
The athena3.1 User’s Guide

James M. Stone, Thomas A. Gardiner
Department of Astrophysical Sciences

Princeton University
Princeton, NJ 08540

Peter J. Teuben
Department of Astronomy

University of Maryland
College Park MD 20742-2421

and

John F. Hawley
Department of Astronomy

University of Virginia

PO Box 3818 University Station
Charlottesville, VA 22903

1



1 Introduction

Athena is a grid-based code for astrophysical gas dynamics developed with support of the NSF In-
formation Technology Research (ITR) program. This User’s Guide describes version 3.1 (hereafter
referred to as athena3.1); the third publicly released version of the code.

The athena3.1 code contains algorithms for the following:

• compressible hydrodynamics and ideal MHD in one, two, or three spatial dimensions (Carte-
sian coordinates only),

• ideal gas equation of state with arbitrary γ (including γ = 1, an isothermal EOS),

• second- or third-order reconstruction using the characteristic variables (first-order interpola-
tion is also available),

• numerical fluxes computed using a variety of Riemann solvers (including various solvers based
on HLL fluxes, Roe’s linearization, and exact solvers in certain simple cases),

• source terms due to a static gravitational potential,

• self-gravity computed using FFTs,

• an arbitrary number of passive scalars advected with the flow,

• parallelization based on MPI.

It is strongly advised to use the latest release of the code for research problems (even those in
one-dimension) to take advantage of improvements and potential bug fixes.

There are four basic sources of documentation for athena3.1:

1. The Method Papers: There are four in all: Gardiner & Stone (2005; 2008), Stone & Gardiner
(2008), and Stone et al. (2008). By the end of 2008, each of these are available on ADS,
astro-ph, or with the code distribution.

2. The User’s Guide: (this document) gives an overview of how to install, configure, compile,
and run athena3.1 and visualize the resulting output.

3. The Programmer’s Guide: gives a basic introduction to the data structures, variable names,
grid definitions, and code structure.

4. Web-based Tutorials: contains instructions1 for running problems from the athena3.1 test
suite, including examples of results.

Users of athena3.1 should have a basic, working knowledge of the Unix operating system, access
to a C compiler, and a graphics package for plotting or animating one-, two-, and three-dimensional
data. Some familiarity with code management using Makefiles is helpful but not necessary.

The code has been developed using the GNU development tools, maintaining strict adherence to
ANSI standards, thus it should be possible to configure, compile, and run the code on any platform
that supports these standards. It has been tested on Linux, MacOSX, and Solaris.

1http://www.astro.princeton.edu/∼jstone/athena.html

2



1.1 Changes from athena3.0

The last publicly released version of the code was v3.0. The current version differs primarily in
that it has more physics, in particulat the advection of passive scalars, and self-gravity using FFTs.
Like v3.0, this version implements two different unsplit, three-dimensional algorithms; one based on
CTU (Gardiner & Stone 2008), and one based on an algorithm due to van Leer (Stone & Gardiner
2008).

In addition, there are a number of structural changes to the code, including: (1) some files in
/src and src/prob are renamed, and some new files are added, (2) some options have changed in
the configure script, (3) there have been some bugs fixed in this version.

1.2 Future versions

The current developmental version of the code includes many more algorithmic extensions than in
this release, such as static and adaptive mesh refinement, and radiation transfer. It is likely that
some of these extensions will be released in the future, albeit on an irregular schedule.

2 Quick Start

To install, configure, compile, and run the code do the following.

1. Download2, uncompress, and untar the source code distribution file.

2. Create the configure script by running autoconf in the athena3.1 directory.

3. Test the install by running configure; make all; make test.

4. If there are no errors in the previous step the install was successful. The code can now be
re-configured, re-compiled, and used to run any of the test problems in /src/prob.

3 Getting Started

3.1 Obtaining and Installing athena3.1

The source code for athena3.1 can be downloaded as a gzipped tar file from the web2. To install
and run the code requires only a C compiler.

After downloading the tar file, uncompressing and untarring it, the following directory structure
should be created:

/athena3.1

/doc documentation, manuals

/src source code, and include files

/prob problem files (see /src/problem.c for a symbolic link)

/tst various input files for tests

/1D-hydro

/1D-mhd

/2D-hydro

/2D-mhd

2from http://www.astro.princeton.edu/∼jstone/athena.html

3



/3D-hydro

/3D-mhd

/vis visualization tools and scripts

/dx OpenDX scripts

/idl IDL (rsinc.com) scripts

/sm Super Mongo scripts

/vtk code to join VTK legacy files

In addition to the directories listed above (which are created when you untar the source code),
another directory will be created by the Makefile when athena3.1 is compiled for the first time,
using make all.

/athena3.1

/bin contains executable, created by Makefile

(Trying to compile the code with make compile before make all will result in an error since the
bin directory will not yet exist.)

The athena3.1/doc directory contains .pdf files of this document, the Programmer’s Guide,
and the Method papers. These documents serve as the primary source of reference for the code,
and should be consulted for complete information.

3.2 Configuring athena3.1

After you have installed athena3.1 the next step is to configure the code for a specific problem.
To generate the configure shell script using the GNU autoconf toolkit3, type autoconf in the
athena3.1 directory. If you wish to by-pass the configure script and work with the Makefiles
directly, see §3.4 below.

There are several basic functions served by the configure script. The first is to enable or disable
features in the code, and to choose between different packages implemented in athena3.1. Configure
features are used when a particular option has only two choices: enabled (“on”) or disabled (“off”):
examples include choosing whether the executable uses single or double precision, or enabling or
disabling various data output formats. Configure packages are used when an option may have more
than one choice. Examples of packages include the basic physics options (such as hydrodynamics
or MHD, adiabatic or isothermal equation of state, etc.), as well as the algorithm options (order
of accuracy for the reconstruction step, choice of Riemann solver, etc.). These package options are
controlled at the source code level using C precompiler macros. The configure script provides a
powerful way of setting these macros through a command line interface that does not require the
user to edit any special files.

