
ACCRETION DISKS

A review article on accretion disks was published by J. E. Pringle (1981, Annual Review of
Astronomy and Astrophysics, 19 137). The classical papers on the structure of thin accretion disks
are: J. E. Pringle and M. J. Rees (1972, Astronomy and Astrophysics, 21 , 1), N. I. Shakura and R.
A. Sunyayev (1973, Astronomy and Astrophysics, 24 , 337), and D. Lynden-Bell and J. E. Pringle
(1974, Monthly Notices of the Royal Astronomical Society, 168 , 603).

Consider cylindrical coordinates, (r, z), with r being a distance from the rotation axis, and z
being a distance from the equatorial plane. Let there be a massive object at the center of the
coordinate system, and let its gravitational field be spherically symmetric. We shall require the
gravitational potential Φ to be a function of the distance from the center of the coordinate system,
R = (r2 + z2)1/2 :

Φ (R) < 0,
dΦ

dR
> 0, Φ (R)R−→∞

−→ 0. (d1.1)

Later on we shall consider in some detail two cases, a Newtonian potential Φ(R) = −GM/R, and
pseudo-Newtonian potential Φ(R) = −GM/(R − Rg), where gravitational radius Rg ≡ 2GM/c2.
From now on we shall consider motion in the z = 0 plane, so we shall have r = R.

A test particle on a circular orbit in a plane z = 0 has a rotational velocity v that must satisfy
a relation

v2

r
=

dΦ

dr
, z = 0, (d1.2)

where dΦ/dr is gravitational acceleration. Therefore, rotational velocity is

v =

(

r
dΦ

dr

)1/2

. (d1.3)

The angular velocity is given as

Ω =
v

r
=

(

1

r

dΦ

dr

)1/2

, (d1.4)

rotational period is

Prot =
2π

Ω
, (d1.5)

angular momentum per unit mass is

j = vr =

(

r3 dΦ

dr

)1/2

, (d1.6)

and total mechanical energy per unit mass is

e = Φ +
v2

2
. (d1.7)

Consider now a very thin gaseous disk, with a half – thickness z0 ≪ r. Within a thin disk
rotational velocity is a function of r only, and it is practically constant on cylinders with constant
radius r. The surface mass density is defined as
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Σ =

z0
∫

−z0

ρdz. (d1.8)

If there is some dynamical viscosity η, and there is a shear flow, i.e. dΩ/dr 6= 0, then there is a
torque (a couple) acting between two adjacent cylinders

g = r × 2πr ×

z0
∫

−z0

(

−
dΩ

dr
r

)

ηdz = −2πr3 dΩ

dr

z0
∫

−z0

ηdz, (d1.9)

and there is also thermal energy released as a result of viscous interaction between the cylinders

ǫ =

(

r
dΩ

dr

)2

η
[

erg s−1 cm−3
]

. (d1.10)

It is very important that the same viscosity that is responsible for the torque acting between two
cylinders is also responsible for heat generation. The torque and heat generation are there because
there is viscosity and because there is a shear flow, i.e. the adjacent cylinders rotate with respect to
each other,

We shell consider now a flow of mass, momentum and energy between cylinders located at a radii
r and r + dr. The rate of mass flow is called the rate of accretion, and it may be expressed as

Ṁ = 2πr

z0
∫

−z0

ρvrdr = 2πrvrΣ, (d1.11)

where |vr/v| ≪ 1 is a very small radial velocity. The rate of angular momentum flow J̇ is given as

J̇ = Ṁj + g. (d1.12)

The term Ṁj gives angular momentum carried with mass flow, while g gives angular momentum
transmitted by viscous forces. The rate at which energy flows across a cylinder with a radius r is
given as

Ė = Ṁe + gΩ, (d1.13)

where the first term gives the energy flowing with matter, while the second term gives the energy
transmitted by viscous forces. In addition, viscosity dissipates some energy into heat. As the disk
is very thin, we shall assume that this energy is radiated locally from the disk surface at a rate
F [ erg cm−2 s −1]. As the disk has two surfaces, the amount of energy (luminosity) radiated away
between radii r and r + dr is given as

dLd

dr
= 2πr × 2F = 4πrF. (d1.14)

