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LECTURE II: THE REDSHIFT AND THE WHISPERS OF CREATION:

THE COSMIC MICROWAVE BACKGROUND

I. The Past and Future of the Universe

Last time we derived the Friedman equation, which describes the expansion of the universe:

Ṙ2 − 8πGρ̄R2/3 = 2ε (2)

and is exact for the whole universe, because it is the same for all shells and is exact for
small, nearby shells. This result is consistent with (and indeed demands) the cosmological
principle. Shells of radius smaller than some radius of interest expand more slowly, and
shells larger expand more rapidly, so shells never cross. We may take as origin anywhere
in the universe as we have seen, and the expansion is spherically symmetric about that
place, so the density is just inversely proportional to the volume of a sphere centered on
the (arbitrary) origin:

m = 4πr3ρ̄/3 = 4πR3u3ρ/3 = const.,

so, since u is constant (and, of course, is 4π/3) we can write

R3ρ̄ = const,

and the density is proportional to 1/R3, a function of time alone, and is spatially constant
for all time if it is at any time. Thus the density, Hubble constant, and anything else one
can measure about the expansion are homogeneous for all time.

II. Looking Back: How old is the universe?

If we look at the Friedman equation, it is clear that the second term is proportional to
1/R, since we just showed that the density is proportional to 1/R3. So as we look back in
time to times when R was smaller, the gravitional term becomes larger and larger. Since
the difference between the gravitational and kinetic terms is constant, the kinetic term
also gets larger and larger, and so the time derivative Ṙ gets larger and larger. Thus the
recession velocity of any particle, which is just proportional to Ṙ, decreases with time,
which is exactly what one expects with gravitation; the universe is, in this simple model,
decelerating. The other side of that coin is that the velocities get higher and higher as one
goes into the past, and so the scale factor MUST go to zero at some finite time in the past,
and indeed at a time less long ago than 1/H, since the motion is accelerated. Thus the
conclusion is inescapable that there was indeed a Big Bang, a time when the density was
infinite and the scale factor zero.

It is also clear that since the kinetic and potential terms both become very large in the
distant past, their difference, the total energy, becomes negligible in comparison to either,
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so the total energy plays essentially no role in the early evolution of the universe. This is
certainly not the case in the late evolution, as we shall see now.

III. Looking Forward: The Cosmic Energy–Will the Universe Expand Forever?

It should be clear from its construction that the value and even the units of R can be
anything; all we demand is that R(t)u = r(t), the physical distance, measured in any
convenient units. We have done nothing which would demand that ε has a particular sign,
and indeed it can be positive, negative, or zero. First consider the case in which it is
zero. This says that our shell has zero energy—its kinetic energy is just balanced by its
potential, and this is true, because of the conservation of energy, for all time. Thus the
shell is always expanding at exactly its escape velocity from the mass interior. In this case,

Ṙ2 =
8πGρ̄R2

3

or, equivalently,

H2 =
8πGρ̄

3
.

The corresponding value of the density,

ρ̄ = ρc =
3H2

8πG

is called the critical density. Its interpretation is quite simple. At a given epoch, say
the present one, in which we measure the Hubble constant H, the density determines the
gravitational field, and hence the gravitational energy. If the mean density is greater than
ρc, the energy ε is negative—that is to say, the shells are bound to the interior mass. Look
at the terms in equation (2). The gravitational term, remember, is proportional to 1/R,
since ρ̄ is proportional to 1/R3, so it decreases monotonically as the universe expands.
Eventually it is the same size as 2ε, and at that point Ṙ vanishes. Since the gravitational
force is still inward, the acceleration is still negative, so the universe turns around and
collapses, just as a ball thrown upward from a gravitating body with less than its escape
velocity will turn around and return.

On the other hand, if ρ̄ < ρc, the kinetic energy term will always exceed the gravitational
energy term because their difference is positive, and as the gravitational term goes to zero
as R becomes very large, the kinetic term will tend to a positive constant, just 2ε. Thus
the velocity of any particle tends to a constant, and its distance will increase linearly with
time. The universe will expand forever, and gravitation will become negligible at very late
times. A ball or spacecraft thrown upward with greater than its escape velocity will escape
the gravitating body and will still have finite velocity when it gets very far from it.

