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The universality of mathematics and Maxwell’s equations is not shared by specific plasma models.
Computations become more reliable, efficient, and transparent if specific plasma models are used
to obtain only the information that would otherwise be missing. Constraints of high universality,
such as those from mathematics and Maxwell’s equations, can be obscured or lost by integrated
computations. Recognition of subtle constraints of high universality is important for (1) focusing
the design of control systems for magnetic field errors in tokamks from perturbations that have little
effect on the plasma to those that do. (2) clarifying the limits of applicability to astrophysics of

computations of magnetic reconnection in fields that have a double periodicity or have ~B = 0 on a
surface, as in a Harris sheet. Both assume a symmetry not expected in natural systems. Mathemat-
ics and Maxwell’s equations imply that neighboring magnetic field lines characteristically separate
exponentially with distance along a line. This remarkably universal phenomenon has been largely
ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation.
These and other examples of the importance of making distinctions and understanding constraints
of high universality are explained.

I. INTRODUCTION

An integrated plasma computation is generally as-
sumed to be preferable to a separation of the information
that depends on the plasma model from that determined
by mathematics and Maxwell’s equations. This assump-
tion is false, because mathematics and Maxwell’s equa-
tions have a universality not shared by specific plasma
models. Computations become more reliable, efficient,
and transparent if specific plasma models are used to ob-
tain only the information that would otherwise be miss-
ing.

Many phenomena of importance to plasma physics are
highly constrained or essentially determined by mathe-
matics and Maxwell’s equations. This can be obscured
or lost by integrated computations.

The laws of mathematics and Maxwell’s equations
may be universal, but their constraints can be trumped
by the laws of sociology. Familiar models that violate
constraints are assumed validated by conventional wis-
dom. Conclusions derived without the expected detailed
plasma model are assumed ignorable. The views of the
first reviewer of a recent paper [1] are not atypical: The
derivations are very imprecise, verging on hand-waving.

Recognition of subtle constraints of high universal-
ity is important for clarifying the applicability of the-
oretical mechanisms for magnetic reconnection in astro-
physics, Section II. Two common assumptions on the
initial magnetic field used in reconnection simulations
are not generic: double periodicity and a Harris sheet,
~B = B0 tanh(x/L0)ẑ, where B0 and L0 are constants.
Generic means the assumptions remain valid in the pres-
ence of small perturbations. Perturbations are endemic
to natural systems, so the applicability of a non-generic
model can only be assessed when the effect of breaking
its assumptions is known. Another reconnection concept,

which is generic and provides a trigger for reconnection,
is essentially ignored. Mathematics and Maxwell’s equa-
tions imply that neighboring magnetic field lines charac-
teristically separate exponentially with distance ` along a
line, δ(`) = δ0e

σ(`). The exponentiation σ changes even
when the magnetic field evolution is ideal. Reconnec-
tion becomes generic for evolving magnetic fields when
σ >∼ 20, which defines a reconnection trigger.

Recognition of subtle constraints of high universality is
also important for focusing the design of control systems
for magnetic field errors in tokamks from perturbations
that have little effect on the plasma to those that do,
Section III.

The importance of making distinctions based on uni-
versality extends beyond just mathematics and Maxwell’s
equations to areas such as classical mechanics and kinetic
theory. Not everything can be calculated, but much can
be constrained, and what is not constrained may be pos-
sible. Constraints of high universality may neither be
obvious, nor well known, but of great importance. Ex-
amples from kinetic theory are given in Section IV.

Even more general principles provide guidance for re-
search directions in an applied program, such as the effort
to demonstrate the feasibility of magnetic fusion energy,
Section V.

If the paper can motivate a few individuals in a way of
thinking, it will have served its purpose, Section VI.

II. MAGNETIC RECONNECTION

Fundamental differences of opinion on the theory of
the reconnection of magnetic fields in three dimensions
are apparent in the major reviews [2], [3], [4], [5]. The
importance of X-points to reconnection, Figure (1), has
been clear in the astrophysical literature since Dungey’s
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FIG. 1: The top figure shows the way magnetic field lines in
a torus appear to advance at a fixed toroidal position near
a rational surface, q = m/n, that has been split by a chain
of magnetic islands. The X-point in the center of the figure
is formed by a field line that closes on itself after m toroidal
circuits, which is also the number of islands in the chain, and
n poloidal circuits. Field lines at the top of the figure have
q > m/n, so they fail to close on themselves by moving to the
left. The field lines at the bottom have q < m/n, so they fail
to close on themselves by moving to the right. The bottom
figure is Dungey’s expectation [6] of the plasma flows as well
as the field-line trajectories during reconnection, which for the
toroidal case is the opening of an island. In three dimensions,
an X-point is is the projection of a curve onto a plane, but as
discussed in the text, the meaning in an astrophysical context
is obscure.

work [6] in the 1950’s, and his insights were extended
to reconnection in laboratory plasmas by Furth, Killeen,
and Rosenbluth [7]. None of the reviews on reconnection
deal with the constraints of mathematics and Maxwell’s
equations, which imply (1) that X-point reconnection has
a clear meaning in toroidal but not in astrophysical plas-
mas and (2) the exponentially increasing separation of
neighboring field lines provides a ubiquitous trigger for
reconnection.

Magnetic reconnection is an evolution of the magnetic
field that cannot be represented by the magnetic field
lines moving through space with a well-behaved veloc-
ity ~u(~x, t) while preserving their identity. Faraday’s law,
∂ ~B/∂t = −~∇× ~E implies that a magnetic field evolution
is completely characterized by an electric field ~E(~x, t).
Consequently, mathematical constraints on the form of
an arbitrary vector in three dimensions place constraints
on reconnection.

Reconnection does not take place in a bounded region
of space if the electric field has the mathematical repre-
sentation

~E + ~u(~x, t)× ~B = −~∇Φ(~x, t), (1)

where ~u(~x, t) and Φ(~x, t) are well-behaved functions of
position and time [9]. The reason is that the vector ~u(~x, t)

gives the evolution of the magnetic field lines and can
be interpreted as their velocity. Section II B will discuss
this interpretation and its subtleties. When Equation (1)
holds the magnetic evolution will be described as ideal.

Equation (1) is not an Ohm’s law, but an abstract
mathematical statement of the representation of a vector
in three space. For example, Equation (1) holds in a
vacuum region that is sufficiently small that no field lines
close on themselves and in which the magnetic field has
no nulls. If the magnetic field is embedded in a perfectly
conducting fluid, which has an Ohm’s law, ~E+~v× ~B = 0,
then an identification of the field line velocity ~u and the
fluid velocity ~v shows reconnection cannot take place.