The amount of mass, angular momentum, and energy contained between radii r and r + dr is
2πrΣ, 2πrΣj, and 2πrΣe, respectively. The equations of mass, angular momentum and energy
balance may be written as

∂

∂t
(2πrΣ) +

∂Ṁ

∂r
= 0, (d1.15)

∂

∂t
(2πrΣj) +

∂J̇

∂r
= 0, (d1.16)

∂

∂t
(2πrΣe) +

∂Ė

∂r
+ 4πrF = 0. (d1.17)

All three equations have very similar form, except there is a term with energy carried with radiation
in the last equation, and there is no equivalent term in the first two equations. This is so, because in
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our approximation radiation carries energy, but no momentum and no mass. The three conservation
laws may be expressed in relativistic form, and then there are terms with momentum and mass
carried away with radiation. However, those terms are very small, unless the amount of energy
carried away is comparable to Ṁc2.

Within a thin disk approximation some quantities are functions of radius only: j(r), Ω(r), e(r),

while others are function of radius and time: Σ(r, t), Ṁ(r, t), J̇(r, t), Ė(r, t), F (r, t), g(r, t). Taking
this into account the equations (d1.15), (d1.16), (d1.17) may be transformed into

2πr
∂Σ

∂t
+

∂Ṁ

∂r
= 0, (d1.18)

Ṁ
dj

dr
+

∂g

∂r
= 0, (d1.19)

g
dΩ

dr
+ 4πrF = 0. (d1.20)

Notice, that only some of the derivatives are partial. The last equation gives

F =
g

4πr

(

−
dΩ

dr

)

=
1

2

(

−r
dΩ

dr

)2
z0

∫

z0

ηdz, (d1.21)

where equation (d1.9) has been used to replace the torque g with an integral of viscosity over the
disk thickness. The equation (d1.21) may be written as

2 × F =

z0
∫

−z0

ǫdr, (d1.22)

where ǫ is defined with equation (d1.10).

These very general equations may be used to demonstrate that if the disk extends between two
radii, r1 and r2, and there is vacuum for r < r1 and r > r2, then viscosity within the disk will have a
tendency to spread the disk over a larger range of radii. We have to assume that angular velocity Ω
decreases monotonically with radius, i.e. dΩ/dr < 0, and that specific angular momentum increases
monotonically with radius, i.e. dj/dr > 0. It can be shown that these are very general requirements,
satisfied by all dynamically stable, thin disks. As the surface brightness cannot be negative, the
equation (d1.20) requires that torque g cannot be negative. At the inner and outer edges of the disk,
i.e. at r1 and r2, the density of matter falls off to zero, and hence the torque must fall off to zero as
well. Therefore, at some intermediate radius r1 < rm < r2 the torque has a maximum, and we have
dg/dr > 0 for r1 < r < rm, and dg/dr < 0 for rm < r < r2. Now, the equation (d1.19) implies that
the rate of mass flow Ṁ must vanish at r = rm, and that Ṁ < 0 for r1 < r < rm, and Ṁ > 0 for
rm < r < r2, i.e. mass flows away from r = rm. This means that the disk will spread out in radius.
This phenomenon may be looked at in another way. Viscosity may redistribute angular momentum
over the matter within the disk, but it cannot change the total value of angular momentum within an
isolated disk which has free boundaries at r1 and r2. The same viscosity generates some heat at the
expense of total energy of the disk, and this heat is radiated away. Therefore, while the total mass,
and the total angular momentum of an isolated disk are conserved, the total energy is decreasing
with time. This may be accomplished by spreading the matter over a larger range of radii.

