
APC/AST 523: Numerical Algorithms for Scientific Computing

Lectures: MW 11-12:20, Fine 314.

Homepage: http://www.astro.princeton.edu/∼jstone/APC523

Professors: Jim Stone Robert Lupton
Office: 125 Peyton Hall 134 Peyton Hall
e-mail: jstone@astro.princeton.edu rhl@astro.princeton.edu

Text: None required, but several recommended, including:
Numerical Recipes, by Press, Flannery, Teukolsky, & Vetterling
Introduction to Numerical Analysis, by Neumaier
A First Course in the Numerical Analysis of Differential Equations, by Iserles

Introduction:

The ever-increasing performance of computer hardware is revolutionizing research in the
sciences and engineering by enabling numerical solutions to complex problems. However, this
revolution is not only being driven by advances in hardware, but also by the development
of more accurate, efficient, and reliable algorithms. APC/AST 523 (Numerical Analysis in
Scientific Computing) will give students a broad introduction into the basic principles of
numerical analysis that are the foundation for modern scientific computing.

Computational science is inherently multidisciplinary. In this course fundamental topics in
computer science, mathematics, and numerical analysis, as well as the application domains
themselves will be covered. While a solid grounding in the fundamental mathematics under-
lying algorithms is crucial (and will be covered), this course is meant to be a practical,
hands-on introduction to scientific computation.

Note that the primary focus of this course is algorithms. While we will discuss some aspects
of software engineering in the first two weeks, the bulk of the course covers topics in numerical
analysis. Topics in software engineering are covered in APC524 (Software Engineering for
Scientific Computing), which is taught every fall in alternate succession to this course.

Prerequisites

The level of the course is aimed at beginning graduate (or advanced undergraduate) stu-
dents in the physical sciences, engineering, and mathematical sciences. A solid background
in mathematics is required, including linear algebra, calculus, and preferably differential
equations (Princeton courses which cover this material are MATH 240, MATH 241, and
MATH 246). Taking this course at the advanced undergraduate level will require permission
of the instructor. No astronomy background is required; the physical systems which motivate
the computational methods will be discussed in the lectures.

No formal coursework in computer science is required, however previous programming experi-
ence is a must. Students should know at least one compiled computer language, preferably



either C/C++ or FORTRAN. Scripting languages, such as Python are also suitable for
much of the course work. However, in the term projects where performance may be an issue,
students must be experienced enough with Python to be able to bind modules written in
compiled languages (using, e.g., Swig) when necessary. The advantages and disadvantages of
different languages will be discussed in the course (including using packages such as MatLab
for scientific computation!).

A working knowledge of the UNIX/LINUX operating system is required. Students who have
never used UNIX/LINUX, but are “computer literate”, i.e. who have considerable experience
in programming computers using other operating systems, should not have trouble learning
UNIX/LINUX as part of this course. However, students who have never programmed before

will probably have difficulty with this course; such students must speak to the instructor before

taking this course for credit.

Students will have access to a variety of HPC systems managed by the Princeton Institute for
Computational Science and Engineering (PICSciE) including both LINUX and GPU clusters.
No previous experience on parallel systems is required. For more information about research
computing at Princeton in general, see http://www.princeton.edu/researchcomputing

Topics

The course will begin with a brief discussion of selected topics from computer science, such
as basic computer architecture, structured programming, performance optimization, and
parallel programming for both distributed and shared memory systems (using MPI and
OpenMP respectively). This material will be presented in more of a tutorial style, motivated
by the philosophy that it is impossible to understand how to implement algorithms which
are efficient on modern processors without some knowledge of how such processors work.
Discussion will be brief since these topics are covered in more detail in APC524 (Software
Engineering for Scientific Computing).

The course will then cover basic topics in numerical analysis, such as arithmetic with finite-
precision numbers, truncation error, and convergence and stability of algorithms.

The bulk of the course will focus on an overview of a wide range of numerical methods
to solve scientific problems. This includes numerical methods for the solution of systems of
linear and nonlinear equations, and ordinary and partial differential equations. Since modern
scientific instruments (such as astronomical detectors) generate terabytes of data, numerical
methods for the analysis and modeling of large data sets will also be discussed. In each case,
examples (usually drawn from astrophysics) will be used to motivate the methods.

Tentative Schedule

• Week 1: Introduction; history and modern examples. Programming languages. Struc-
tured programming, principles of software engineering. Performance profiling and op-
timization.

• Week 2: Basics of computer architecture, including parallel processors. Programming
on parallel systems: OpenMP and MPI. Introduction to Numerical Analysis: stability,
convergence, consistency. Arithmetic with finite precision numbers.



• Week 3: Numerical linear algebra. LAPACK, NAGlib, etc. Sparse matrix solvers.

• Week 4: ODEs I: initial value problems. RK methods, adaptive stepsizes, higher-order
methods.

• Week 5: Analysis of large data sets. Minimization. FFTs.

• Week 6: ODEs II: boundary value problems. Shooting methods, relaxation methods.
Application: stellar structure.

• Week 7: Example applications from guest lecturers.

• Week 8: N-body methods: Stability and accuracy of time-integration methods, sym-
plectic methods. Force evaluation for large-N . GRAPE systems. Barnes-Hut and KD
tree algorithms.

• Week 9: PDEs I: solving elliptic equations. ADI, multigrid. Application: solving
Poisson equation for self-gravity.

• Week 10: PDEs II: solving parabolic equations. Stability and implicit methods.

• Week 11: PDEs III: solving hyperbolic equations. Stability of FTCS. Lax-Wendroff.
Systems of hyperbolic conservation laws. Euler equations. Smooth particle hydrody-
namics (SPH).

• Week 12: PDEs III: hyperbolic equations (cont.). Shock capturing. Godunov schemes.
Application: gas dynamics in one-dimension.

Grading

There will be no exams in this course. The grade will be determined by a set of homework
assignments, each of which will require some programming. Most of the course credit will
associated with a term project, which will also involve substantial programming, and will
substitute for the final exam. A list of suitable projects will be distributed later in the
semester, however students can also suggest their own projects related to their own research
(for example, parallelizing and optimizing an application code). Each student’s project must
be approved by the instructors.

Students are discouraged (but not forbidden!) from auditing this course: the subject matter
can really only be learned by writing and running code.