Three scalar functions of position and time are required
to represent an arbitrarily evolving vector in three dimen-
sional space. In Equation (1) these three functions are Φ
and the two components of ~u that are orthogonal to ~B.

The functions ~u and Φ of Equation (1) are well behaved
if the differential equation

~B · ~∇Φ = − ~E · ~B (2)

has a solution for which ~∇Φ is well behaved. The equa-
tion for Φ can be written as dΦ/d` = −b̂ · ~E, where
b̂ = ~B/| ~B| and ` is the distance along a magnetic field
line. The expression,

~u =
( ~E + ~∇Φ)× ~B

B2
, (3)

gives a ~u consistent an ideal evolution, Equation (1).
Such solutions for Φ and ~u always exist in a sufficiently
small bounded region that contains no nulls of the mag-
netic field, ~B(~x, t) = 0 and in which the current density
has no singularities.

Sometimes reconnection is identified with a large power
transfer from the magnetic field to a plasma, but this can
occur even when the magnetic evolution is ideal. Poynt-
ing’s theorem says the power per unit volume transfered
from the magnetic field to a conducting medium with a
current density ~j is pp = ~j · ~E, so when Equation (1) holds
pp = ~u · (~j × ~B)− ~∇ · (Φ~j). The last term vanishes when
integrated over the region in which ~j is non-zero, but the
first term, which is the dot product of field line velocity
with the magnetic force on the conducting medium, is
not in general zero.

Except for mathematical subtleties, Equation (2) can
always be solved consistent with a well behaved field line
velocity ~u, Equation (3), so it is these subtleties that
define when reconnection is possible, Section II A. The
details of the plasma model have no relevance to the anal-
ysis of Section II A, so the results hold for any plasma
model.

The discussion of mathematical subtleties requires a
common understanding of the adjective generic. A math-
ematical statement is generic if it continues to be true in
the presence of arbitrarily small perturbations. For ex-
ample, the generic number of distinct solutions to the
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equation x2 − 2x + c = 0 is two, x = 1 ±
√

1− c. The
equation has only one solution if c = 1, but an arbitrar-
ily small perturbation to c will split the single solution
at c = 1 into two distinct solutions. When the coefficient
c is obtained from complicated physical phenomena, the
case that c = 1 with absolute precision will arise only
in the sense that a stopped watch is absolutely correct
twice a day. Perturbations are endemic to natural sys-
tems, so the applicability of a non-generic model can only
be assessed when the effect of breaking its assumptions
is known.

A. Locations at which reconnection can occur

A well behaved velocity of the magnetic field lines, ~u
of Equation (3), may not exist at spatial locations of four
distinct types:

1. Where ~B(~x, t) = 0.

Singularities arise at places at which ~B(~x, t) = 0 [10],
but these singularities are weaker than might be expected
because only nulls at isolated points are generic and for
an isolated point null the most singular features cancel
out. A characteristic singularity is logarithmic. Because
of the importance of magnetic nulls in the reconnection
literature, they will be explored further in Section II C.

Magnetic field nulls do not arise in the toroidal plas-
mas that are the focus of laboratory research. Nulls of the
magnetic field can arise at isolated points in an astrophys-
ical plasma, though generically neither nulls along a curve
nor over a surface can occur Section II C. Let 〈B2〉 be the
average over a bounded region of space, then generically
B2(~x)/〈B2〉 can vanish only at isolated points. Along
a curve or on a surface, the smallness of B2(~x)/〈B2〉 is
a measure of the symmetry of the system—an absolute
zero of B2(~x)/〈B2〉 along a curve or on a surface requires
an absolute symmetry. To be significant, reconnection in
astrophysical systems requires enhanced plasma dissipa-
tion. If that enhancement depends upon the magnitude
of 〈B2〉/B2 along a curve, then the required symmetry is
astronomical in another sense of that word.

The Harris sheet, ~B = B0 tanh(x/L0)ẑ, where B0 and
L0 are constants, has become such a standard model of
a magnetic field prone to reconnection that Harris’ pa-
per [8] has had over 500 citations. A Harris sheet is a
surface null of the magnetic field, which is not generic.
Any magnetic perturbation with x̂ or ŷ components re-
moves the null. The applicability of models based on the
Harris sheet to astrophysical reconnection cannot be as-
sessed without knowledge of how small B2(~x)/〈B2〉 must
for B2(~x)/〈B2〉 = 0 over a surface to be a reasonable
approximation.

2. Where magnetic field lines are closed.

Reconnection occurs where magnetic field lines are
closed, as on a rational surface of a toroidal plasma, and
dΦ/d` = −b̂· ~E is not consistent with

∮
b̂· ~Ed` = 0. When

this occurs, a solution for Φ does not exist. In toroidal
laboratory plasmas, this situation can arise at rational
magnetic surfaces, which is the only place reconnection
is believed to occur in such plasmas. Reconnection at ra-
tional surfaces is the opening of magnetic islands, which
splits the rational surface, Figure (1).

Reconnection forced by field line closure arises not only
in toroidal plasmas but also in numerical simulations that
have periodicity in two directions. Double periodicity
provides clear and efficient boundary conditions and is,
therefore, used in many simulations. The resulting recon-
nection depends sensitively on the behavior of the plasma
near X-points on the separatrices of islands. This theory
is very important in toroidal laboratory plasmas, but its
relevance to astrophysics is difficult to comprehend.

The definition of an X-pont in an astrophysical plasma
is obscure, Figure (1). An X-point in a toroidal plasma is
has two characteristics: (1) The X-point is formed by a
field line that closes on itself. (2) The magnetic field lines
in the neighborhood of that line are of two types: those
that exponentially separate from and those exponentially
approach the X-point with distance ` along each line.
Since the concept of a closed magnetic field line in an
astrophysical plasma is not taken seriously, an X-point is
sometimes taken to be a null of the magnetic field along a
line, but a line null is destroyed by small perturbations—
only point nulls are generic, Section II C.

3. Where a magnetic field line goes from one boundary to
another.

Reconnection arises when a magnetic field line goes
from one boundary to another on which Φ is specified—
for example Φ = 0 on a perfectly conducting plate—and
dΦ/d` = −b̂ · ~E does not give a solution that obeys this
condition, which means a solution for Φ does not exist.

Reconnection that is forced by the boundary condi-
tions has two subtleties associated with the distance to
the boundaries. (1) In a highly conducting plasma, the
plasma is isolated from boundary effects for a time less
than the transit time of a shear Alfvén wave, which limits
the rate of reconnection when the distance along the field
lines from one boundary to another is great. (2) Numer-
ical studies are expensive with distant boundaries unless
careful approximations are made. A comprehensive code
that does not make such approximations is difficult to
apply in a way that is relevant to common astrophysical
situations.
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4. Where adjacent magnetic field lines separate
exponentially.

