delta f \sim \rho^{-1}$$

Fluctuations are anisotropic with respect to the mean field:

$$\nabla_{\parallel} \ln \delta f \sim L^{-1}$$

Mixing length estimates

Position

Mixing length ~ (step size) × (# steps)^{1/2}

Macro time scale ~ (step time) × (# steps to mix over length L) ~ $(L/\rho)^2$ × (step time)

Multiscale gyrokinetics

Decompose f into mean and fluctuating components:

$$f = F + \delta f$$

Mean varies perpendicular to mean field on system size while fluctuations vary on scale of gyro-radius:

$$\nabla_{\perp} \ln F \sim L^{-1} \qquad \nabla_{\perp} \ln \delta f \sim \rho^{-1}$$

Fluctuations are anisotropic with respect to the mean field:

$$\nabla_{\parallel} \ln \delta f \sim L^{-1}$$

=> Turbulent fluctuations are low amplitude: $\delta f \sim \epsilon f$

=> Mean profile evolution slow compared to turbulence:

$$\frac{\partial \ln F}{\partial t} \sim \epsilon^2 \omega \sim \epsilon^3 \Omega$$

 $\epsilon \equiv \frac{\rho}{I} \ll 1$

Multiscale gyrokinetics

Gyrokinetic equation for fluctuation dynamics:

$$\frac{\partial \langle \delta f \rangle}{\partial t} + \left\langle \frac{d\mathbf{R}}{dt} \right\rangle \cdot \frac{\partial}{\partial \mathbf{R}} \left(\langle \delta f \rangle - q \langle \delta \Phi \rangle \frac{\partial F}{\partial \varepsilon} \right) + \left(\left\langle \frac{d\mathbf{R}}{dt} \right\rangle - \overline{\left\langle \frac{d\mathbf{R}}{dt} \right\rangle} \right) \cdot \frac{\partial F}{\partial \mathbf{R}} = \langle C[\delta f] \rangle$$

Fluid conservation equations for mean dynamics:

$$\frac{\partial \overline{n}}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial r} \left(V' \overline{\Gamma} \right) = \overline{S_n}$$
$$\frac{\partial \overline{L}}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial r} \left(V' \overline{\Pi} \right) = \overline{S_L}$$
$$\frac{3}{2} \frac{\partial \overline{p}}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial r} \left(V' \overline{Q} \right) = \overline{S_p}$$

Fluxes are functions of fluctuating quantities

Expense (multiscale gyrokinetics)

Perpendicular spatial grid: ~10⁵ grid points x 2-D = 10¹⁰ grid points Parallel spatial grid: ~10 grid points x 1-D = 10 grid points Velocity grid: ~10 grid points x 2-D v-space = 10^2 grid points Total: ~10¹⁸ total grid points (10⁶ savings)

TRINITY schematic

TRINITY transport solver

Transport equations are stiff, nonlinear PDEs:

$$\frac{3}{2}\frac{\partial p_s}{\partial t} = -\frac{1}{V'}\frac{\partial}{\partial \psi}\left(V'\left\langle \mathbf{Q}_s \cdot \nabla \psi\right\rangle\right) + \dots$$

$$\mathbf{Q}_s = \mathbf{Q}_s \left[n(\psi, t), T(\psi, t); \psi, t \right]$$

Implicit treatment needed for stiffness

Newton solve

Challenge: requires computation of quantities like

$$\Gamma_{j}^{m+1} \approx \Gamma_{j}^{m} + (\mathbf{y}^{m+1} - \mathbf{y}^{m}) \frac{\partial \Gamma_{j}}{\partial \mathbf{y}} \Big|_{\mathbf{y}^{m}}$$
$$\mathbf{y} = \left[\{n_{k}\}, \{p_{s_{k}}\}, \{L_{k}\}\right]^{T}$$

- Local approximation: $\frac{\partial \Gamma_j}{\partial n_k} = \frac{\partial \Gamma_j}{\partial n_j} + \frac{\partial \Gamma_j}{\partial (R/L_n)_j} \frac{\partial (R/L_n)_j}{\partial n_k}$
- Simplifying assumption: normalized fluxes depend primarily on gradient scale lengths
- Implicit treatment allows for time steps ~0.1 seconds (vs. turbulence sim time ~0.001 seconds)

Parallelization

Calculating flux derivative approximations:

- at every radial grid point, simultaneously calculate $\Gamma_j \left[(R/L_n)_j^m \right]$ and $\Gamma_j \left[(R/L_n)_j^m + \delta \right]$ using 2 different flux tubes
- Possible because flux tubes independent (do not communicate during turbulence calculation)
- Perfect parallelization
- use 2-point finite differences for derivative:

$$\frac{\partial \Gamma_j}{\partial (R/L_n)_j} \approx \frac{\Gamma_j \left[(R/L_n)_j^m \right] - \Gamma_j \left[(R/L_n)_j^m + \delta \right]}{\delta}$$

Scaling

Example calculation with 10 radial grid points:

- Evolve electron density, toroidal angular momentum, and ion/electron pressure profiles
- Simultaneously calculate fluxes for equilibrium profile and for perturbed profiles (one for each time-varying gradient scale length, i.e. 4)
- Total of 50 flux tube simulations running in parallel

Flux tube scaling

Scaling

Example calculation with 10 radial grid points:

- Evolve electron density, toroidal angular momentum, and ion/electron pressure profiles
- Simultaneously calculate fluxes for equilibrium profile and for perturbed profiles (one for each time-varying gradient scale length, i.e. 4)
- Total of 50 flux tube simulations running in parallel
- ~2-4k cores or more per flux tube => scaling to over 100k's processors with very high efficiency

Example: JET H-mode

- 10 radial grid points
- Costs ~120k CPU hrs (<10 clock hrs)
- Dens and temp profiles agree within ~15% across device
- Energy off by 5%
- Incremental energy off by 15%

Issues and opportunities

Issue: Scale separation?

Issue: Scale separation?

From T. S. Eliot's *Little Gidding*,

"We shall not cease from exploration And the end of all our exploring Will be to arrive where we started And know the place for the first time."

Opportunity

Issue: Computational expense

- Could reduce computational expense considerably by using a reduced model for the microscale physics
 - fluid model
 - proper orthogonal decomposition
 - LES for kinetics
- These approaches share weakness that they are not universal
- This weakness can be ameliorated by the multiscale approach

Equilibrium macroscale spatial profile