A very important special case is that of a steady – state, time independent accretion, with most

quantities remaining functions of radius only, while one, the accretion rate Ṁ , remains constant in
time and radius. With the torque g being a function of radius only, the equation (d1.19) may be
integrated to obtain

g = g0 +
(

−Ṁ
)

(j − j0) , (d1.23)

where g0 is a torque at the inner disk radius r0, and j0 is the specific angular momentum at r0. The
matter accretes when vr < 0, and according to equation (d1.11) Ṁ < 0. If there is no torque at the
inner disk radius, a very common situation, then g0 = 0, and
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g =
(

−Ṁ
)

(j − j0) , F =
(

−Ṁ
) j − j0

4πr

(

−
dΩ

dr

)

, (d1.24)

(cf. equation d1.21) We obtained a very important result: in a steady state accretion the surface
brightness of accretion disk does not depend on its viscosity, but it follows from the conservation
laws of mass, angular momentum, and energy. Of course, the surface brightness is proportional to
the accretion rate. Notice, that the surface brightness approaches zero at very large radii, and also
at the inner disk radius r0, because j = j0 there. The maximum surface brightness is reached at
some intermediate radius.

We shall calculate now the total luminosity radiated by a steady – state accretion disk, which
extends from r0 to infinity, and has a no torque condition at r0. Of course, we have to allow for
the luminosity coming out from both sides of the disk. Using the equation (d1.24), changing the
variable of integration, and integrating by parts we obtain:

Ld = 2

∞
∫

r0

2πrFdr =
(

−Ṁ
)

∞
∫

r0

(

−
dΩ

dr

)

(j − j0) dr = (d1.25)

=
(

−Ṁ
)

Ω0
∫

0

(j − j0) dΩ =
(

−Ṁ
)

Ω0
∫

0

r2ΩdΩ −
(

−Ṁ
)

j0Ω0 =

=
(

−Ṁ
)

[

1

2
r2Ω2

]Ω0

0

+
(

−Ṁ
)

∞
∫

r0

Ω2rdr −
(

−Ṁ
)

v2
0 =

=
(

−Ṁ
) 1

2

[

v2
0 − v2

∞

]

+
(

−Ṁ
)

∞
∫

r0

dΦ

dr
dr −

(

−Ṁ
)

v2
0 =

=
(

−Ṁ
)

[

−
v2
0

2
− Φ0

]

=
(

−Ṁ
)

(−e0) ,

where we used the relations: j = Ωr2, v = Ωr, v∞ = 0, and Φ∞ = 0, and where v0 is the rotational
velocity at r0.

The interpretation of equation (d1.25) is very simple: the total amount of energy released within

accretion disk, and radiated away, is equal to the mass accretion rate (−Ṁ), multiplied by the total
energy per unit mass at the inner disk orbit, (−e0). e0 is the specific binding energy at r0. The
origin of accretion energy is gravitational. However, the amount of radiation emitted between radii
r and r + dr is not equal to the difference in binding energies between these two radii, as a large
fraction of energy is redistributed throughout the disk by viscous torques.

We shall consider now two special cases: disk accretion onto a non – relativistic, non – rotating
star, and accretion onto a black hole. In the first case there is a boundary layer between the stellar
surface and the inner disk radius r0. Across this boundary layer angular velocity increases from
Ω = 0 within the non – rotating star, up to Ω = Ω0 at the inner radius of the disk. It is believed
that the radial extent of the boundary layer is very small. For most stars we may use Newtonian

gravitational potential , Φ = −GM/r, where M is the stellar mass. In this case the rotational
velocity, angular velocity, specific angular momentum, and specific energy are given as

v =

(

GM

r

)1/2

, Ω =

(

GM

r3

)1/2

, j = (GMr)
1/2

, e = −
GM

2r
. (d1.26)

These are called Keplerian values. The surface brightness of the disk is given as

F =
(

−Ṁ
) 3

8π

GM

r3

[

1 −
(r0

r

)1/2
]

. (d1.27)
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If the disk is optically thick in the z direction then it radiates as a black body with the effective
temperature given by the standard relation: F = σT 4

eff . Of course, the spectrum of a whole disk is
not a black body, because the effective temperature varies with radius.