Magnetic field lines that have an infinitesimal separa-
tion ~δ0 a one point in space generically have a exponen-
tially increasing separation, ~δ(`) ∼ δ0eσ(`), with distance
along the lines `. When σ is large, the electric potential
Φ of Equation (2), dΦ/d` = −b̂· ~E, naturally develops ex-
ponentially large gradients across the magnetic field lines
since the potential at adjacent points comes from integra-
tions along widely separated field lines. For example, the
radius of the sun, 1.4 × 106km, divided by the ion gy-
roradius in the photoshere, ρi ≈ 70cm, is approximately
e21.4.

Reconnection characteristically occurs [11] for σ >∼ 20.
Even in an ideal evolution σ changes, so σ reaching a
critical value can be a trigger for reconnection.

A clear demonstration that in a smooth magnetic field
with no nulls neighboring magnetic field lines generically
separate exponentially has not be given for open mag-
netic field lines. However when the field lines lie within a
region bounded by a torus, it is well known that trajec-
tories characteristically separate with kL ≡ lim`→∞ σ/`
called the Lyapunov exponent. When kL is non-zero,
the magnetic field is said to be chaotic. Toroidal labo-
ratory experiments can have non-chaotic magnetic fields,
kL = 0, but even small perturbations, δB/B < 1% can
make an non-chaotic field chaotic.

This paragraph is a demonstration that generically
δ ∼ δ0e

σ(`) and can be skipped on a first reading. At
an arbitrary point along a magnetic field line, define
Cartesian coordinates (x0, y0) in a plane perpendicular
to that line. Magnetic field lines are the solutions to
d~x/dτ = ~B(~x). The trajectory of a field line that passes
through the plane at (x0, y0) is ~x(x0, y0, τ), where τ = 0
on the perpendicular plane. A trajectory started at
|x0| → 0 and y0 = 0 is separated from the trajectory
that passes through x0 = 0, y0 = 0 by ~δx = (∂~x/∂x0)x0.
Initial conditions do not change along a trajectory, so
(∂~x/∂τ)x0y0 = ~B(~x), and

∂

∂τ

(
∂~x

∂x0

)
= B
↔
·
(
∂~x

∂x0

)
, (4)

where B
↔
· (∂~x/∂x0) ≡ (∂~x/∂x0) · ~∇ ~B. In Cartesian co-

ordinates Bxy = ∂Bx/∂y, etc. The derivatives of the
magnetic field are to be evaluated along the trajectory of
the field line that passes through x0 = 0, y0 = 0, so B

↔
is

a function of τ alone. The magnitude of the separation
~δx is determined by the evolution of (∂~x/∂x0)2, which is
given by

∂

∂τ

(
∂~x

∂x0

)2

=
∂~x

∂x0
·
(
B
↔† + B

↔)
· ∂~x
∂x0

, (5)

where B†ij ≡ Bji. Equation (5) has the solution(
∂~x

∂x0

)2

= e2σx(τ), where σx(τ) ≡
∫ τ

0

êx ·B
↔
· êxdτ ′, (6)

êx(τ) ≡ (∂~x/∂x0)/|∂~x/∂x0| is a unit vector, and
|∂~x/∂x0| = 1 on the τ = 0 plane. The absolute
value of the function σx tends to become large when
the distance along the arbitrary field line, ` =

∫
Bdτ ,

is large. If σx is large and negative, the separation |~δx|
becomes exponentially small, but a field line started at
x0 = 0 and |y0| → 0 must then have an exponentially
large separation ~δy = (∂~x/∂y0)y0. To show this, note
that the Jacobian, J , of (x0, y0, τ) coordinates must
be constant along the field line trajectories. The mag-
netic flux

∫
( ~B · ~∇τ)J dx0dy0 must be independent of τ

since ~∇ · ~B = 0. The orthogonality condition of gen-
eral coordinates says ~∇τ · ∂~x/∂τ = 1, which implies
~B · ~∇τ = 1. In the limit as |x0| → 0 and |y0| → 0,
the flux is just J x0y0, which implies J is a constant J0

along the field line. The Jacobian J ≡ {(∂~x/∂x0) ×
(∂~x/∂y0)} · (∂~x/∂τ) ≤ |∂~x/∂x0||∂~x/∂y0||∂~x/∂τ |. Now
|∂~x/∂τ | = B, so the inequality |∂~x/∂x0||∂~x/∂y0|B ≥
J0 must hold. Since |∂~x/∂x0| = exp(σx), one finds
|∂~x/∂y0| ≥ (J0/B)e−σx(τ).

B. Field line velocity

If a well behaved ~u(~x, t) of Equation (1) exists in a
bounded region of space, then magnetic field lines pre-
serve their identity if they are assumed to move with the
velocity ~u.

The concept of a field line velocity without reference
to the medium in which it is embedded has been subject
to criticism because of non-uniqueness, most notably by
William Newcomb [12]. However, the important point is
whether a velocity ~u of the magnetic file lines exists and
not whether more than one mathematically valid expres-
sion for ~u can be found.

The non-uniqueness in the magnetic field line velocity
~u comes from the arbitrariness in the value of potential
Φ0 in the ` = 0 surface when dΦ/d` = −b̂· ~E is integrated
to obtain Φ through out a bounded region of space. An
arbitrary velocity ~u0 = ( ~B × ~∇Φ0)/B2 can be added to
the field line motion driven by the electric field. Since
magnetic field lines are the trajectories of a Hamiltonian
systems, the freedom in ~u can also be taken to be the
freedom of canonical transformations as shown below.

1. Field line velocity and the Clebsch representation

The interpretation of ~u as the velocity of the magnetic
field lines can be obtained from the Clebsch representa-
tion

~B = ~∇ψ × ~∇ϑ, (7)

which holds locally for an arbitrary divergence-free field
without nulls. The two functions ψ(~x, t), which has units
of magnetic flux, and ϑ(~x, t), which is dimensionless, are
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known as Clebsch potentials to physicists and Euler po-
tentials to mathematicians [13]. Neither ψ nor ϑ change
along a magnetic field line, ~B · ~∇ψ = 0 and ~B · ~∇ϑ = 0,
so the locations of the magnetic field lines at time t are
given by ~x(ψ, ϑ, `, t), where ` can be interpreted as the
distance along a magnetic field line. That is,

∂~x(ψ, ϑ, `, t)
∂`

=
~B

B
, (8)

and the velocity of a magnetic field line through space is

~uf ≡
∂~x(ψ, ϑ, `, t)

∂t
, (9)

which is the velocity of a (ψ, ϑ, `) point through space.
The mathematics of general coordinates implies that

∂ ~B

∂t
= ~∇× (~uf × ~B). (10)

Faraday’s law then gives ~E + ~uf × ~B = −~∇Φ, which
has the same form as Equation (1), when the field line
velocity ~uf and ~u are identified. The derivation Equation
(10), which is involved and not required to understand
the remainder of the paper, is given below.