More advanced features of the configure script are to set compiler and linker options and
flags using environment variables, and to query the system automatically to see that a C-compiler,
linker, and any external libraries necessary for compilation are installed and accessible. Currently,
only the former of these features are utilized.

Once the configure script has been created, it can be used with the following syntax

configure [--enable-feature] [--disable-feature] [--with-package=choice],

where feature and package are valid options in athena3.1, and choice is the value to which package
is to be set. The valid optional features in athena3.1 are given in Table 1, and the valid optional
packages (including all possible choices and their default values) are given in Table 24.

4



Table 1: Optional features controlled by configure in athena3.1

FEATURE DEFAULT Comments

single disabled computations performed in single precision (default is double)
debug disabled compiles code with flags needed for debugger
ghost disabled causes ghost zones to be written during output
mpi disabled parallelization using MPI library

h-correction disabled H-correction to fix carbuncle problem
fft disabled compile and link with FFTW block decomposition

Only one choice can be made for each optional package given in Table 2 (the choices are
mutually exclusive). The “problem” package should be set to the file name in the directory
athena3.1/src/prob that is to be used by the code to initialize the problem of interest. A variety
of choices are included for the test problems that can be run by athena3.1 (the default problem
file is athena3.1/src/prob/linear wave1d.c, i.e. --with-problem=linear wave1d), these are
described in more detail in §6. Note that configure creates a symbolic link between problem.c

in athena3.1/src and the appropriate file in athena3.1/src/prob.
The configure script should be run in the root directory /athena3.1. Running configure

with the help option (configure --help) gives more information, including a list of all optional
features and packages.

For example, to configure athena3.1 to run an isothermal hydrodynamical shocktube problem
initialized with the function shkset1d.c problem using Roe fluxes and third-order interpolation in
single precision, use the following:

configure --with-problem=shkset1d --enable-single --with-eos=isothermal

--with-gas=hydro --with-order=3

To configure athena3.1 to run the linear wave test problem in 3D adiabatic MHD using HLLD
fluxes, the van Leer integrator, and second-order interpolation in double precision parallelized with
MPI, use the following:

configure --with-flux=hlld --with-problem=linear wave3d --with-integrator=vl

--enable-mpi

When configure runs, it creates a custom Makefile for the problem in the directory athena3.1/src

using the file athena3.1/src/Makefile.in as a template. After successful execution, configure
will echo the options that have been set (including all the default values).

3.3 Compiling athena3.1

After running configure, all that is required to compile the code is to type make all in the top level
directory /athena3.1 (within which the configure script is run). This automatically creates the
directory athena3.1/bin, which will contain the executable, and runs make in the athena3.1/src
directory to compile and link the code. The top-level Makefile in the /athena3.1 directory also
contains other targets listed in Table 3.

3autoconf: see http://www.gnu.org/software/autoconf/
4The file configure.ac contains the information auto-conf needs to generate the configure script with these

options.

5



Table 2: Optional packages controlled by configure in athena3.1

PACKAGE CHOICEa Comments

problem file-name use file-name in directory /src/prob for initial conditions

gas hydro create code for hydrodynamics
mhd create code for MHD

eos adiabatic use adiabatic equation of state
isothermal use isothermal equation of state

nscalars # add # passively advected scalars (default is 0)

gravity fft enable self-gravity using FFTs

flux roe Roe’s Riemann solver
force FORCE flux
hlle HLLE Riemann solver
hllc HLLC Riemann solver (hydrodynamics only)
hlld HLLD Riemann solver (MHD only)

order 1 use first-order spatial reconstruction
2 use second-order (piecewise-linear) spatial reconstruction
3 use third-order (piecewise-parabolic) spatial reconstruction

integrator ctu corner transport upwind unsplit integrator in 3D
vl van Leer unsplit integrator in 3D

a Default choices shown in bold.

Table 3: Some Makefile targets in athena3.1

TARGET Comments

all creates /athena3.1/bin directory and compiles code
compile compiles code
clean removes .o files in /athena3.1/src

help prints help message
test runs install test (see §10.1)

Normally the Makefiles should never be edited by hand. However, it is possible to edit the
Makefile in the /athena3.1/src directory to change compiler flags (to improve optimization, for
example) rather than using environment variables. Just remember that the Makefile is always
overwritten every time configure is run, so any custom changes may be lost.

To make changes to the Makefile in the /athena3.1/src that are permanent, edit the template
file /athena3.1/src/Makefile.in. For example, the best way to customize the compiler, options,
flags, and the path of local libraries is through the MACHINE= option on the make command line.
Currently, the options for several target machines are included in Makefile.in. If no value for the
MACHINE option is provided, the default is to use the gcc compiler with an optimization level of
-O3. By using

% make all MACHINE=ophir

the Intel C compiler (icc) with the options -O2 -xW -tpp7 -ipo -i dynamic -gcc-name=gcc32

will be used. To add a new target machine, copy one of the machine targets in Makefile.in,

6



rename it, and edit as appropriate.

3.4 By-passing configure

Most of the physics options in athena3.1 are controlled by precompiler macros. The complete set
of valid macros (some of which are mutually exclusive) are defined in the file /src/defs.h.in.
The configure script creates a header file /src/defs.h which contains the appropriate set of macro
definitions required for the given problem. However, one can by-pass the configure script by creating
and editing the defs.h file by hand (be warned that running configure at some later time will
overwrite this file).

Similarly, the compilation step is controlled by a Makefile generated by the configure script
from /src/Makefile.in. To bypass the configure script, a custom Makefile must be created by
hand from this template. Again, remember that the Makefile is always overwritten every time
configure is run, so any custom changes may be lost.

3.5 Running athena3.1

After configuring and compiling athena3.1, there should be an executable called athena in the
directory athena3.1/bin. There are two steps to running the code: (1) editing parameters in the
input file, and (2) running the executable. Editing the input file is described in more detail in the
subsections below.

The athena3.1 executable can be run using the -i option to specify the name of the input file.
For example, to run the Brio & Wu shocktube use the command

% athena -i ../tst/1D-mhd/athinput.brio-wu

The code will first echo the values of all input parameters to stdout. During the main integration
loop it will print the cycle number and timestep, and when it concludes it will print final diagnostic
information.