The total amount of energy radiated by the disk is given as

Ld =
(

−Ṁ
)

(−e0) =
(

−Ṁ
) GM

2r0
. (d1.28)

While accreting across the boundary layer the rotational velocity of matter must be reduced from
v0 = (GM/r0)

1/2 down to zero, while the radial distance hardly changes at all. This kinetic energy,
v2
0/2 = GM/2r0, must be radiated away. Therefore, the luminosity of the boundary layer:

Lbl =
(

−Ṁ
) GM

2r0
, (d1.29)

is equal to the luminosity of the entire accretion disk! However, as the area of the boundary layer is
so much smaller than the area of the disk, the boundary layer must be much hotter than the disk.

A somewhat different situation arises when the accreting star has a very strong magnetic field
which can disrupt the accretion disk at the so called magnetospheric radius rm. In this case, there
may be some torque present at rm. Also, the fraction of total accretion energy released within the
disk is smaller, while a larger fraction of accretion energy is released between the magnetospheric
radius and the stellar radius.

A very different situation arises when accretion disk surrounds a black hole. Even though we do
not have a full proof that black holes were detected, there is a number of very good candidates among
binary stars emitting X–rays: Cygnus X–1 (cf. J. N. Bahcall, 1978, Annual Review of Astronomy
and Astrophysics, 16 , 241 for a discussion and references), LMC X–3 (A. P. Cowley, D. Crampton,
J. B. Hutchings, R. Remillard, and J. Penfold, 1983, Astrophysical Journal, 272 , 118, B. Paczynski,
1983, Astrophysical Journal (Letters), 273 , L81), and A0620–00, also known as Nova Monocerotis
1917, 1975 (J. E. McClintock and R. A. Remillard, 1986, Astrophysical Journal, 308 , 110). A
recent review of stellar mass black holes in binary systems is by A. P. Cowley, (1992, Annual Review
of Astronomy and Astrophysics, 30 , 287).

A black hole does not have a surface that could be touched. Rather, it has a property that
anything, including radiation, that gets below the so called horizon , cannot escape. The black holes
may have mass, angular momentum, and electric charge. In practice, black holes expected in to be in
binary stars are electrically neutral, and their gravitational field is characterized by two parameters
only: their mass M , and their angular momentum J . If J = 0 then gravitational field is spherically
symmetric, and the geometry of space near such a black hole is described by Schwarzschild metric.
Its most profound characteristic is the existence of the Schwarzschild radius, also called gravitational
radius, rg ≡ 2GM/c2, which has a property that nothing can escape from a smaller distance. The
value of this radius may be estimated with Newtonian gravity, setting the escape velocity equal to
the speed of light. It is a coincidence, that dimensionless numerical factor ”2” turns out to be the
same in Newtonian gravity and in general relativity.

The full general relativistic treatment of disk accretion onto a black hole is fairly complicated (K.
S. Thorne, 1974, Astrophysical Journal, 191 , 507; C. T. Cunningham, 1975, Astrophysical Journal,
202 , 788; 1976, Astrophysical Journal, 208 , 534). A reasonably good model is provided by a
pseudo – Newtonian potential (P. Wiita and B. Paczynski, 1980, Astronomy and Astrophysics, 88

, 23). A very important difference between gravitational field of a Newtonian object and a field of
a black hole is the following: in the Newtonian case gravitational acceleration due to a point mass
M becomes infinite at r = 0, while gravitational acceleration due to a black hole becomes infinite
at r = rg = 2GM/c2. The easiest, though entirely artificial way to model this, is by replacing
a Newtonian gravitational potential Φ = −GM/r, with a pseudo – Newtonian gravitational

potential Φ = −GM/(r − rg). At very large radii, r ≫ rg, the two potential are almost the same,
and they differ strongly only for r ≈ rg. We may write down all the expressions like those given
with equations (d1.3), (d1.4), (d1.6), (d1.7), and (d1.26), in the following way:

Φ = −
GM

r − rg
,

dΦ

dr
=

GM

(r − rg)
2 =

GM

r2

[

(

r

r − r

)2
]

, rg ≡
2GM

c2
, (d1.30)
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v =

(

GM

r

)1/2 [

r

r − rg

]

, (d1.31)

Ω =

(

GM

r3

)1/2 [

r

r − rg

]