Equation (10) has a remarkable corollary. If a Clebsch
representation exists, ~B(~x, t) = ~∇ψ × ~∇ϑ with a well-
defined ψ(~x, t) and ϑ(~x, t), then the evolution of the mag-
netic field appears ideal.

Magnetic nulls are important, for Graham and Henyey
have shown [15] that the Clebsch representation, Equa-
tion (7), does not generically exist near a null. The
word generic is important, for otherwise a counter ex-
ample can be given. The generic curl-free magnetic field
near a point null is ~B = axx̂ + byŷ − (a + b)zẑ, where
a and b are constants. If a and b are equal, then the
field has a Clebsch representation, ψ = a(x2 + y2)z and
ϑ = arctan(x/y). Even in first order in ε ≡ (a− b)/a, the
required change to the Clebsch potentials has singulari-
ties, δψ = εa(x2 − y2)z ln z and δϑ = ε xy

x2+y2 ln z, which
is consistent with the failure of a Clebsch representation
to exist near a generic null.

The relation between the freedom in ~u and the freedom
of canonical transformations to the Clebsch representa-
tion, ~B(~x) = ~∇ψ × ~∇ϑ, can be derived in a few lines.
Given an arbitrary function S(Ψ, ϑ), where ψ = ∂S/∂ϑ
and Θ = ∂S/∂Ψ, the magnetic field also has the repre-
sentation ~B(~x) = ~∇Ψ × ~∇Θ. This result is proven by
substituting ψ = ∂S/∂Ψ into ~B = ~∇ × (ψ~∇ϑ), which
gives ~B = ~∇× {~∇S − (∂S/∂Ψ)~∇Ψ}.

The derivation of Equation (10) will be given in this
paragraph but can be skipped. Let (ξ1, ξ2, ξ3) denote
(ψ, ϑ, `), then

0 =
(
∂ξi

∂t

)
ξi

=
∂ξi

∂~x
·
(
∂~x

∂t

)
ξi

+
(
∂ξi

∂t

)
~x

. (11)

The implication is that ∂ψ/∂t = −~uf · ~∇ψ, ∂ϑ/∂t =
−~uf · ~∇ϑ, and ∂`/∂t = −~uf · ~∇`. The orthogonality

relations of general coordinates, which are derived in the
appendix of [14], then imply

~uf = −
(
∂ψ

∂t

)
~x

∂~x

∂ψ
−
(
∂ϑ

∂t

)
~x

∂~x

∂ϑ
−
(
∂`

∂t

)
~x

∂~x

∂`
. (12)

Using the dual relations of general coordinates, which
are derived in the appendix of [14], Equation (7) can be
rewritten as ~B = (∂~x/∂`)/J and

~uf × ~B =
(
∂ψ

∂t

)
~x

~∇ϑ−
(
∂ϑ

∂t

)
~x

~∇ψ, (13)

where J is the Jacobian of (ψ, ϑ, `) coordinates. The
time derivative of ~B = ~∇ψ×~∇ϑ is ∂ ~B/∂t = ~∇(∂ψ/∂t)~x×
~∇ϑ+ ~∇ψ × ~∇(∂ϑ/∂t)~x, so

∂ ~B

∂t
= ~∇×

(
∂ψ

∂t
~∇ϑ− ∂ϑ

∂t
~∇ψ
)

= ~∇× (~uf × ~B) (14)

using Equation (13).

C. Magnetic nulls

Magnetic nulls have a special importance to both the
existence of the Clebsch representation, Section II B, and
the representation of the electric field given in Equation
(1). A generic magnetic field can only have nulls at iso-
lated points. To prove this, it will be shown that an arbi-
trarily small magnetic perturbation δ ~B can (1) eliminate
all nulls if the unperturbed field were zero on a surface as
in a Harris sheet, (2) either eliminate all nulls or convert
them into isolated nulls if the unperturbed field were zero
on a curve, but (3) only move the location of a null at a
point by a distance proportional to the perturbation, not
eliminate the null.

The time evolution of a magnetic field can be viewed as
the response of a magnetic field to a series perturbations.
This will be shown to imply that nulls can move and that
a single null cannot appear in a field that had no nulls.
Nevertheless, space-time points can exist in which two
nulls separate in a region in which no nulls previously
existed, and an example will be given. An example will
also be given to show that an evolving magnetic field
with a point null can force ~∇⊥Φ to have a logarithmic
singularity.

1. Only point nulls generic

In Cartesian coordinates, the nulls of a magnetic field
are given by the solving three simultaneous equations for
three unknowns:

Bx(x, y, z) = 0; By(x, y, z) = 0; Bz(x, y, z) = 0. (15)

The generic existence of only isolated magnetic nulls is
a statement about the nature of solutions of three equa-
tions for three unknowns.
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If a magnetic field is zero at a point, the null point is
moved by a small perturbation but not eliminated. Near
a point null at ~x = ~x0, the magnetic field has the form

~B = B
↔
· (~x− ~x0). (16)

In the presence of a perturbation, ~B = δB+B
↔
· (~x− ~x0).

The perturbed field has a zero at ~x = ~x0−B
↔−1 ·δ ~B, which

is nearby unless the inverse matrix B
↔−1 does not exist.

Since B
↔

is a square matrix, a nearby null of the magnetic
field exists for a sufficiently small perturbation unless the
determinant of the matrix B

↔
vanishes. The vanishing of

the determinant would be a fourth equation in addition to
the three of Equation (15). Four simultaneous equations
for three unknowns is said to be overdetermined, and
generically overdetermined systems of equations have no
solution.