A variety of command line options have been implemented in athena3.1. A list is given by the
-h switch:

% athena -h

Athena version 3.1 - 01-JAN-2008

Last configure: Wed Jan 9 09:25:53 EST 2008

Usage: athena [options] [block/par=value ...]

Options:

-i <file> Alternate input file [athinput]

-d <directory> Alternate run dir [current dir]

-h This Help, and configuration settings

-n Parse input, but don’t run program

-c Show Configuration details and quit

-r <file> Restart a simulation with this file

Configuration details:

Problem: linear_wave3d

Gas properties: MHD

7



Equation of State: ADIABATIC

Passive scalars: 0

Self-gravity: none

Order of Accuracy: 2 (SECOND_ORDER)

Flux: hlld

Unsplit 3D integrator: ctu

Precision: DOUBLE_PREC

Output Modes:

Ghost Cells: disabled

Parallel Modes:

MPI: MPI_SERIAL

H-correction: disabled

FFT: disabled

The -d option can be used to create a new directory in which athena3.1 will run and write the
output files. The -n option is useful for debugging any parsing errors, as it will dump the contents
of all parsed block/parameters.

A value for any of the valid parameter names in the input file can also be input from the
command line, this over-rides the values in the input file. This, in combination with the -d option,
is useful for parameter surveys. The -c option is useful for checking the configuration parameters
with which the executable was compiled.

3.5.1 Editing the input file

Run time parameters are set in an input file, usually given the name athinput.problem-name,
where problem-name is a string identifier. Often this string is the same as the name of the problem-
generator, i.e. the function in athena3.1/src/prob which is used to initialize the data. In some
cases, a name which is more specific to the problem at hand is used (since some problem-generators
can be used to initialize more than one problem).

As an example of an athena3.1 input file, the file /athena3.1/tst/1D-mhd/athinput.brio-wu
is reproduced below. Other examples can be found in the subdirectories in /athena3.1/tst/.

<comment>

problem = Brio & Wu shock tube

author = M. Brio & C. C. Wu

journal = J. Comp. Phys. 75, 400-422 (1988)

config = --with-problem=shkset1d

<job>

problem_id = Brio-Wu # problem ID: basename of output filenames

maxout = 3 # Output blocks number from 1 -> maxout

<output1>

out_fmt = tab # Tabular data dump

dt = 0.0025 # time increment between outputs

<output2>

out_fmt = hst # History data dump

dt = 0.0025 # time increment between outputs

<output3>

8



out_fmt = bin # Binary data dump

dt = 0.0025 # time increment between outputs

<time>

cour_no = 0.8 # The Courant, Friedrichs, & Lewy (CFL) Number

nlim = 10000 # cycle limit

tlim = 0.1 # time limit

<grid>

Nx1 = 800 # Number of zones in X1-direction

x1min = 0.0 # minimum value of X1

x1max = 1.0 # maximum value of X1

ibc_x1 = 2 # inner (X1) boundary flag

obc_x1 = 2 # outer (X1) boundary flag

Nx2 = 1 # Number of zones in X2-direction

x2min = 0.0 # minimum value of X2

x2max = 1.0 # maximum value of X2

ibc_x2 = 2 # inner (X2) boundary flag

obc_x2 = 2 # outer (X2) boundary flag

Nx3 = 1 # Number of zones in X3-direction

x3min = 0.0 # minimum value of X3

x3max = 1.0 # maximum value of X3

ibc_x3 = 2 # inner (X3) boundary flag

obc_x3 = 2 # outer (X3) boundary flag

<parallel>

NGrid_x1 = 1

NGrid_x2 = 1

NGrid_x3 = 1

<problem>

gamma = 2.0 # gamma = C_p/C_v

shk_dir = 1 # Shock Direction -- (1,2,3) = (x1,x2,x3)

dl = 1.0 # density on left half of grid

pl = 1.0 # pressure

v1l = 0.0 # X-velocity

v2l = 0.0 # Y-velocity

v3l = 0.0 # Z-velocity

b1l = 0.75 # X-magnetic field

b2l = 1.0 # Y-magnetic field

b3l = 0.0 # Z-magnetic field

dr = 0.125 # density on right half of grid

pr = 0.1 # pressure

v1r = 0.0 # X-velocity

v2r = 0.0 # Y-velocity

v3r = 0.0 # Z-velocity

b1r = 0.75 # X-magnetic field

b2r = -1.0 # Y-magnetic field

b3r = 0.0 # Z-magnetic field

9



Note the syntax of the parameter specification used in this file. Parameters are grouped into
named blocks, with the name of each block appearing on a single line within angle brackets. Block
names must always appear in angle brackets on a separate line (although the blank lines above and
below the block names are not required).

Below each block name is a list of parameters, with syntax

parameter-name = value [# comments]

White space after the parameter name, after the ‘=’, and before the ‘#’ character is ignored.
Everything after (and including) the ‘#’ character is also ignored. Only one parameter value can
appear per line. Comment lines (i.e. a line beginning with ‘#’) are allowed for documentation
purposes. A maximum number of 256 characters is permitted per line in the input file. Both block
names and parameter names are case sensitive.

The input file is read by a very flexible parser written for athena3.1 (/athena3.1/src/par.c).
The entire input file is read at the very beginning of the main program, and the parameter names
and their values stored in memory. Thereafter, these values can be accessed as necessary by any
function at any time during execution. The parser allows the parameter names to appear in any
order within a named block, extra (or misspelled) parameter names will be parsed and never used.
There are no default values for any of the run-time parameters in the input file; each parameter
must be supplied a value through the input file. If a value is requested from the parser but its
name does not exist, the parser will print an error message and terminate the execution of the
program. In this way, missing parameter names will be detected at run time. The parameters
may be integers, floating point numbers, or strings. The parser will do automatic type conversion,
for example converting floating point numbers to double precision if necessary (though the user
is expected to know the basic difference between real, integer, and string data types). Parameter
values can also be set at run time through the command line, which provides a very flexible way
of testing the code and running parameter searches, using the syntax “block/parameter=value”.