,
dΩ

dr
= −

3

2

(

GM

r5

)1/2
[

(

r − 1
3rg

)

r

(r − rg)
2

]

, (d1.32)

j = (GMr)
1/2

[

r

r − rg

]

, (d1.33)

e =

(

−
GM

2r

)

[

(r − 2rg) r

(r − rg)
2

]

, (d1.34)

where all formulae are written down like their Newtonian equivalents multiplied by the correcting
factors placed in the square brackets. The surface brightness distribution of a steady – state accretion
disk may be written as

F =
(

−Ṁ
) 3

8π

GM

r3

[

1 −
(r0

r

)1/2
[

3 (r − rg)

2r

]]

[

(

r

r − rg

)3
(

1 −
rg

3r

)

]

, (d1.35)

r0 = 3rg,

which was also written in a form as similar as possible to its Newtonian equivalent. The choice of
the inner radius, r0 = 3rg, will be explained shortly.

There is a very striking difference between the Newtonian and pseudo – Newtonian expressions
for the total specific energy, as shown with equations (d1.7) and (d1.34) : the Newtonian expression
varies monotonically with radius, and it is always negative; pseudo – Newtonian expression is neg-
ative for r > 2rg, and positive for r < 2rg. This is exactly what is found in full general relativistic
treatment of the dynamics of a test particle moving around a black hole. Even the numerical factor
”2” is the same!

Let us analyze the variation of specific angular momentum with radius. Differentiating equation
(d1.33) we obtain

dj

dr
=

1

2

(

GM

r

)1/2
[

(r − 3rg) r

(r − rg)
2

]

. (d1.36)

This equation shows that dj/dr > 0 for r > 3rg, and dj/dr < 0 for r < 3rg, i.e. the specific angular
momentum has a minimum at r = 3rg. This is exactly the effect found in a full general relativistic
treatment, and even the dimensionless factor ”3” is the same! The existence of the minimum angular
momentum a test particle may have on a circular orbit has a very profound effect on the dynamics
of accretion disks. The shear has always the same sign in Newtonian and in pseudo – Newtonian
case, as dΩ/dr < 0 at all radii (cf. d1.32). This means that viscosity always transports angular
momentum outwards, because the inner parts of the disk rotate more rapidly than the outer parts.
Therefore, any specific element of matter, while accreting, gradually loses its angular momentum.
However, when it gets to the orbit with a radius r = 3rg, and looses still more angular momentum,
then there is no other circular orbit available. Therefore, the accretion disk has a natural inner
radius: r0 = 3rg. From that point matter falls freely into the black hole.

The total luminosity radiated away by the accretion disk may be calculated integrating the
surface brightness as given with equation (d1.35) over all radii from r0 to infinity. The result is

Ld =
(

−Ṁ
)

e0 =
(

−Ṁ
) c2

16
, (d1.37)

where the equation (d1.34) was used to evaluate e0. We found that while accreting onto a Schwarz-
schild black hole matter radiates away 1/16 of its rest mass energy, a result fairly close to the correct
general relativistic value. This is much more than can be released in any nuclear reaction, and it
does not matter what the chemical composition of the accreting matter is, or what the black hole
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mass is. For this reason accretion onto black holes is suggested whenever there seems to be energy
crisis in astrophysics.

Let us consider now stability of motion of a test particle on a circular orbit in arbitrary, spherically
symmetric potential Φ(r). Various quantities for a circular orbit are given with equations (d1.3) –
(d1.7). In general, the particle trajectory may be non – circular, and there may be two components
to its velocity: vr = dr/dt and vφ = rdφ/dt, where φ is the azimuthal angle in the cylindrical
coordinate system. There are two constants of motion in this problem: angular momentum and
total energy:

j0 = rvφ, e0 =
1

2

(

v2
φ + v2

r

)

+ Φ. (d1.38)

For a particle on exactly circular orbit we have vr = 0. Let us consider now a small perturbation of
the particle motion, with the angular momentum and the total energy conserved. The two equations
(d1.38) may be combined to obtain

v2
r = 2 (ǫ0 − Φ) −

j2
0

r2
. (d1.39)

Let us find the dependence of radial velocity on the variation of radius ∆r, with ǫ0 and j0 kept
constant. We may expand the relation in a power series

v2
r =

(

v2
r

)

0
+

(

dv2
r

dr

)

0

∆r +
1

2

(

d2v2
r

dr2

)

0

(∆r)
2

+ ..... (d1.40)

The subscript ”0” refers to the values calculated from equation (d1.39) at ∆r = 0, i.e. at the position
of a circular orbit corresponding to ǫ0 and j0.