If a magnetic field is zero along a curve, then a mag-
netic perturbation that is non-zero along that curve will
either remove the field null altogether or turn it into point
nulls. In Cartesian coordinates, a null along the x axis,
which means at y = 0, z = 0, implies that near the x axis
a divergence-free field obeys

Bx = yβxy(x) + zβxz(x) (17)

By = yβyy(x)− y2

2
dβxy
dx

+ zβyz(x) (18)

Bz = yβzy(x) + zβzz(x)− z2

2
dβxz
dx

. (19)

In the presence of a perturbation, the null is moved to
y = y0(x) and z = z0(x), which are given by the solution
to the equations δBy + yβyy − y2β′xy/2 + zβyz = 0 and
δBz + yβzy + zβzz − z2β′xz/2 = 0, where primes denote x
differentiation. The magnetic field then has a null only if
Bx(x) = δBx(x, y0, z0)+y0βxy(x)+z0βxz(x) = 0. Unless
at least one quantity, δBx, y0, βxy, z0, and βxz, is x
dependent, the magnetic field has no nulls except for a
special perturbation direction. If at least one quantity
has x dependence, then Bx(x) can pass through zero,
which reduces the line null to one or more point nulls.
The distance between the point nulls is proportional to
the perturbation.

If a magnetic field has a null that extends over a sur-
face of non-zero area, as in a Harris sheet, then a mag-
netic perturbation δ ~B generically removes the magnetic
field null. For a Harris sheet, ~B = B0 tanh(x/L0)ẑ, the
addition of a perturbation that has x̂ or ŷ components
completely removes the null. A magnetic field can have
a more general null over the x = 0 plane than the Harris
sheet. Near that plane the y and z components of the
unperturbed magnetic field have the forms By = xB′y
and Bz = xB′z. Since ~∇· ~B = 0, the unperturbed x com-
ponent has the form Bx = x2B′′x/2. If a perturbation is
applied that has an x component, δBx, of the same sign
as B′′x , then no solution for a null exists in the range of the
validity of the approximation Bx = x2B′′x/2. Even if δBx

is applied with the opposite sign to B′′x , then the null in
Bx moves to x± = ±

√
2|δBx/B′′x | so the By and Bz com-

ponents become non-zero and the null disappears unless
both x±B

′
y + δBy and x±B

′
z + δBz vanish at a common

point, which is not a generic condition. The minimum
of the field strength in the vicinity of null surface of the
unperturbed field in the presence of the perturbation is
| ~B| ≈ |δ ~B|.

The proof that that line and surface nulls are not
generic can be extended to arbitrary curves and surfaces
using the methods of general coordinates, appendix of
[14].

2. Evolution of nulls

The evolution of magnetic nulls is closely related to
the response of a null to a perturbation for ~B(~x, t+δt) =
~B(~x, t) + δ ~B, where the perturbation is δ ~B ≡ (∂ ~B/∂t)δt.
The implication is that a null can neither be created nor
destroyed unless B

↔
of Equation (16) has a vanishing de-

terminant at the location of a null. The vanishing of the
determinant at a null is four conditions on (Bx, By, Bz)
as functions of (x, y, z, t). A set of four simultaneous
equations with four unknowns is not an overdetermined
system, so one expects the four conditions to be satisfied
at isolated space-time points.

The formation of a pair of nulls at space-time points
at which four constraints are obeyed, which are ~B = 0
and the determinant of B

↔
equals zero, is illustrated by

the curl-free magnetic field Bx = ax, By = (b − cz)y,
Bz = −(a+b)z−c(y2−z2)/2, where a and c are positive
constants, but b(t) is a function of time. The matrix

B
↔

=

 a 0 0
0 b− cz −cy
0 −cy −(a+ b− cz)

 . (20)

A magnetic field null always exists at x = 0, y = 0, z = 0.
A more interesting pair of nulls occurs at x = 0, y2 =
−(b/c2)(b+ 2a), z = b/c when y2 > 0. The determinant
at this pair of nulls is ab(b+ 2a). If b(t) = ḃt− 2a, then
for t < 0 the only null is at x = 0, y = 0, z = 0. However,
for t small but positive an additional pair of nulls exists

at x = 0, y = ±
√

(2a/c2)ḃt, and z = −2a/c.

3. Non-ideal behavior due to a point null

A point null of the magnetic field can produce a log-
arithmic singularity in the field line velocity ~u, which
violates the validity of an ideal evolution, Equation (1).

A logarithmic singularity in ~u is illustrated by the evo-
lution of curl-free magnetic field ~B(~x, t) = axx̂ + byŷ −
(a+ b)zẑ, where ∂ ~B/∂t = ȧ(xx̂− zẑ) and ȧ ≡ da/dt. An
electric field that gives this evolution is ~E = ȧxzŷ. The
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potential is given by the equation

ax
∂Φ
∂x

+ by
∂Φ
∂y
− (a+ b)z

∂Φ
∂z

= −ȧbxyz. (21)

A solution is Φ = −(d ln a/dt)bxyz lnx. Solutions that
are proportional to xyz ln y and xyz ln z also exist. The
gradient of the potential that goes as xyz lnx is

~∇Φ = −da
dt

b

a
{(yz + yz lnx)x̂+ (xz lnx)ŷ + (xy lnx)ẑ} .

(22)
Although ~E × ~B/B2 is well behaved in the vicinity of
the null, ~∇Φ is not, and the velocity ~u has a logarithmic
singularity as the x axis is approached. Nevertheless, the
parallel electric field, which drives the singularity in ~u, is
not only non-singular but actually zero along the x axis,

~E · ~B
B

=
da

dt
b

xyz√
a2x2 + b2y2 + (a+ b)2z2

. (23)

III. CONTROL OF EXTERNAL MAGNETIC
PERTURBATIONS TO TOKAMAKS

The constraints of mathematics and Maxwell’s equa-
tions also have important implications for the control of
magnetic field errors in tokamaks.

Tokamak plasmas can be thrown into a disruptive state
by non-axisymmetric magnetic perturbations [16] as
small as δB/B ∼ 10−4. The maintenance of sufficiently
tight construction tolerances to eliminate such pertur-
bations is prohibitively expensive in cost and schedule.
Correction coils are used to control the external mag-
netic field errors, but the results may seem paradoxical
[17]:

1. Successful error field control does not mean error
field reduction.

The error field control system on DIII-D increases
the toroidal asymmetry of the magnetic field when
it optimally mitigates the effect of the error field.

2. The optimal location for error field control coils
may be rotated from the poloidal location of the
source of the error.

On NSTX an inboard field error is controlled by
an outboard magnetic field an order of magnitude
smaller.

3. The drive for islands at the q = 2 surface has little
relation to the resonant m = 2, n = 1 part of the
external perturbation.

The Fourier component of the external magnetic
field with the largest drive for islands at the q = 2
surface is m ∼ 10, n = 1.

Mathematics and Maxwell’s equations provide clear
guidance on the design of an error field control system

though this guidance is just being understood and has
not yet been fully implemented. Studies have not been
made of the engineering tradeoff between a more com-
plete error field control system and lowered construction
tolerances.