Below we describe each of the parameter blocks in the input file, and the parameters they
contain.

3.5.2 The <comment> block

Provides self-documentation of the file. The variables in this block are not used in the code.

3.5.3 The <job> block

Parameters in this block control properties of the jobs run by athena3.1. They are accessed by
the function main.c.

• problem id: string added as basename of output filenames (see §4). Usually same as
problem-name used in input file. There is no maximum length for this name5.

• maxout: Specifies how many output blocks will be read from input file. Output blocks
<output1> through <outputN> where N = maxout are scanned for valid output descriptions.
Missing output blocks are permitted.

5Although remember that the maximum length of a line in the input file is 256 characters.

10



3.5.4 The <output#> block

Parameters in these blocks control the writing of “outputs”, e.g. data dumps, images, etc.

• out: Variable to image for pgm, ppm, fits output formats. Currently accepted values
are: d, M1, M2, M3, E, B1c, B2c, B3c, ME, V1, V2, V3, P, S, cs2. If variable is set
to all, then output will include d, M1, M2, M3 and may also include E, B1c, B2c, B3c

depending on the configuration, and the output format must be one of bin, dx, hst, tab,

rst, vtk (which can only dump all rather than selected variables).

• out fmt: Output format, e.g. bin, dx, hst, tab, rst, vtk, fits, pdf, pgm, ppm.
See §4 for more description of these formats.

• dat fmt: Optional field for controlling the format string used to write tabular output files,
e.g. %12.5e. This value should not appear in quotes and no white space should be present.

• dt: Time increment between outputs (in problem time).

• time: Time of next output (in problem time). If not set, the default will be the initial
problem time (for new runs), or the current problem time (for restarts).

• id: Any string, added to label output filenames.

• dmin/dmax: max/min applied to output (useful for images).

• palette: Color palette for images. Currently available palettes are rainbow, jh colors,

idl1, idl2, step8, step32, heat.

• ix1, ix2, ix3: Range of indices in x1, x2, or x3 directions over which data is averaged. For
example ix1=: will average over whole x1 axis and dump a 2D array. ix1=5: will average
from 5 to end. ix1=:10 will average from start to 10. ix1=5:10 will average from 5 to 10.
x1=5 will extract the single plane at i index 5.

• usr expr flag: Set to 1 if a user-defined expression is to be used to compute output quantity,
see §4.2.

3.5.5 The <time> block

Parameters in this block control times in a job (such as ending time). They are accessed by the
function main.c.

• tlim: Time to stop integration, in units defined by problem

• nlim: Maximum number of cycles of the main loop before stopping. Set to -1 to stop only
on time limit tlim.

• cour no: CFL number, must be less than 1.0 for 1D and 2D, 0.5 for 3D.

11



3.5.6 The <grid> block

Parameters in this block control the properties of the grid. They are accessed by the function
init grid block.c.

• Nx1, Nx2, Nx3: number of grid cells in the x1-, x2-, and x3-directions.

• x1min, x2min, x3min: x1-, x2-, x3-coordinate of left-edge of first cell

• x1max, x2max, x3max: x1-, x2-, x3-coordinate of right-edge of last cell. The com-
putational domain in the x1-direction spans x1max − x1min, the grid spacing is △x1 =
(x1max − x1min)/Nx1, and the center of the first cell is located at x1 = x1min + △x1/2.
Also, x1max > x1min is required. Similarly for the computational domain in the x2- and
x3-direction.

• ibc x1, obc x1: integer flags for boundary conditions applied at “inner” (left) and “outer”
(right) edges of grid. Currently three values are implemented: 1 = reflecting, 2 = outflow
(projection), and 4 = periodic. See §5 for more information.

• ibc x2, obc x2: Analogous parameters for the x2-direction.

• ibc x3, obc x3: Analogous parameters for the x3-direction.

3.5.7 The <parallel> block

Parameters in this block control the decomposition of the computational domain into MPI blocks.
The domain can be decomposed in any coordinate direction, and into an arbitrary number of blocks.
This allows slab, pencil, and block decompositions.

• NGrid x1: Number of MPI blocks in the x1-direction.

• NGrid x2: Number of MPI blocks in the x2-direction.

• NGrid x3: Number of MPI blocks in the x3-direction.

This block can be omitted for serial jobs, or the number of MPI blocks can be set to one in each
dimension (as in the example).

3.5.8 The <problem> block

Parameters in this block are accessed by the problem-generator, and therefore depend on the
problem being run. For example, the problem-generator athena3.1/src/prob/shkset1d.c (which
is used for the Brio & Wu test problem) requires the following parameter values in the <problem>

block:

• gamma: ratio of specific heats used in equation of state

• *l: values of variable * in left-state

• *r: values of variable * in right-state

The *l and *r parameter names are specific to the Brio & Wu shocktube problem. In general, the
input file for other problems will have different variable names in the problem block.

12



4 Data output formats

As described above in §3.5.4, data output in the athena3.1 code is controlled by the <output>

blocks in the input file. There should be one block for each type of data output required. There
is no limit on the total number of outputs. Output filenames use a naming convention basename-
id#.dumpid.outid.type, where the basename is inherited from the <job>/problem id parameter,
the -id# labels the processor id for jobs run with MPI with # an integer equal to the rank of
the MPI process (the root process does not contain an id#, nor is it present for serial jobs), the
dumpid is a zero filled unsigned integer with <job>/numdigits6, the outid is the string specified in
<output>/id (if not specified, the string will be out-#, where # denotes the block number in the
input file which generated the output), and the type denotes the output format (bin, tab, hst,

vtk, rst, pdf, pgm, ppm, fits). Note that history dump filenames do not include a dumpid or
outid. Also note that none of the “dump” formats (which output all variables, that is any of bin,
vtk, hst) include the outid string.

The meaning of the parameters in the <output> block has already been described in §3.5.4.
Below we provide more information about each of the output types.