The first term in the power series vanishes, because vr = 0 at the circular orbit. The second
term can be calculated from equation (d1.39) as

dv2
r

dr
= −2

dΦ

dr
+ 2

j2
0

r3
= −2

j2 − j2
0

r3
, (d1.41)

where the equation (d1.6) was used to replace the derivative of Φ with specific angular momentum
j. Of course, at the circular orbit j = j0, and the second term in the power series (d1.40) vanishes.
The third term can be calculated differentiating equation (d1.41) :

d2v2
r

dr2
= 6

j2 − j2
0

r4
−

4j

r3

dj

dr
. (d1.42)

At the circular orbit the first term on the right hand side of equation (d1.42) vanishes, but the
second does not. We may now write the equation (d1.40) as

v2
r = −

2j0
r3

dj

dr
(∆r)

2
. (d1.43)

This equation has solution only if dj/dr < 0. Otherwise, there are no solution. This means that
for dj/dr > 0 there are no particle trajectories for a given ǫ0 and j0 except the original circular
orbit. Therefore, the orbit is stable if angular momentum increases with radius. However, if angular
momentum decreases with radius, then we may take a square root of both sides of equation (d1.44)
to obtain

vr ≡
dr

dt
=

d∆r

dt
= ±

(

−
2j0
r3

dj

dr

)1/2

∆r,
dj

dr
< 0. (d1.44)

The last equation may be integrated to obtain

∆r = (∆r)0 e±(− 2j0
r3

dj
dr )

1/2

(t−t0),
dj

dr
< 0. (d2.45)

We find that if dj/dr < 0 then there are trajectories that depart exponentially from a circular orbits,
keeping the same values of total energy ǫ0, and angular momentum j0 on the trajectory, as they
were on the circular orbit. Therefore, circular orbits are unstable when angular momentum decreases
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with radius, and all orbits around black holes with radii smaller than 3rg are unstable. The orbit
with a radius rms = 3rg is marginally stable, and larger orbits are stable. This is the reason that
disks cannot extend inwards of rms.

Vertical structure of thin disks

We shall consider now very thin disks with small, but final extent in the vertical, i.e. z , direction.
Any disk with a finite surface mass density must have a finite pressure, which makes its thickness
final as well. Let us consider disk with negligible mass, and negligible self – gravity. The vertical
pressure gradient has to be balanced by the vertical gradient of the gravitational potential of the
central massive object. The equation of hydrostatic equilibrium in the z direction may be written
as

1

ρ

(

∂P

∂z

)

r

= −

(

∂Φ

∂z

)

r

= −
dΦ

dR

(

∂R

∂z

)

r

= −
dΦ

dR

z

R
, (d1.46)

where we noticed that R = (r2 + z2)1/2. As R ≈ r for |z/r| ≪ 1, we may combine equations (d1.4)
and (d1.46) to obtain

1

ρ

(

∂P

∂z

)

r

= −Ω2z, (d1.47)

where angular velocity Ω practically does not vary with z. Therefore, gravitational, acceleration in
the vertical direction is proportional to z.