Traditional analyses have studied the effect on the
plasma of various Monte Carlo realizations of coil dis-
placements [18], which presuppose that the plasma effect
of an arbitrary external perturbation can be assessed. If
true, the required construction accuracy and the effec-
tiveness of the control system can be better determined
by finding the external field distributions of high plasma
sensitivity. If false, error field analyses should be re-
stricted to what is known, which is the form and the
critical amplitude of the error with the highest plasma
sensitivity, but then the construction tolerances are very
tight.

A. Representation of magnetic fields using fluxes

Magnetic fluxes on an arbitrary closed surface, called
a control surface, provide an efficient and intuitive de-
scription of magnetic fields. Given a control surface, the
magnetic field ~B throughout space can be uniquely sep-
arated into two parts: the field ~Bi produced by currents
within the region enclosed by the control surface and the
field ~Bx produced by currents external to the control sur-
face, ~B = ~Bi + ~Bx.

Within the region enclosed by a control surface the
external field satisfies ~Bx = ~∇φ with ∇2φ = 0 and is
completely determined by either its normal component,
~Bx · n̂ on that surface.

Magnetic fluxes are defined on a control surface us-
ing a set of orthonormal functions fi(θ, ϕ), such as the
Fourier functions. A set of functions is orthonormal if∮
fifjwda = δij when integrated over the control sur-

face, where w > 0 is a weight function with
∮
wda = 1.

The magnetic fluxes that define the external field
within the region enclosed by a control surface are

Φ(x)
i =

∮
fi ~Bx · n̂da, so ~Bx · n̂ = w

∑
i

Φ(x)
i fi. (24)

In the region outside of the control surface, the mag-
netic field ~Bi, which is due to currents within the region
enclosed by the control surface, can also be represented
by a magnetic flux on the surface.

B. Plasma sensitivity

For error fields the important issue is the sensitivity of
the plasma to external perturbations. The distributions
of external magnetic field can be ordered by the plasma
sensitivity. The first is that external magnetic perturba-
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tion
(
δ ~B · n̂

)
i

that with the smallest flux,

σi ≡

√∮ (
δ ~B · n̂

)2

i

da

w
, (25)

has a significant effect on the plasma. The second is
the orthogonal distribution which has the second small-
est flux σi for significance, and so forth. Two external
magnetic distributions are orthogonal if∮ (

δ ~B · n̂
)
i

(
δ ~B · n̂

)
j

da

w
= 0. (26)

The sensitive distributions define an orthonormal set of
expansion functions, where

(
δ ~B · n̂

)
i
∝ w(θ)fi(θ, ϕ),

where the weight function w > 0 satisfies
∮
wda = 1.

Using this set of orthonormal functions the plasma sen-
sitivity is given by a diagonal matrix Sij ≡ δij/σ

2
i . The

quantity ~Φ†x · S
↔
· ~Φx is the dimensionless measure of the

strength of the external perturbation compared to the
level at which significant plasma effects occur.

The external perturbation to which the plasma is most
sensitive drives the least stable kink mode of ideal MHD,
which at a sufficiently high plasma pressure becomes the
resistive wall mode [17]. However, this perturbation was
not the basis of the error field control system on ITER,
[16]. The sensitivity to the least stable mode is not sur-
prising, since a system at marginal stability can be dis-
placed an arbitrarily large amount by an infinitesimal
force. The ~Bx · n̂ of this perturbation has very narrow
lobes of width ∆ near the outboard midplane, Figure (2).
For ITER, the expected width of the lobes [19] compared
to the minor radius is 1/2 >∼ ∆/a >∼ 1/3, and perturba-
tions with δB/B ∼ 10−4 are expected to cause disrup-
tions, so error field control is needed. Studies have been
carried out for ITER on the effect of external magnetic
field distribution on the drive for islands at a number of
the rational surfaces [19]. These studies define external
magnetic perturbations of secondary plasma sensitivity,
but whether these are the external distributions of the
greatest sensitivity is not clear.

C. Magnetic field errors

The magnetic field errors produced by dislocations in
positions of the main equilibrium coils can be represented
by a flux vector δ~Φm, which is defined on a control surface
just on the plasma side of the coils, which is called the coil
surface. The external normal field on the unperturbed
plasma boundary is

~Φx = T
↔
· δ~Φm +

↔
M · ~J, (27)

where T
↔

is called a transfer matrix, which relates fluxes
of external magnetic field on the plasma boudary to those
on the coil surface, δ~Φm, and

↔
M is a mutual inductance
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FIG. 2: The n = 1 external magnetic perturbation, ~Bx · n̂, is
illustrated to which ITER plasmas are most sensitive in three
scenarios [19]. The back contours give the plasma bound-
aries. The deviations of the colored from the black contours
are proportional ~Bx · n̂. The lobe of ~Bx · n̂ on the outboard
side of the plasma has a width ∆, where 1/2 >∼ ∆/a >∼ 1/3.
This lobe is too narrow for distant coils to efficiently cancel
this perturbation. Even a coil that is sufficiently small to be
represented by a dipole can effective push back against this
lobe only if its distance from the plasma is ∼ a/8, where a is
the plasma half-width or minor radius.

between the fluxes on the plasma surface and the currents
~J in error field control coils. Neil Pomphrey has written
a code that can determine T

↔
, and the matrix

↔
M can be

determined with standard Biot-Savart codes.
The error field control coils can null some of the ex-

ternal fluxes on the plasma surface. The practical issue
is how well can this be done. Naively it would appear
that currents in the control coils ~J = −

↔
M−1 · T

↔
· δ~Φm

would null the entire external perturbation ~Φx = 0. The
subtlety, which makes this impossible, is contained in the
matrix inverse

↔
M−1.

The inverse of a matrix is best interpreted using Sin-
gular Value Decomposition (SVD). SVD represents any
matrix Mij in the form

↔
M = U

↔
m ·↔m·

↔
V †m, where ↔m is diag-

onal, with real diagonal components, or singular values,
mi ≥ 0 arranged with the largest first. The matrices U

↔
m

and
↔
V m are orthogonal, which means U

↔†
m ·U
↔
m = 1

↔
. If ~f

is a matrix vector with the expansion functions fi(θ, ϕ)
as its elements and if ~F ≡ U

↔† · ~f , then
∮
Fi ~Bx ·n̂da are the

external fluxes on the plasma in the order of ease with
which they can be driven by the control coils.