1. History dumps: (type = hst) Formatted table of a variety of volume integrated values,
with one line in the table created every <output>/dt. Thus, at the end of execution, the
output file contains tlim/dt lines which form a time-history of these quantities. The file is
created by the function dump history.c; more (or problem specific) quantities can be added
by editing this file. The data is appended to the file each time the dump history() function
is called.

2. Binary dumps: (type = bin) Unformatted write of all dependent variables over all active
zones. If the dx option is enabled by configure, then an OpenDX header file with the same
name as the corresponding binary file but with the extension .dx will be created. This header
file allows binary dumps to be read by OpenDX networks (see §9.3). A new file is created
with a time interval of <output>/dt. Created by the function dump binary.c.

3. Tabular dumps: (type = tab) Formatted table of all dependent variables overall all zones. A
new file is created with a time interval of <output>/dt. Created by the function dump table.c.
Useful for making 1D plots.

4. ppm output: (type = ppm) Two dimensional images of the variable set in the output block
using the out variable name. Global scaling can be set using the parameters dmin and dmax

in the output block, otherwise each image is scaled independently. A default color palette
(rainbow) is used, but several others are available7. The image could be a slice or an average
over a range of grid cell indices whose orientation is determined by the values of <output>/ix1
(or <output>/ix2, <output>/ix3), see §3.5.4. Created by the function output ppm.c.

5. pgm output: (type = pgm) Grayscale images, written in pgm format. Scaling, orientation,
and averaging used to create slice is controlled in the same way as ppm outputs. Created by
the function output pgm.c.

6. Probability distribution functions: (type = pdf) Outputs PDF of selected variables in
tabular form. Created by the function output pdf.c.

6currently fixed at four
7see http://www.astro.princeton.edu/∼jstone/athena color tables.html for an index.

13



7. Flexible image transport system output: (type = fits) Same as ppm images, but
written in FITS8 format. Created by the function output fits.c.

8. Visualization Toolkit dumps: (type = vtk) Similar to binary dumps, but output written
in VTK9 legacy format. Useful for 3D simulations. Created by the function dump vtk.c.

9. Restart dumps: (type = rst) Creates a binary dump of all variables (in double precision if
necessary) that can be used to restart a simulation. The start of the restart file contains the
entire input file in ASCII. For jobs run in parallel with MPI, there will be one restart file per
process. See the next subsection for further details.

It is important to note that output files in athena3.1 will always be silently overwritten!

4.1 More on Restarts

Restart dumps (sometimes called checkpoints) are useful when a calculation must be continued
from a previous point. The files contain enough information, and with the necessary accuracy,
that a restart calculation generates identical data (to all significant digits) to a calculation run
continuously. Athena3.1 defines its own format for restart files. The file restart.c contains all
the functions needed to read and write these files.

To write a restart file, add the following <output> block to the input file:

<output2>

out_fmt = rst # Restart dump

dt = 1.0 # time increment between outputs

Note that <job>/maxout must be greater than or equal to two in this example. The time increment
<output>/dt is measured in problem time, and should be set to give the desired output frequency
of files (usually writing one restart dump every 6 hours of wall clock time is useful). For jobs run
in parallel with MPI, there will be one restart file per process, and the restarted job must use the
same number of processors as there are restart files.

If the problem contains special, user-defined data, these must be added to the restart dumps.
Athena3.1 provides a mechanism for automatically adding such data. In the problem generator,
two functions are provided:

void problem_write_restart(Grid *pG, Domain *pD, FILE *fp)

{

return;

}

void problem_read_restart(Grid *pG, Domain *pD, FILE *fp)

{

return;

}

Generally these functions are empty, but if necessary they can be used to read and write extra
parameters, or set problem-specific boundary conditions on restart, etc. The problem generator
src/prob/rt.c contains an example of usage. See the Programmer’s Guide for more information
about the structures in the argument list to these functions.

To read a restart file, the -r command is used on the command line:

8http://fits.gsfc.nasa.gov/
9http://www.vtk.org

14



% athena -r myfile.rst

Note that an input file, specified by -i myinput, is not needed for restarts. This is because the
restart file contains the original input file, in ASCII format, at the beginning, from which all the
necessary parameters are read by par.c on restart. This also makes restart files self-documenting:
the values of input parameters used in the calculation that generated the restart file can be read
with an editor. If an input file is specified along with a restart,

% athena -r myfile.rst -i myinput

then the values in myinput overwrite the values stored in the restart file itself. Alternatively, values
in the input file can be overwritten using the command line, for example:

% athena -r myfile.rst time/tlim=20.0

Usually the time/tlim parameter needs to be modified on restart. For parallel jobs run with
MPI, only the name of the restart file for the root (rank 0) process needs to be specified, all other
processes will create their own appropriate restart filename based on this name.

4.2 Adding user-defined output expressions

Often it is useful to output a variable other than one defined in the <output>/out type (see §3.5.4)
using one of the valid formats listed in §4. For example, one might like to create ppm images of the
kinetic energy density. This can be easily accomplished using the <output>/usr expr flag. The
following steps are required.

Firstly, write a function that computes the desired variable. It must be of type Real, and the
argument list must contain the Gas structure and the indices of the grid cell. (For details on the
information contained in the Gas structure, see the Programmer’s Guide.) The following example,
taken from src/prob/field loop.c, computes the z−component of the current density at cell
i, j, k.

static Real current(const Grid *pG, const int i, const int j, const int k)

{

return ((pG->B2i[k][j][i]-pG->B2i[k][j][i-1])/pG->dx1 -

(pG->B1i[k][j][i]-pG->B1i[k][j-1][i])/pG->dx2);

}

Next, use the function get usr expr(), included in every problem generator, to return the
value computed by this function if the string in <output>/out has the appropriate value. As an
example, the current density is computed using the function given above if the <output>/out string
is ‘J3’, with the following code

Gasfun_t get_usr_expr(const char *expr)

{

if(strcmp(expr,"J3")==0) return current;

return NULL;

}

To create a movie of the current density, use an output block in the input file in which
<output>/out is ‘J3’, and <output>/usr expr flag=1, with the other valid parameters set as
appropriate (to control, for example, the time interval between outputs, min/max scaling, etc.).