Let us consider now a simple, polytropic relation for the disk, with

P = Kρ1+ 1

n , K = const, n = const. (d1.48)

Inserting (d1.48) into (d1.47) we may integrate the equation of hydrostatic equilibrium in the z
direction to obtain

K (n + 1) ρ
1

n =
1

2
Ω2

(

z2
0 − z2

)

, (d1.49)

where z0 is the distance from the equatorial plane to the disk surface. A polytropic speed of sound
is given as

v2
s =

dP

dρ
= K

n + 1

n
ρ

1

n . (d1.50)

Combining equations (d1.49) and (d1.50) we have

v2
s =

1

2n
Ω2

(

z2
0 − z2

)

. (d1.51)

The speed of sound vanishes at the surface, while at the equator we have

vs,e = (2n)−1/2 Ωz0 = (2n)−1/2 v
z0

r
= (2n)−1/2 Ωz0. (d1.52)

We found that the ratio vs,e/v is about equal to the ratio z0/r.

The observations indicate that there are bright accretion disks in many binary systems. Therefore,
there is a high viscosity in those disks. For a long time, the nature of this viscosity was unknown, and
the viscosity was represented by the simple parametrization described below in eqs. (d1.54-55). It is
now believed that the “viscosity” is actually the result of magnetohydrodynamic turbulence excited
by the so-called “magnetorotational” instability [MRI]. In its simplest form, MRI is axisymmetric
in a differentially-rotating, electrically conducting disk with a background magnetic field parallel
to the the rotation axis (z axis). Imagine two fluid elements at different heights (z and z + ∆z)
threaded by the same bundle of field lines. In perturbation, one of these elements moves slightly
inward (∆r < 0) and the other outward. Since the field is “frozen” in the fluid, the field lines develop
an S-shaped bend. Magnetic tension tries to resist this and to straighten the lines. However, if the
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field is weak, it does not succeed. The ingoing element, to the extent that it conserves its angular
momentum, wants to increase its angular velocity; the reverse is true for the outgoing element. This
stretches the lines in the azimuthal as well as the radial direction. Consequently, the weak magnetic
tension removes angular momentum from the ingoing element and transfers it to the outgoing one.
The loss of centrifugal support causes the ingoing element to fall farther inward and increase its
angular velocity further, and the reverse for the outgoing element. This is a runaway instability until
nonlinear effects (reconnection of the field lines, or Kelvin-Helmholtz instabilites between ingoing
and outgoing streams, or buoyant escape of the field vertically) causes it to saturate in turbulence.

For the moment, however, let us return to the traditional “viscous” picture, which proceeds by
analogy with the kinetic theory of gases. Imagine, that disk is made of particles which have the
volume averaged mass density ρ, random velocities vp, superimposed on Keplerian rotation of the
disk, and the mean distance they travel between collisions is λp. The viscosity in such a system may
be written as

η =
1

3
ρvpλp. (d1.53)

The highest velocity a particle (or a blob of gas) may have is the speed of sound, and the largest
mean distance it can travel in radial direction with such velocity is approximately equal to the disk
thickness 2z0. Therefore, the maximum viscosity a disk matter may have is

ηmax =
1

3
ρvs2z0 ≈ ρz2

0Ω ≈
P

Ω
≈ Σvs, (d1.54)

and the actual viscosity may be parametrized as

η = αηmax, 0 < α < 1. (d1.55)

This is the basis of the so called alpha disk model . In practice, 3D MHD simulations find that
nonlinearly saturated MRI produces a roughly constant α ≈ 10−3 − 10−1 (the range reflects in part
the geometry of the background field): see Balbus & Hawley 1998, Rev. Mod. Phys. 70, 1.

We may use the alpha disk model to estimate radial velocity of matter within accretion disk.
Throughout this estimate we shall be replacing derivatives by the ratio of corresponding quantities,
like −dΩ/dr ≈ Ω/r. We may combine equations (d1.9), (d1.54) and (d1.55) to obtain

g ≈ 2πr2Ω

z0
∫

−z0

ηdz ≈ 2πjαΣvsz0. (d1.56)

Combining equations (d1.11) and (d1.19) we have

Ṁ = 2πrvrΣ ≈
g

j
. (d1.57)

Finally, combining equations (d1.56) and (d1.57) we find

vr ≈ αvs
z0

r
≪ vs ≪ v, (d1.58)

i.e. the radial velocity is very much smaller than the speed of sound in a thin disk, even for α = 1.
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