Multiscale Gyrokinetics: Fluctuations, Transport and Energy Flows

I. G. Abel ^{1 2} M. A. Barnes ³ S. C. Cowley ² G. G. Plunk ⁵ A. A. Schekochihin ¹ E. Wang ⁴

¹Rudolph Peierls Centre for Theoretical Physics, University Of Oxford

²EURATOM/CCFE Fusion Association, Culham Science Centre

³Plasma Science and Fusion Center, Massachusetts Institute of Technology

⁴Lawrence Livermore National Laboratory

⁵Max-Planck-Institut für Plasmaphysik, Greifswald

8 April 2013, Princeton Centre for Theoretical Science

ee Energy Conservation and the Turbulent Cascade

ee Energy Conservation and the Turbulent Cascade

Free Energy Conservation and the Turbulent Cascade References

3 Free Energy Conservation and the Turbulent Cascade

Multiscale Gyrokinetics

Energy Conservation Free Energy Conservation and the Turbulent Cascade References

Scale Separation

Time Scales

- Cyclotron Frequency Ω_i
- Turbulence ω
- Profile Evolution τ_E

•
$$\Omega_i \gg \omega \gg T^{-1} \gg \tau_E^{-1}$$

Spatial Scales

- Gyroradius ρ_i
- Fluctuations k_{\perp} , k_{\parallel}
- Profiles a

•
$$\mathbf{k}_{\perp} \sim \rho_i^{-1} \ll \lambda^{-1} \ll \mathbf{k}_{\parallel} \sim \mathbf{a}^{-1}$$

• We use a single small parameter ϵ and order

$$\epsilon \sim \frac{\omega}{\Omega_i} \sim \frac{\rho_i}{a} \sim \frac{k_{\parallel}}{k_{\perp}} \sim \frac{\delta f}{f}$$
 (1)

Multiscale Gyrokinetics

Energy Conservation Free Energy Conservation and the Turbulent Cascade References

Small-scale Averaging

• Introduce the patch average $\langle \cdot \rangle_{turb}$

$$\langle \cdot \rangle_{\rm turb} = \frac{1}{T} \int_{t-T/2}^{t+T/2} dt' \frac{1}{\lambda_{\perp}^2} \int_{\lambda_{\perp}^2} d^2 \mathbf{r}'_{\perp}$$
(2)

This is an average over a time *T* and a perpendicular area λ^2 .

• Using this, all quantities separate into mean and fluctuating parts,

$$f_s = F_s + \delta f$$
 $F_s = \langle f_s \rangle_{turb}$ (3)

Multiscale Gyrokinetics

Energy Conservation Free Energy Conservation and the Turbulent Cascade References

Axisymmetry

• All quantities are axisymmetric

$$rac{\partial}{\partial \phi} \langle \boldsymbol{g}
angle_{ ext{turb}} = \mathbf{0}$$
 (4)

Magnetic field has the usual form

$$\boldsymbol{B} = \boldsymbol{I} \nabla \psi + \nabla \psi \times \nabla \phi \qquad (5)$$

-

- $F_s = F_{0s} + F_{1s} + \cdots$
- *F*_{0s} is Maxwellian (as ν_{ii} ~ ω) with density *n_s* and temperatures *T_s* and velocity *u*.
- $\boldsymbol{u} = \omega(\psi) \boldsymbol{R}^2 \nabla \phi$ and is species independent
- n_s is related to the flux functions $N_s(\psi)$ and $T(\psi)$ via

$$n_{s} = N_{s}(\psi) \exp\left[\frac{m_{s}\omega^{2}(\psi)R^{2}}{2T_{s}} - \frac{Z_{s}e\varphi_{0}}{T_{s}}\right] + \mathcal{O}(\epsilon n_{s}),$$
(6)

Magnetic Equilibrium and Neoclassical Theory

- ψ(R, z) is given by the Grad-Shafranov equation
- *I*(ψ, t) is evolved via

$$\frac{\partial}{\partial t}\Big|_{\psi} q = \frac{c}{4\pi^2} \frac{\partial}{\partial \psi} V' \left\langle \boldsymbol{E} \cdot \boldsymbol{B} \right\rangle_{\psi}.$$
(7)