15



4.3 Adding user-defined output formats

It is also fairly easy to add entirely new data output formats, beyond what is provided for in
athena3.1 and described in §4. This can be accomplished in two steps. The first step is to write
a new output function in the file containing the problem generator. Suppose for example that the
new output function is called special output. It must have the following prototype in the problem
generator file

void special_output(Grid *pGrid, Domain *pDomain, Output *pOut);

(For details on the information contained in the Grid, Domain, or Output structures, see the Pro-
grammer’s Guide.) The second step is to enroll this function by adding a call to data output enroll

anywhere in the problem routine. The data output enroll function has the following prototype.

void data_output_enroll(Real time, Real dt, int num, const VGFunout_t fun,

const char *fmt, const Gasfun_t expr, int n,

const Real dmin, const Real dmax, int sdmin, int sdmax);

The arguments to this function serve the following purpose.

• time: Time of next output, usually the current simulation time.

• dt: The time interval between outputs.

• num: The initial data output number.

• fun: The name of the output function (a function pointer). In the example above this is
special output, but it could also be say output ppm for making images of some quantity.

• fmt: This is an optional format string used, for example, by dump table.

• expr: The name of the function (a function pointer) of the quantity to be imaged when using
an image type output routine, e.g. {output ppm, output pgm, output fits}.

• n: Currently, image type outputs contain the string “out#” in their file-name where the
number “#” is replaced with the argument n.

• dmin, dmax: When making image type outputs, the data can either be auto-scaled to the
min/max of the each image, or scaled to the fixed values dmin / dmax.

• sdmin, sdmax: Logical flags which indicate whether to use auto-scaling (sdmin / sdmax
= 0) or to use the fixed scales (sdmin / sdmax != 0).

In the simplest case the call to data output enroll could take this form, where unused argu-
ments are set to 0, or NULL.

data_output_enroll(pGrid->time,0.1,0,special_output,NULL,NULL,0,0.0,0.0,0,0);

16



5 Specifying Boundary Conditions

As described in §3.5.6, integer flags can be used to specify a limited set of boundary conditions
automatically in athena3.1. The actual implementation of the boundary conditions uses function
pointers. The flags are used to enroll the appropriate default functions from the complete list in
/src/set bvals.c. Each of these functions sets quantities in the ghost zones according to the
algorithm selected by the value of the flag.

The use of function pointers makes adding new boundary conditions for specific problems quite
easy. For example, to add a new problem-specific boundary condition along the inner X1 boundary,
the user would (1) write a new function which sets the values in the ghost zones and include it in
the same file as the problem generator, and (2) enroll this new function by adding the following
line at the end of the problem generator

set_bvals_fun(right_x1,special_bc_function_name);

where special bc function name is the name of the special function written in step (1). The first
argument of set bvals fun specifies the boundary on which the special function is enrolled; use
left x1 or right x1 for the inner or outer x1-boundary, and similarly left x2 or right x2 specifies
the inner or outer x2-boundary respectively, and left x3 or right x3 specifies the inner or outer
x3-boundary respectively. As examples, users should look in the dmr.c, noh.c, and shkset3d.c

problem generators; each contains special boundary functions enrolled in this fashion.
Users should also note the following:

1. Boundary condition flags in the input file are only required for directions in which the grid
is integrated. That is, if Nx1>1 and Nx2=Nx3=1, then only ibc x1 and obc x1 are required in
the input file. The parameters ibc x2, obc x2, ibc x3, and obc x3 may be present, but their
value will not be checked.

2. If the user enrolls a boundary condition routine for say the inner x1-boundary, the boundary
condition flag ibc x1 in the parameter file is not required. Again it may be in the parameter
file, but its value will not be checked.

6 Problem Generators Included in athena3.1

A large number of problem generators are included in the /src/prob directory. The complete list
is

blast.c dmr.c linear_wave3d.c README shkset2d.c

carbuncle.c field_loop.c lw_implode.c rotor.c shkset3d.c

cpaw1d.c kh.c noh.c rt.c shu-osher.c

cpaw2d.c linear_wave1d.c orszag-tang.c shk_cloud.c twoibw.c

cpaw3d.c linear_wave2d.c pgflow.c shkset1d.c

The README file in this directory describes the purpose of each problem.

7 Gravity in athena3.1

7.1 Source terms due to a static potential

The treatment of source terms in athena3.1 is significantly different than previous versions. Now,
only source terms due to a static gravitational potential are allowed, and this treatment strictly
conserves the total energy in the flow.

17



To include a static gravitational potential in calculations, a separate user-defined function which
computes the gravitational potential given the (x1, x2, x3) coordinates as an input argument must
be specified in the problem generator file, for example

static Real grav_pot(const Real x1, const Real x2, const Real x3);

The arguments are the x−, y−, and z−coordinates at which the potential is to be evaluated. This
function is then enrolled into the integrator using a function pointer, called StaticGravPot. This
pointer is defined in src/globals.h. To enroll the user-defined function described in the example
above, add the line

StaticGravPot = grav_pot;

anywhere in the problem generator file. If StaticGravPot, is not specified in the problem generator,
then no gravitational acceleration will be included in the integrator.

The problem files pgflow.c and rt.c are good examples of how to include source terms in your
own applications. In particular, pgflow.c sets up a stringent test of gravitational source terms.

7.2 Self-gravity using FFTs

athena3.1includes the ability to include self-gravity of the fluid, computed using FFTs. A unique
block decomposition of the FFT algorithm is used, based on the FFTW libraries. To use this feature,
you must have the FFTW3.x libraries installed, you must modify the options to the compiler in
the athena3.1/Makeoptions.in file to link to these libraries, and you must configure the code
with the --with-gravity=fft --enable-fft options. The numerical algorithm implemented in
athena3.1conserves the total momentum of the fluid exactly. The gravitational constant is read
as a parameter in the <problem> block in the input file. The linear wave test problems included
in the code distribution can be used to test the self-gravity option. Note the algorithm only works
for periodic boundary conditions.

