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Scale Separation

Time Scales

Cyclotron Frequency Ωi

Turbulence ω

Profile Evolution τE

Ωi � ω � T−1 � τ−1
E

Spatial Scales

Gyroradius ρi

Fluctuations k⊥, k‖
Profiles a

k⊥ ∼ ρ−1
i � λ−1 � k‖ ∼ a−1

We use a single small parameter ε and order

ε ∼ ω

Ωi
∼ ρi

a
∼

k‖
k⊥
∼ δf

f
(1)
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Small-scale Averaging

Introduce the patch average 〈·〉turb

〈·〉turb =
1
T

t+T/2∫
t−T/2

dt ′
1
λ2
⊥

∫
λ2
⊥

d2r ′⊥

(2)
This is an average over a time T
and a perpendicular area λ2.

Using this, all quantities separate
into mean and fluctuating parts,

fs = Fs + δf Fs = 〈fs〉turb (3)
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Axisymmetry

All quantities are axisymmetric

∂

∂φ
〈g〉turb = 0 (4)

Magnetic field has the usual form

B = I∇ψ +∇ψ ×∇φ (5)

Abel, et. al.
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Fs = F0s + F1s + · · ·
F0s is Maxwellian (as νii ∼ ω) with density ns and temperatures Ts and
velocity u.

u = ω(ψ)R2∇φ and is species independent

ns is related to the flux functions Ns(ψ) and T (ψ) via

ns = Ns (ψ) exp
[

msω
2(ψ)R2

2Ts
− Zseϕ0

Ts

]
+O(εns), (6)
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Magnetic Equilibrium and Neoclassical Theory

ψ(R, z) is given by the
Grad-Shafranov equation

I(ψ, t) is evolved via

∂

∂t

∣∣∣∣
ψ

q =
c

4π2

∂

∂ψ
V ′ 〈E · B〉ψ .

(7)

F1s is given by neoclassical
theory

Abel, et. al.
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The Gyrokinetic Equation

δf splits into hs and the Boltzmann response,

δfs = −Zseδϕ′

Ts
F0s + hs(Rs, εs, µs, t), (8)

hs is given by[
∂

∂t
+ u(Rs) · ∂

∂Rs

]
hs +

(
w‖b + V D + 〈Vχ〉R

)
· ∂hs

∂Rs
− 〈C[hs]〉R

=
ZseF0s

Ts

[
∂

∂t
+ u(Rs) · ∂

∂Rs

]
〈χ〉R

−
{
∂F0s

∂ψ
+

msF0s

Ts

[
I(ψ)w‖

B
+ ω(ψ)R2

]
dω
dψ

}
〈Vχ〉R · ∇ψ

(9)

and the gyrokinetic potential (and associated turbulent flow) is

χ = δϕ′ − 1
c
δA ·w Vχ =

c
B

b ×∇χ (10)
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Transport Equations

Particle Transport

∂

∂t

∣∣∣∣
ψ

ns +
1
V ′

∂

∂ψ
V ′ 〈Γs〉ψ = 0 (11)

Heat Transport

1
V ′

3
2
∂

∂t

∣∣∣∣
ψ

V ′ 〈n〉ψ sTs +
1
V ′

∂

∂ψ
V ′ 〈qs〉ψ = Pvisc

s + P turb
s + POhm

s

−
〈

Zseϕ0
∂ns

∂t

〉
ψ

+
ω2(ψ)

2V ′
∂

∂t

∣∣∣∣
ψ

V ′ms

〈
R2ns

〉
ψ

+
〈

C(E)
s

〉
ψ
,

(12)

Momentum Transport

1
V ′

∂

∂t

∣∣∣∣
ψ

V ′Jω(ψ) +
1
V ′

∂

∂ψ
V ′
〈

Πψφ
〉
ψ

= 0, (13)
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Focusing on the heating,

P turb
s = Zse

〈〈∫
d3w

〈
hs

(
∂

∂t
+ u · ∇

)
χ

〉
r

〉
turb

〉
ψ

+ ω(ψ)
Zse
c

〈〈∫
d3w〈hsw〉r · (δA×∇z)