• *F*_{1s} is given by neoclassical theory

The Gyrokinetic Equation

 δf splits into h_s and the Boltzmann response,

$$\delta f_{s} = -\frac{Z_{s} \boldsymbol{e} \delta \varphi'}{T_{s}} F_{0s} + h_{s}(\boldsymbol{R}_{s}, \varepsilon_{s}, \mu_{s}, t), \qquad (8)$$

 h_s is given by

$$\begin{bmatrix} \frac{\partial}{\partial t} + \boldsymbol{u}(\boldsymbol{R}_{s}) \cdot \frac{\partial}{\partial \boldsymbol{R}_{s}} \end{bmatrix} h_{s} + (\boldsymbol{w}_{\parallel}\boldsymbol{b} + \boldsymbol{V}_{D} + \langle \boldsymbol{V}_{\chi} \rangle_{\boldsymbol{R}}) \cdot \frac{\partial h_{s}}{\partial \boldsymbol{R}_{s}} - \langle \boldsymbol{C}[h_{s}] \rangle_{\boldsymbol{R}}$$

$$= \frac{Z_{s}\boldsymbol{e}\boldsymbol{F}_{0s}}{T_{s}} \begin{bmatrix} \frac{\partial}{\partial t} + \boldsymbol{u}(\boldsymbol{R}_{s}) \cdot \frac{\partial}{\partial \boldsymbol{R}_{s}} \end{bmatrix} \langle \chi \rangle_{\boldsymbol{R}}$$
(9)
$$- \left\{ \frac{\partial F_{0s}}{\partial \psi} + \frac{m_{s}F_{0s}}{T_{s}} \begin{bmatrix} \boldsymbol{I}(\psi)\boldsymbol{w}_{\parallel} \\ \boldsymbol{B} + \boldsymbol{\omega}(\psi)\boldsymbol{R}^{2} \end{bmatrix} \frac{d\omega}{d\psi} \right\} \langle \boldsymbol{V}_{\chi} \rangle_{\boldsymbol{R}} \cdot \nabla \psi$$

and the gyrokinetic potential (and associated turbulent flow) is

$$\chi = \delta \varphi' - \frac{1}{c} \delta \mathbf{A} \cdot \mathbf{w} \qquad \mathbf{V}_{\chi} = \frac{c}{B} \mathbf{b} \times \nabla \chi$$

Multiscale Gyrokinetics Energy Conservation

Free Energy Conservation and the Turbulent Cascade References

Transport Equations

• Particle Transport

$$\frac{\partial}{\partial t}\Big|_{\psi} n_{s} + \frac{1}{V'} \frac{\partial}{\partial \psi} V' \langle \Gamma_{s} \rangle_{\psi} = 0$$
(11)

(13)

Heat Transport

$$\frac{1}{V'}\frac{3}{2}\left.\frac{\partial}{\partial t}\right|_{\psi}V'\langle n\rangle_{\psi s}T_{s} + \frac{1}{V'}\frac{\partial}{\partial \psi}V'\langle q_{s}\rangle_{\psi} = P_{s}^{\text{visc}} + P_{s}^{\text{turb}} + P_{s}^{\text{Ohm}} - \left\langle Z_{s}e\varphi_{0}\frac{\partial n_{s}}{\partial t}\right\rangle_{\psi} + \frac{\omega^{2}(\psi)}{2V'}\left.\frac{\partial}{\partial t}\right|_{\psi}V'm_{s}\left\langle R^{2}n_{s}\right\rangle_{\psi} + \left\langle C_{s}^{(E)}\right\rangle_{\psi},$$
(12)

• Momentum Transport

$$rac{1}{V'} \left. rac{\partial}{\partial t}
ight|_{\psi} V' J \omega(\psi) + rac{1}{V'} rac{\partial}{\partial \psi} V' \left< \Pi^{\psi \phi} \right>_{\psi} = \mathbf{0},$$

Focusing on the heating,

$$P_{s}^{\text{turb}} = Z_{s} \boldsymbol{e} \left\langle \left\langle \int d^{3} \boldsymbol{w} \left\langle h_{s} \left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla \right) \chi \right\rangle_{\boldsymbol{r}} \right\rangle_{\text{turb}} \right\rangle_{\psi} + \omega(\psi) \frac{Z_{s} \boldsymbol{e}}{c} \left\langle \left\langle \int d^{3} \boldsymbol{w} \left\langle h_{s} \boldsymbol{w} \right\rangle_{\boldsymbol{r}} \cdot \left(\delta \boldsymbol{A} \times \nabla z \right) \right\rangle_{\text{turb}} \right\rangle_{\psi},$$
(14)

and the viscosity $\Pi^{\psi\phi}=\pi^{(\psi\phi)}_s+\pi^{(\psi\phi)}_{\rm EM},$ gives rise to viscous heating

$$P_{s}^{\text{visc}} = -\left[\left\langle \pi_{s}^{(\psi\phi)} \right\rangle_{\psi} + m_{s}\omega(\psi)\left\langle R^{2}\Gamma_{s} \right\rangle_{\psi}\right]\frac{d\omega}{d\psi},\tag{15}$$