8 Running athena3.1 on multiple processors using MPI

athena3.1 is parallelized using domain decomposition based on the Message Passing Interface10

(MPI). The code can be run on any distributed memory cluster (or any multiple processor system)
on which MPI is installed using the following steps.

Firstly, during the configure step, the MPI option must be enabled via

% configure --enable-mpi

This sets precompiler macros to include the appropriate MPI code.
Next, during the compile step, the appropriate MPI libraries must be linked. Perhaps the easiest

way to achieve this is to add an option to src/Makefile.in specifying the compiler, compiler
options, linker, and libraries specfic to the the target machine. For example, using

% make all MACHINE=hydra

includes the appropriate compiler and MPI libraries for a Beowulf cluster at Princeton University
called ‘hydra’. By copying the options for hydra to a new target machine ‘mymachine’, editing
them as appropriate, and then compiling with

10http://www-unix.mcs.anl.gov/mpi/

18



% make all MACHINE=mymachine

the appropriate executable should be produced.
Next, the input file for the problem of interest must be edited to add a <parallel> block with

that specifies the desired domain decomposition. For example, the following block in the input file

<parallel>

NGrid_x1 = 1

NGrid_x2 = 10

NGrid_x3 = 1

will result in a slab decomposition with 10 slabs in the y−direction (a total of 10 processors are
needed); while

<parallel>

NGrid_x1 = 1

NGrid_x2 = 2

NGrid_x3 = 3

will result in a pencil decomposition with two pencils in the y−direction and three in the z−direction
(a total of 6 processors are needed); while

<parallel>

NGrid_x1 = 4

NGrid_x2 = 4

NGrid_x3 = 4

will result in block decomposition with four blocks in each direction (a total of 64 processors are
needed). Any decomposition is allowed, although there can be no fewer than four active zones
along any direction in any MPI block.

Finally, the MPI job must be run using the mpiexec or mpirun command. The number of
processors used must be specified e.g. through the command line using -np # (where # specifies
the number of processors to be used). The number of processors used at run time must agree with
the number of MPI blocks specified in the <parallel> block in the input file, or athena3.1 will
print an error message and terminate. A useful script for the Parallel Batch System (PBS) which
is often used to schedule jobs on parallel clusters is included in the athena3.1/doc directory.

Note that data generated by MPI parallel jobs will be written to separate files for each process
(except for history or pdf files, which contain the appropriate MPI calls to do global sums). A
useful program for joining together multiple vtk files generated by a parallel job is included in
athena3.1/vis/vtk.

9 Visualizing output

Athena3.1 does not come with a default graphics package. Instead, the user must decide which
visualization package is best suited to their needs, output the data in a format which can be read
by this package, and then proceed. As a start, rudimentary scripts for several different graphics
packages are supplied with the source code; future versions may incorporate more sophisticated
visualization tools. The following subsections describe useful visualization packages for athena3.1
data files (the discussion assumes the code has already been run to produce output).

19



9.1 Supermongo

A popular package for making publication-quality one-dimensional plots is SM11. A simple SM
macro that can read tabular output from athena3.1 is provided in athena3.1/vis/sm.

9.2 IDL procedures

IDL (Interactive Data Language)12 procedures that can read both the binary and VTK dump files
and make plots are included in athena3.1/vis/idl. To run these procedures IDL must be installed
on the system. From the athena3.1/bin directory, use the following to read a binary file and make
some one-dimensional plots:

% idl

IDL> .run ../vis/idl/pltath.pro

IDL> nine_plot,’Brio-Wu.0040.bin’,1

A variety of potentially useful procedures are included in the pltath.pro file.

9.3 OpenDX networks

The OpenDX13 package can read athena3.1 binary dump files, provided the .dx header files exist.
This requires athena3.1 be configured with the dx option enabled and of course OpenDX must be
installed on the system. v2.0 of Athena included an example network to read binary files, currently
this network has yet to be extended to athena3.1.

9.4 VTK

We have found the VisIt package14 useful for plotting 3D data sets. The VTK legacy format
produced by athena3.1 can be read by VisIt. For data created with executables parallelized with
MPI, a C code that joins multiple files into one is provided in athena3.1/vis/vtk. This is useful
for jobs run on massively parallel clusters.

9.5 2D animations

Athena3.1 can output 2D images that can be displayed directly, or easily turned into animations.
For example, if a series of ppm images of a single variable have been created, they can be displayed
either using ImageMagick:

% animate *.ppm

or, alternatively, xanim (which requires converting the ppm images to FLI format):

% ls Wind*ppm > list1

% ppm2fli -g80x80 list1 Wind.fli

% xanim Wind.fli

11http://www.astro.princeton.edu/∼rhl/sm/
12http://www.rsinc.com
13http://www.opendx.org
14http://www.llnl.gov/visit

20



10 Examples of Running athena3.1

10.1 The athena3.1 Benchmark

To test the installation of athena3.1, a benchmark can be run automatically using the Makefile.
This benchmark consists of a linear wave convergence test on a grid of 512 zones; it computes and
outputs the L1 error norm in the fast magnetosonic wave compared to the analytic solution. If the
benchmark fails to run, or if the resulting error norm is large, then something has gone wrong in
the installation or in the compilation of the code.

To run the benchmark, use the following commands (in the athena3.1 root directory; these
steps assume the configure script has already been generated with autoconf).

% configure

% make all

% make test

(cd tst/1D-mhd; ./run.test)

zone-cycles/cpu-second = 3.067215e+05

zone-cycles/wall-second = 3.055470e+05

L1 norm for density: 6.333390e-11

The zone-cycles/cpu-second is a useful measure of the code performance, it corresponds to the
number of grid cells updated per cpu second. This of course depends on the physics included, the
geometry of the problem, as well as the processor used for the calculation. The values reported
above are for a 3.08Ghz Intel Xeon processor. The error norm is absolute, and should never be
larger than 10−10.