It is easily checked that the inverse of
↔
M is

↔
M−1 =

↔
V m · ↔m−1 · U

↔†
m, where ↔m−1 is diagonal with elements

1/mi. The singular values can span a large range of val-
ues or even be zero, so the 1/mi can become large, or even
infinite. The pseudoinverse,

↔
M−1

k is the matrix in which
only the k largest singular values are retained in forming
the inverse with the other diagonal elements chosen to
be zero rather that 1/mi.
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As discussed in Section III B the plasma sensitivity is
measured by ~Φ†x · S

↔
· ~Φx. The currents in the control

coils ~J of Equation (27) should be chosen to minimize
~Φ†x ·S

↔
· ~Φx, which gives

↔
M† ·S

↔
·
↔
M · ~J = −

↔
M† ·S

↔
·T
↔
· δ~Φm.

The optimal control currents are then ~J = −C
↔
k · δ~Φm,

where

C
↔
k ≡

(↔
M† · S

↔
·
↔
M
)−1

k
·
↔
M† · S

↔
· T
↔
, (28)

and the subscript k means k singular values are retained
in the pseudoinverse of

↔
M† · S

↔
·
↔
M .

Mathematics says the maximum number of non-zero
singular values of the matrix

↔
M† · S

↔
·
↔
M is the number

of control coils, so k has to be less than or equal to that
number. As k is increased two problems can occur: (1)
The magnitude of the currents in the control coils can
reach an unacceptable value given a set of expected field
errors. (2) The matrix C

↔
k, which generally has k non-zero

singular values Ci, will have too large a ratio between its
largest and smallest non-zero singular values. This ratio,
called the condition number, defines the accuracy with
which the currents in the control coils must be specified
to prevent a field error associated with a large Ci from
preventing control of a field error associated with a small
Ci. These two problems determine the optimal k, which is
the effective number of control coils, and help determine
the optimal locations for the error field control coils.

The effective transfer matrix, ~Φx =
↔
T k ·δ~Φm, is defined

assuming the control currents have their optimal values,
↔
T k ≡ T

↔
−
↔
M ·C
↔
k. With optimal error field correction, the

remaining effect on the plasma ~Φ†x·S
↔
·~Φx = δ~Φ†m·

↔
Rk ·δ~Φm,

where
↔
Rk ≡

↔
T †k · S

↔
·
↔
T k. (29)

Knowledge of
↔
Rk allows one to determine what are the

worst error fields, study the adequacy of a given set of
control coils, and determine how the engineering trade-off
should be made between extra control coils and reduced
construction tolerances. Since

↔
Rk is Hermitian it can

be diagonalized with real positive eigenvalues Ri. For
a given set of control coils, the worst machine error is
associated with the largest Ri. The control coils should
be optimized to make this Ri as small as possible.

The ith singular value of the matrix T
↔

becomes ex-
ponentially small as i is increased due to the decay of
curl-free magnetic fields through space. A curl-free mag-
netic field decays through space as exp(−Kx), where
K2 ∼ (m/a)2 + (n/R)2, the poloidal and toroidal mode
numbers are m and n, and the major and minor radius
are R and a. When there are a large number of control
coils, the singular values of

↔
M also decrease exponentially

though at lower rate if the control coils are closer to the
plasma.

If the control coils are closer to the plasma than the
source of the errors, an arbitrarily large number of error

field distributions can in principle be controlled if there
are more control coils than error field distributions. How-
ever, if the source of the errors is closer to the plasma
than the control coils, the difficulty of controlling er-
ror field distributions increases exponentially with their
number. Using control coils to drive particular magnetic
fields on the plasma boundary ~Bx · n̂ for beneficial ef-
fects, as in the control of Edge Localized Modes (ELM’s)
[20], while not driving perturbations that degrade the
plasma performance, becomes exponentially more diffi-
cult the further back the coils. The exponential drop
in the singular values of

↔
M implies the control currents

must be both exponentially larger and specified with ex-
ponentially greater accuracy the further back the coils.

IV. LIMITS FROM KINETIC THEORY

Kinetic theory is the basis of most plasma models,
but definite results can be both complicated and involve
questionable approximations. However, certain limits on
plasma behavior can be simply obtained.

One simple but important limit, is the minimum power
required to drive a current [21]. The current in steady-
state current drive is most efficiently driven by waves in-
teracting with mildly relativistic electrons of kinetic en-
ergy (γ − 1)mec

2. The number of relativistic electrons
required to carry the driven current is 2πR0Id/ec, where
R0 is the major radius. These electrons slow down on
the background electrons, so a power

Pd > 2πR0(γ − 1)mec
2(Id/ec)νee(γ) (30)

is required to offset the slowing down. The electron-
electron collision frequency νee(γ) is proportional to the
background electron density ne. The quantity (γ −
1)νee(γ) has a minimum as a function of γ, which de-
fines the minimum power required to maintain a driven
current. The power per unit volume pd required to main-
tain a current is proportional to the current of density j
that is driven. The quantity Ed ≡ pd/j has units of volts
per meter. For electrons at γ ≈ 2, which is the most
efficient energy for current drive, Ed >∼ Er where

Er ≡
e ln(Λ)

4πε0(c/ωpe)2
'
(

0.087
V olts

meter

)(
n

1020 1
m3

)
, (31)

the background electron density is n, the electron plasma
frequency is ωpe ≡

√
ne2/ε0me, and the Coulomb loga-

rithm is ln(Λ) ≈ 17.
Boltzmann and Gibbs, [22] determined the kinetic ex-

pression for entropy per unit volume,

s(~x, t) = −
∫
f ln(f)d3v, (32)

and a number of important constraints can be obtained
from the rate entropy is produced by collisions,

ṡc ≡ −
∫

(1 + ln f)C(f)d3v, (33)
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which must be positive to be consistent with the second
law of thermodynamics. The rate of collisional entropy
production per unit volume is [14]

ṡc = ~Fε · ~∇
1
T
− ~Γ · ~∇µ

T
≥ 0, (34)

where ~Fε is the energy flux ∂ε/∂t + ~∇ · ~Fε with ε =∫
(mv2/2)fd3v the energy density, ~Γ the particle flux

with ∂n/∂t+ ~∇ · ~Γ = 0,

µ

T
= c0 + ln

( n

T 3/2

)
(35)

the chemical potential µ divided by the temperature, and
c0 a constant,.