< < >> < <</p>

Energy Conservation

The total energy,

$$\sum_{s} \int d^{3}\boldsymbol{v} \frac{1}{2} m v^{2} f \approx U = \sum_{s} \frac{3}{2} \langle n_{s} \rangle_{\psi} T_{s} + \frac{1}{2} J \omega^{2}(\psi), \qquad (16)$$

is evolved via

$$\frac{1}{V'} \left. \frac{\partial}{\partial t} \right|_{\psi} V' U + \frac{1}{V'} \frac{\partial}{\partial \psi} V' \left\langle J^{(U)} \right\rangle_{\psi} = \left\langle \boldsymbol{E} \cdot \boldsymbol{j} \right\rangle_{\psi} + \sum_{s} \boldsymbol{P}_{s}^{\text{turb}} - \left\langle \pi_{\text{EM}}^{(\psi\phi)} \right\rangle_{\psi} \frac{d\omega}{d\psi}$$
(17)

Poynting's Theorem and Turbulent Heating

But the fluctuations cannot be a source of energy!

$$\frac{\partial}{\partial t} \left(\frac{\delta B^2}{8\pi} \right) - \boldsymbol{c} \nabla \cdot \left(\delta \boldsymbol{E} \times \delta \boldsymbol{B} \right) = -\delta \boldsymbol{E} \cdot \delta \boldsymbol{j}, \tag{18}$$

Averaging this over the fluctuations

$$-\langle \delta \boldsymbol{j} \cdot \delta \boldsymbol{E} \rangle_{\rm turb} = \frac{c}{4\pi} \nabla \cdot \langle \delta \boldsymbol{E} \times \delta \boldsymbol{B} \rangle_{\rm turb}, \tag{19}$$

So any "heating" must in fact be a flux of energy, not net heating.

Abel, et. al.

Poynting's Theorem and Turbulent Heating

But the fluctuations cannot be a source of energy!

$$\frac{\partial}{\partial t} \left(\frac{\delta B^2}{8\pi} \right) - c \nabla \cdot \left(\delta \boldsymbol{E} \times \delta \boldsymbol{B} \right) = -\delta \boldsymbol{E} \cdot \delta \boldsymbol{j}, \tag{18}$$

Averaging this over the fluctuations

$$-\langle \delta \boldsymbol{j} \cdot \delta \boldsymbol{E} \rangle_{\rm turb} = \frac{c}{4\pi} \nabla \cdot \langle \delta \boldsymbol{E} \times \delta \boldsymbol{B} \rangle_{\rm turb}, \tag{19}$$

So any "heating" must in fact be a flux of energy, not net heating.

Poynting's Theorem and Turbulent Heating

But the fluctuations cannot be a source of energy!

$$\frac{\partial}{\partial t} \left(\frac{\delta B^2}{8\pi} \right) - c \nabla \cdot \left(\delta \boldsymbol{E} \times \delta \boldsymbol{B} \right) = -\delta \boldsymbol{E} \cdot \delta \boldsymbol{j}, \tag{18}$$

Averaging this over the fluctuations

$$-\langle \delta \boldsymbol{j} \cdot \delta \boldsymbol{E} \rangle_{\text{turb}} = \frac{c}{4\pi} \nabla \cdot \langle \delta \boldsymbol{E} \times \delta \boldsymbol{B} \rangle_{\text{turb}}, \tag{19}$$

So any "heating" must in fact be a flux of energy, not net heating.

Poynting's Theorem and Turbulent Heating

But the fluctuations cannot be a source of energy!

$$\frac{\partial}{\partial t} \left(\frac{\delta B^2}{8\pi} \right) - c \nabla \cdot \left(\delta \boldsymbol{E} \times \delta \boldsymbol{B} \right) = -\delta \boldsymbol{E} \cdot \delta \boldsymbol{j}, \tag{18}$$

Averaging this over the fluctuations

$$-\langle \delta \boldsymbol{j} \cdot \delta \boldsymbol{E} \rangle_{\text{turb}} = \frac{c}{4\pi} \nabla \cdot \langle \delta \boldsymbol{E} \times \delta \boldsymbol{B} \rangle_{\text{turb}}, \tag{19}$$

So any "heating" must in fact be a flux of energy, not net heating.