10.2 Running a 1D test problem with athena3.1: The Brio & Wu shocktube

As an example of how to configure, compile, and run athena3.1 and visualize the output for a one-
dimensional test problem, we show the steps required to run the Brio & Wu shocktube. Assuming
the code has already been installed (see §2 or §3), the first step is to configure:

% cd athena3.1

% configure --with-problem=shkset1d

The configure script will print a variety of diagnostic statements during this step. Next, the code
must be compiled:

% make all

The default compiler options will print diagnostic statements. Then the code can be run in the
athena3.1/bin directory:

% cd bin

% athena -i ../tst/1D-mhd/athinput.brio-wu

The code will print information about every timestep as it executes. It should generate 40 binary
dumps named Brio-Wu.*.bin, 40 tabular dumps named Brio-Wu.*.tab, as well as a history file
Brio-Wu.hst. There are a variety of ways that the data in these files can be visualized; one way is
to use the IDL scripts included in athena3.1/vis/idl.

% idl

IDL> .r ../vis/idl/pltath.pro

IDL> four_plot,’Brio-Wu.0040.bin’

The resulting plots which should now appear on the screen is shown in Figure 1.

21



Figure 1: Results from Brio & Wu shocktube test problem plotting the using IDL procedure
four plot

10.3 Running a 2D test problem with athena3.1: The Orszag-Tang vortex

As an example of how to configure, compile, and run athena3.1 and visualize the output for a two-
dimensional test problem, we show the steps required to run the Orszag-Tang vortex test using the
third order algorithm and the HLLD fluxes. Again, assuming the code has already been installed
(see §2 or §3), the first step is to configure:

% cd athena3.1

% configure --with-order=3 --with-problem=orszag-tang --with-flux=hlld

A variety of diagnostic statements will be printed during this step. Next, the code must be compiled:

% make all

The default compiler options will print diagnostic statements. Then the code can be run in the
athena3.1/bin directory:

% cd bin

% athena -i ../tst/2D-mhd/athinput.orszag-tang

The code will print information about every timestep as it executes. On a 3.08 GHz Xeon processor,
the calculation takes about 4 minutes to complete. It should generate 100 binary dumps named
OrszagTang.*.bin, 250 ppm images of the gas pressure named OrszagTang.*.P.ppm, 250 ppm
images of the density named OrszagTang.*.d.ppm, as well as a history file OrszagTang.hst. There
are a variety of ways that the data in these files can be visualized; one way is to use the IDL scripts
included in athena3.1/vis/idl. To make a contour plot of the pressure at time t = 0.5, use the
following:

22



% idl

IDL> .r ../vis/idl/pltath.pro

IDL> readbin,’OrszagTang.0050.bin’

IDL> contour,p,nlevels=30,/isotropic,xstyle=1,ystyle=1

The resulting plot which should now appear on the screen is shown in Figure 2.

Figure 2: Contour plot of the gas pressure at time t = 0.5 from the Orszag-Tang test problem
plotted using IDL.

It is also interesting to watch an animation of the density or pressure in the problem. This can
be done a variety of ways. The simplest is to use the ppm images generated directly by the code.
For example, if ImageMagick is installed on the system, try

% animate *.P.ppm

The density can be animated in a similar fashion.

10.4 Running a 3D test problem with athena3.1: Advection of a field loop

As an example of how to configure, compile, and run athena3.1 and visualize the output for a
three-dimensional test problem, we show the steps required to run the advection of a field loop test.
Again, assuming the code has already been installed (see §2 or §3), the first step is to configure:

% cd athena3.1

% configure --with-order=3 --with-problem=field_loop --with-flux=hlld

A variety of diagnostic statements will be printed during this step. Next, the code must be compiled:

% make all

23



The default compiler options will print diagnostic statements. Then the code can be run in the
athena3.1/bin directory:

% cd bin

% athena -i ../tst/3D-mhd/athinput.field_loop4 grid/Nx1=64 grid/Nx2=64 grid/Nx3=64

parallel/NGrid_x1=1 parallel/NGrid_x2=1 parallel/NGrid_x3=1

Note the input file for the field loop test rotated at an angle is run (iprob=4 in the <problem>

block). Since the default input file for this problem uses a 1283 grid, with a block decomposition
on 8 processors using MPI, the command line is used to overwrite the input parameters to use a
643 grid and only one processor.

It will take about 30 minutes for this calculation to complete on a 3.08 GHz Xeon processor.
The run should generate three VTK files, 250 ppm images of the current density on a x − y slice,
and a history file. A plot of an isosurface of the magnetic energy density made with the VisIt
package is shown in Figure 3. Alternatively, the IDL procedure readvtk in vis/idl/pltath.pro

could be used to to read the data, and then one of the plotting routines in IDL could be used to
display the data.

Figure 3: Surface plot of the magnetic energy, generated by VisIt, for the advection of a rotated
field loop in 3D.

24



10.5 The athena3.1 Test Suite

Each of the problem generators in the /src/prob subdirectory sets up another test problem for
athena3.1. Further descriptions of these tests, and examples of results from running athena3.1,
can be found in the Athena code web pages, and in the Method papers.

11 Running New Problems

The real utility of the athena3.1 code is as a solver for new problems (i.e. problems that are
not initialized by the set of problem generators included in the source code distribution). For new
problems, the following steps are required.

1. Write a new function that initializes the problem. This function must be of type void, have
the name problem, and have as arguments pointers to the Gas and Domain structures. The
function must be contained in a file in the /src/prob directory.

2. Write new functions called Userwork in loop and Userwork after loop (which may be no-
ops if not needed) and include them in the file containing problem. As the names suggest,
these functions can be used to perform special problem-dependent work in or after the main
loop (see linear wave.c for an example).

3. If special purpose boundary conditions are needed, write special functions that implement
them, and enroll them using the function set bvals fun (see §5).

4. If special purpose data output is needed, write special functions that implement them, and
enroll them using the function data output enroll (see §§4.2 and 4.3).

5. Once the above is complete, configure and compile the code using the appropriate physics
options, and including the new problem generator using --with-problem=new-name.

It is likely the Programmer’s Guide will be needed to write a new problem generator to under-
stand the data structures and names used in athena3.1. As a start, the problem generators in
/src/prob can be used as templates.

25