Equation (34) essentially follows from the fundamen-
tal thermodynamic relation dU = TdS − pdV + µdN ,
where U is the total energy in a system, T the tem-
perature, S the entropy, p the pressure, V the volume,
µ the chemical potential and N the number of parti-
cles. In a plasma that is large compared to the Debye
length, the thermodynamic properties become indepen-
dent of the overall volume of the plasma; ε = U/V ,
s = S/V , and n = N/V are independent of the vol-
ume of the plasma. The chain rule of calculus implies
(dε − Tds − µdn)V = −(ε − Ts + p − µn)dV . Volume
independence implies both sides must be zero. That is

dε = Tds+ µdn; (36)
µ

T
=

(ε+ p)− Ts
nT

(37)

Equation (35) for µ/T is obtained from Equation (37)
using the expression for the entropy density of a local
Maxwellian given by Equation (32). Equation (36) im-
plies T∂s/∂t = ∂ε/∂t − µ∂n/∂t. Energy and particle
conservation, ∂ε/∂t+ ~∇ · ~Fε and ∂n/∂t+ ~∇ · ~Γ = 0, then
give

∂s

∂t
+ ~∇ · ~Fs = ~Fε · ~∇

1
T
− ~Γ · ~∇µ

T
(38)

The entropy flux is ~Fs = ~Fε/T − (µ/T )Γ. The rate of
entropy creation per unit volume is ~Fε · ~∇(1/T ) − ~Γ ·
~∇(µ/T ), which is ṡc in kinetic theory, Eq. (33).

Equation (34) implies the entropy production due to
collisions Ṡc(ψt) ≡

∫
ṡcd

3x in a region enclosed by a mag-
netic surface containing toroidal flux ψt obeys [23], [24]

dṠc
dψt

= −
{
Fε
T
−
(

3
2
− 1
η

)
Γ
}
d lnT
dψt

≥ 0, (39)

where η ≡ d lnT/d lnn, the flow of energy (Joules per
second) across a ψt surface is Fε ≡

∮
~Fε ·d~a, and the flow

of particles is Γ ≡
∮
~Γ · d~a.

Equation (39) gives a limit on an inward particle pinch
Γdn/dψt > 0. However, a pinch Γ that is comparable
to Fε/T should not be surprising due to thermodynamic

cross terms [24]. When η = 2/3, the particle flux Γ has no
limit from entropy production. A change at fixed entropy
is called adiabatic and obeys p ∝ nγ , where γ = 5/3, so
adiabatic changes have T ∝ nγ−1.

Equation (39) also gives a limit on the deviation of the
distribution functions from a local Maxwellian [23]. If the
distribution function is written as f = fM exp(f̂), where
fM is a local Maxwellian, then the approximate form for
the limit on the deviation is f̂2 <∼ 1/ντE , where ν is the
collision frequency and τE is the energy confinement time
of the plasma.

V. IMPLICATIONS FOR MAGNETIC FUSION

The perception of realistic scientific options guides re-
search strategy in an applied program such as the quest
for magnetic fusion energy. Specific plasma models can
be used in statements of the if-then form to define these
options. As examples, this section identifies two major
missing elements in the world magnetic fusion program.

The first example of an if-then statement providing
guidance on a missing research element comes from the
theory of plasma force balance. If ~∇p = ~j × ~B, then a
solution is specified by the shape of the plasma boundary
and the pressure and safety factor profiles [25], [14]. In
fusion plasmas, pressure and the current profile are ex-
pected to be largely self determined, so shape becomes
the primary determinant of the plasma equilibrium.

Engineering and physics must be consistent in a suc-
cessful fusion reactor. If the physics produced by a
line of experiments does not appear to give consistency,
then causality says the outcome can only be modified
by changing the input parameters. For magnetic fu-
sion systems, shape is the primary freedom to control
the plasma equilibrium, and most of that freedom is
in non-axisymmetric shaping. Non-axisymmetric shap-
ing can be applied to tokamaks if the constraint of
quasi-axisymmetry is maintained on the magnetic field
strength, B(`) = B(`+ L), where ` is the distance along
field lines and L is a field-line constant. The standard
view is that the plasma in a tokamak reactor will be in
a self-organized microturbulent state with little effective
external control. This is a high risk design choice and not
a requirement [26], [27]. Non-axisymmetric fields may be
used to: (a) form a cage around a plasma, which makes
it robust against disruptions and eliminates the need for
technically demanding feedback systems, (b) allow the
plasma edge to have a high density and a low temperature
plasma, which would greatly ease the interface between
plasma and the wall, (c) maintain the magnetic configu-
ration. The allowable ratio of the driven to the bootstrap
current in a fusion reactor is several times smaller than
that expected [28] in ITER, so the determination of the
sustainability of the magnetic configuration of an axisym-
metric tokamak must await an experiment beyond ITER.
Quasi-axisymmetry appears central to reducing the risks
and time scale of tokamak development and to its opti-
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mization as a power plant, but no program of theory and
experiments on quasi-axisymmetry is being pursued

The second, but less mathematical, example of an if-
then statement identifying a missing research element
uses a principle, which also follows from causality: a
large modification in the input parameters of an exper-
iment may change the outcome. Tokamak confinement
is largely determined by a temperature pedestal at the
plasma edge [29]. If this is true, then the properties of the
pedestal are probably affected by edge recycling, which
is exponentially dependent on wall temperature [30]. No
experimental program exists to study tokamak confine-
ment with a fusion relevant wall temperature, which ther-
modynamic efficiency and material issues imply is in the
range of about 600oC to 1000oC.

VI. DISCUSSION

This paper will have served its purpose if it motivates
a few individuals to think more broadly on the theory of
plasmas that just highly integrated computations.

Even within the area of integrated computations, a
different way of thinking has implications. Integrated
computations are circumscribed by two concepts: vali-
dation, which means consistency with experiments, and
verification, which means consistency with the equations
[31]. However, the philosopher of science, Karl Popper
(1902-1994), has noted experiments can only invalidate a
theory, which makes a validated code an oxymoron. Of
the two concepts, verification seems the more important.
When a code, consistent with a set of equations, is com-
pared to a data set: Agreement implies those equations
are adequate for that data set. Disagreement implies
equations are missing or inappropriate. Either advances
science. Only when a code is consistent with a set of

known equations should our confidence grow as it is found
consistent with a wider and wider data set.

When dealing with plasma equations, which are not
universal in application, knowning the minimum set of
equations to obtain consistency with data implies what
is not constrained. What is not constrained is avail-
able for invention. How are constraints and possibili-
ties obtained? (1) Focus on what makes a difference.
(2) Look for paradoxes. (3) Remember that science ad-
vances through the posing of questions that (a) make a
difference, (b) have not been answered, but (c) can be
answered. (4) When a critical question can not be an-
swered, ask whether anything can be said.

Whether in the laboratory or in space, mathematics
and Maxwell’s equations delineate directions for plasma
research that can outweigh decades of accepted wisdom
and thousands of hours of computer time.
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