We can in fact show that

$$\sum_{s} P_{s}^{\text{turb}} = \sum_{s} Z_{s} e \int d^{3} \boldsymbol{w} \left\langle \left\langle h_{s} \left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla \right) \chi \right\rangle_{\perp} \right\rangle_{\psi} + \sum_{s} \frac{Z_{s} e}{c} \omega(\psi) \left\langle \int d^{3} \boldsymbol{w} \left\langle h_{s} \delta \boldsymbol{A} \cdot \nabla \boldsymbol{z} \times \boldsymbol{w} \right\rangle_{\perp} \right\rangle_{\psi}$$

$$= \left\langle \pi_{\text{EM}}^{(\psi\phi)} \right\rangle_{\psi} \frac{d\omega}{d\psi},$$
(20)

so this is consistent.

But yet there is still dissipation of fluctuations, so where does the energy go!

We can in fact show that

$$\sum_{s} P_{s}^{\text{turb}} = \sum_{s} Z_{s} e \int d^{3} \boldsymbol{w} \left\langle \left\langle h_{s} \left(\frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla \right) \chi \right\rangle_{\perp} \right\rangle_{\psi} + \sum_{s} \frac{Z_{s} e}{c} \omega(\psi) \left\langle \int d^{3} \boldsymbol{w} \left\langle h_{s} \delta \boldsymbol{A} \cdot \nabla \boldsymbol{z} \times \boldsymbol{w} \right\rangle_{\perp} \right\rangle_{\psi}$$

$$= \left\langle \pi_{\text{EM}}^{(\psi\phi)} \right\rangle_{\psi} \frac{d\omega}{d\psi},$$
(20)

so this is consistent.

But yet there is still dissipation of fluctuations, so where does the energy go!

The free energy conservation law for our system is (multiplying the gyrokinetic equation by h_s/F_{0s} and integrating)

$$\frac{\partial W}{\partial t} = \sum_{s} T_{s} P_{s}^{\text{turb}} - Q + D$$
(21)

• The Free Energy

$$W = \left\langle \left\langle \int d^3 \boldsymbol{w} \frac{T_s \delta f_s}{2F_{0s}} \right\rangle_{\text{turb}} \right\rangle_{\psi} + \left\langle \left\langle \frac{\delta \boldsymbol{B}^2}{8\pi} \right\rangle_{\text{turb}} \right\rangle_{\psi}$$
(22)

Energy Injection

$$Q = \sum_{s} \Gamma_{s} \left(T_{s} \frac{d \ln N_{s}}{d\psi} - \frac{3}{2} \frac{dT_{s}}{d\psi} \right) + q_{s} \frac{dT_{s}}{d\psi} + \pi_{s}^{\psi\phi} \frac{d\omega}{d\psi}$$
(23)

Collisional Dissipation

$$D = \sum_{s} T_{s} \left\langle \int d^{3} \boldsymbol{w} \left\langle \frac{h_{s}}{F_{0s}} C[h_{s}] \right\rangle_{turb} \right\rangle_{\psi}$$
(24)

Entropy Balance

The average entropy,

$$\widetilde{H} = -\sum_{s} \left\langle \int d^{3} \boldsymbol{w} f_{s} \ln f_{s} \right\rangle_{\text{turb}}$$
(25)

evolves via

$$\frac{1}{V'} \left. \frac{\partial}{\partial t} \right|_{\psi} V' \left\langle \widetilde{H} \right\rangle_{\psi} + \frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \Gamma^{(H)} \right\rangle_{\text{turb}} \right) = \left\langle \left\langle \sigma \right\rangle_{\text{turb}} \right\rangle_{\psi}, \quad (26)$$

with entropy produced by

$$\left\langle \left\langle \sigma \right\rangle_{\text{turb}} \right\rangle_{\psi} = \sum_{s} - \left\langle \int d^{3} \boldsymbol{w} \ln F_{s} C[F_{s}] \right\rangle_{\psi} - \left\langle \left\langle \int d^{3} \boldsymbol{w} \frac{h_{s}}{F_{0s}} C[h_{s}] \right\rangle_{\psi} \right\rangle_{\psi} \quad (27)$$

Energy and Entropy Revisited

In steady state we have,

$$\sum_{s} T_{s} P_{s}^{\text{turb}} = Q - D \tag{28}$$

So all power extracted to excite fluctuations is returned as heat. We also have

$$D = Q + \left\langle \pi_{\rm EM}^{(\psi\phi)} \right\rangle_{\psi} \frac{d\omega}{d\psi}$$
 (29)

and thus the entropy generated by the dissipation of the fluctuations is caused by relaxation of gradients.

Summary

- Fluctuations contribute no net bulk heating
- Fluctuations increase entropy by relaxing gradients, not by heating
- In order to conserve energy in the mean, the fluctuations must conserve free energy
- Free energy is conserved locally no turbulence spreading

References

http://arxiv.org/abs/1209.4782

• • • • • • • •

▶ < ≣