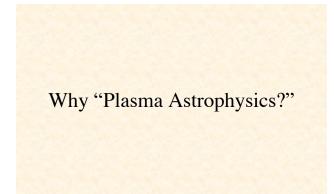


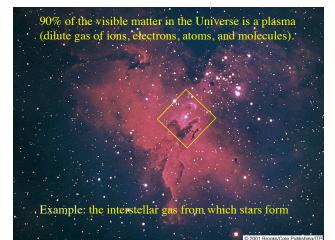
Our coordinates.

Jim Stone jstone@astro.princeton.edu Peyton 125

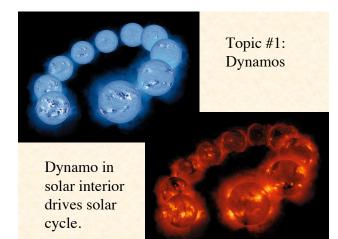
Greg Hammet hammett@princeton.edu A137 PPPL

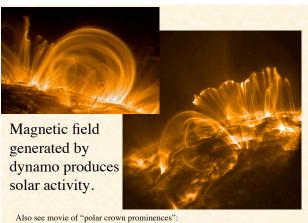
Course webpage: http://www.astro.princeton.edu/~jstone/AST541

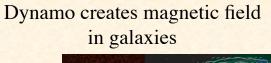

Course Structure.

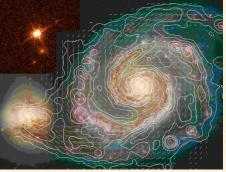

Similar to previous years:

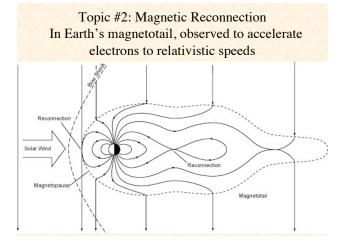
- All Astro students must make one 1/2-hour presentation during semester. · Everyone must attend all lectures, and participate by asking questions.
- Everyone must provide feedback to presenters by written comments.
 Course is P/F. You will pass if you participate.


Presentation:

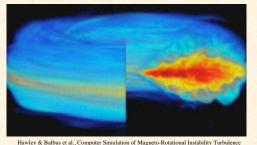

- · Based on topics you chose.
- We will provide references to fundamental papers. Either summarize just these papers, or include results from a larger literature search.
- Must meet with us Fri or Mon before presentation to go over slides.



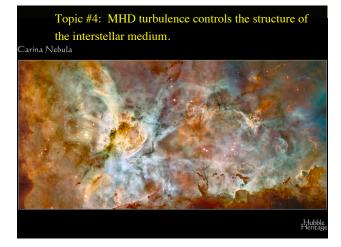




Also see movie of "polar crown prominences": http://science.nasa.gov/science-news/science-at-nasa/2008/17sep_polarcrown/

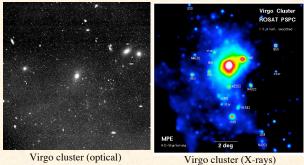


Synchrotron radiation and polarization vectors in M51 (whirlpool galaxy)



Topic #3. MRI MRI and other plasma instabilities explain transport and accretion in disks.

Hawley & Balbus et al., Computer Simulation of Magneto-Rotational Instability Turbulen http://www.astro.virginia.edu/~jh8h/ http://www.astro.virginia.edu/VITA/papers/torus3d/densityminchunk.mpg


Topic #5: kinetic MHD.

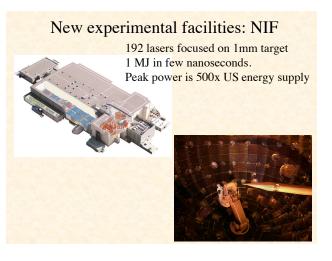
An intermediate regime between 1. continuum (fluid) approximation ($\lambda \ll L$) 2. collisionless plasma physics ($\lambda >> L$)

Kinetic MHD (long mean-free path regime): $L >> \lambda >> \rho$ (gyro-radius), low ω (MHD).

Relevant in diffuse plasmas...

X-ray emitting plasma in clusters of galaxies.

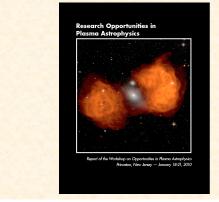
Virgo cluster (optical)


T ~ 4.5 keV, n ~ 10⁻³-10⁻⁴ cm⁻³, B~ 1 μ G implies $\lambda_{m/p} \sim 0.1 R_V \rho \sim 10^8$ cm

Advances in simulation driven by new hardware.

There are 5 machines on top500.org list above 1 Pflop. For example, RoadRunner with 122,400 cell processors at Los Alamos National Laboratory.

1026 Tflops (1Pflop!!) sustained performance.



26 Mamps pulsed through cm-sized wire array 350 Twatts produces 2 GK plasma.

New experimental facilities: Z-machine

For more details of emerging research topics in Plasma Astrophysics, see WOPA report: http://www.pppl.gov/conferences/2010/WOPA/

Page 7 of

WOPA report			

This offert brought copelar colorers, experimentalise, comparational plasma physicias, and theorits from universities, national blackmosting, powremous research nationations, and private industry including averal axistentist from oxidal for U.S. it also encompassed physicias majo- ting magneticed plasmas and those exclusing high energy character the broached or partic- pation uncovered cross-cutting opportunities previously unappreciated. This document reports the sensits from the workshop.	
MAJOR QUESTIONS AND TOPICS	
There are two approaches to articulating the challenges and opportunities: through plasma pro- cesses or through astrophysical systems. Individual plasma processes attect multiple systems, and individual systems ascompass multiple processes. Who are values both approaches. Etch of the ton working groups focuad on one of the following processes that express the physica challenges (instel here in random order):	
Magnetic reconnection	

éagnetic dynam nterface and she .ngular moment

- -srvnlamas Radiative hyd

- astrophysics, constitutes the bulk of this report or, system-based questions for plasma astrophys

on, thi ields o

How are cosmic rays accelerated to ultra-high energies? Energet: particles bombard the Earth from space with energies up to 10^{20} electron voks, enor mously more energetic than those achieved in the most powerful accelerator in the laboratory 7

Schedule of lectures.

Today: basic introduction to plasma physics. Plasma parameters (length and time scales) Single particle motion Ideal MHD, flux freezing Generalized Ohm's Law MHD and Plasma waves

Remaining lectures: See webpage and handout.