〉
turb

〉
ψ

,

(14)

and the viscosity Πψφ = π
(ψφ)
s + π

(ψφ)
EM , gives rise to viscous heating

Pvisc
s = −

[〈
π
(ψφ)
s

〉
ψ

+ msω(ψ)
〈

R2Γs

〉
ψ

]
dω
dψ

, (15)
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Energy Conservation

The total energy,∑
s

∫
d3v

1
2

mv2f ≈ U =
∑

s

3
2
〈ns〉ψ Ts +

1
2

Jω2(ψ), (16)

is evolved via

1
V ′

∂

∂t

∣∣∣∣
ψ

V ′U +
1
V ′

∂

∂ψ
V ′
〈

J(U)
〉
ψ

= 〈E · j〉ψ +
∑

s

P turb
s −

〈
π
(ψφ)
EM

〉
ψ

dω
dψ

(17)
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Poynting’s Theorem and Turbulent Heating

But the fluctuations cannot be a source of energy!

∂

∂t

(
δB2

8π

)
− c∇ · (δE × δB) = −δE · δj, (18)

Averaging this over the fluctuations

− 〈δj · δE〉turb =
c

4π
∇ · 〈δE × δB〉turb, (19)

So any “heating” must in fact be a flux of energy, not net heating.

Abel, et. al.
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We can in fact show that∑
s

P turb
s =

∑
s

Zse
∫

d3w
〈〈

hs

(
∂

∂t
+ u · ∇

)
χ

〉
⊥

〉
ψ

+
∑

s

Zse
c
ω(ψ)

〈∫
d3w 〈hsδA · ∇z ×w〉⊥

〉
ψ

=
〈
π
(ψφ)
EM

〉
ψ

dω
dψ

,

(20)

so this is consistent.
But yet there is still dissipation of fluctuations, so where does the energy go!

Abel, et. al.
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The free energy conservation law for our system is (multiplying the
gyrokinetic equation by hs/F0s and integrating)

∂W
∂t

=
∑

s

TsP turb
s −Q + D (21)

The Free Energy

W =

〈〈∫
d3w

Tsδfs
2F0s

〉
turb

〉
ψ

+

〈〈
δB2

8π

〉
turb

〉
ψ

(22)

Energy Injection

Q =
∑

s

Γs

(
Ts

d ln Ns

dψ
− 3

2
dTs

dψ

)
+ qs

dTs

dψ
+ πψφs

dω
dψ

(23)

Collisional Dissipation

D =
∑

s

Ts

〈∫
d3w

〈
hs

F0s
C[hs]

〉
turb

〉
ψ

(24)
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Entropy Balance

The average entropy,

H̃ = −
∑

s

〈∫
d3w fs ln fs

〉
turb

(25)

evolves via

1
V ′

∂

∂t

∣∣∣∣
ψ

V ′
〈

H̃
〉
ψ

+
1
V ′

∂

∂ψ

(
V ′
〈

Γ(H)
〉

turb

)
=
〈
〈σ〉turb

〉
ψ
, (26)

with entropy produced by〈
〈σ〉turb

〉
ψ

=
∑

s

−
〈∫

d3w ln FsC[Fs]

〉
ψ

−
〈〈∫

d3w
hs

F0s
C[hs]

〉
turb

〉
ψ

(27)
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Energy and Entropy Revisited

In steady state we have, ∑
s

TsP turb
s = Q − D (28)

So all power extracted to excite fluctuations is returned as heat. We also have

D = Q +
〈
π
(ψφ)
EM

〉
ψ

dω
dψ

(29)

and thus the entropy generated by the dissipation of the fluctuations is
caused by relaxation of gradients.
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Summary

Fluctuations contribute no net bulk heating

Fluctuations increase entropy by relaxing gradients, not by heating

In order to conserve energy in the mean, the fluctuations must conserve
free energy

Free energy is conserved locally – no turbulence spreading

Abel, et. al.
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