In the case in which the density is just the critical density, the energy is exactly zero (and,
of course, remains so). The universe still expands forever, but more and more slowly as
time goes on there is no excess of kinetic energy to give a particle constant velocity, and
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all velocities tend to zero as time goes on; gravitation neither wins nor loses, but always
maintains the same relative importance to kinetic energy. In this case, we can easily solve
the Friedman equation: If we let ρ̄ = ρ̄0R

3

0
/R3, where the subscript 0 refers to some

arbitrary epoch, we have

Ṙ2 =
8πGρ̄0R

3

0

3R
,

√
RṘ =

(

8πGρ̄0

3

)1/2

R
3/2

0

2
d

dt
R3/2/3 =

(

8πGρ̄0

3

)1/2

R
3/2

0

so if we set the zero of time at that point at which R = 0, the big bang,

R3/2 = const · t,

R = const · t2/3.

In this simple case, the age is simply related to the Hubble constant;

H =
Ṙ

R
=

2

3t

so the universe is 2/3 as old as one would guess from extrapolating back with constant
velocity. If the energy is negative, the universe has been decelerating more rapidly and if
positive, less rapidly than if it were zero, so the universe is younger than 2/(3H) in the
first case and older in the second, but is always younger than 1/H.

The relative importance of the kinetic and gravitational terms, or, equivalently, the density
with respect to the critical density, is usually summarized in the density parameter Ω,
defined as

Ω =
ρ

ρc
=

8πGρ̄

3H2

If we remember that H = Ṙ/R and with the above definition for Ω, we can write the
Friedman equation as

H2(1 − Ω) = 2ε/R2.

Recalling that H2Ω is proportional to ρ̄ which is proportional to 1/R3, we reach the same
conclusion as we did earlier with the original form of the equation, that the energy term
on the right becomes negligible in early times when R is very small. In particular,

1 − Ω

Ω
∝ R,

so that Ω → 1 at early times. You should think about what happens at late times—it is
clear that if ever Ω is unity it remains so, and if ever is less than 1 remains so and if ever
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greater remains so. It goes to infinity when the universe is bound and just stops, and goes
to zero in the far future if it is unbound, but is always approximately 1 at very early times,
when the total energy is negligible.

It is tantalizing, though not strictly accurate, to think that a universe with Ω = 1 is a
structure with exactly zero energy, so that if one were to ask the (quite probably nonsen-
sical) question “How much energy did it take to create the universe?” a plausible answer
would be “Zero”.

We will see in a few lectures that this simple description is, in fact, too simple; there
is another source of gravitation in space which we have not accounted for, namely the
vacuum itself, which apparently gravitates very, very weakly. The effect is so small that
we would probably never have discovered it were it not for the effect on the universe, but
its existence should raise alarms, because it says that our ambitious program to explain
the universe on the basis of laboratory physics cannot quite succeed.

IV. The Redshift–a Remarkable Relationship

We have seen that we see a redshift because galaxies are moving away from us. It should
be clear from the discussion above and in the last lecture that there is no mysterious
physics in the expansion–they are moving locally under quite ordinary Newtonian forces,
coasting and decelerating slowly because of their mutual gravitation. The cataclysm which
started the expansion is more than a bit mysterious (and though people have begun to
think quantitavely about it in the last twenty years or so, it is still accurate to describe
it as mysterious; few of our colleagues would take us to task for this.) Can we relate the
redshift in any simple, global way to the expansion? The answer is yes, and the result is
very beautiful.

Consider a galaxy at some distance rs = R(ts)us. As the light comes to us from this
galaxy, it, of course, passes through all radii intermediate. Let r + dr and r be two such,
and let λ + dλ and λ be the wavelengths of some spectral feature emitted from the source
at λs and observed by observers on galaxies at r, r + dr at those wavelengths and at times
t, t + dt. Then

λ + dλ

λ
= (1 + dv/c)

= (1 + H(t)dr/c)

= (1 + H(t)dt),

or
dλ/λ = H(t)dt

= Ṙdt/R

= dR/R.

And so we obtain the simple result that

λ = const · R.
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Thus photons as they travel through the universe have wavelengths which simply scale
with the expansion. Recalling that the redshift z is defined as

z =
λobs − λem

λem
,

it is clear that
λobs/λem = 1 + z = R0/Rem.

Thus the redshift factor (1 + z) = R0/R is often (usually) used as a parameter to describe
the expansion of the universe: The light of the redshift 6.4 quasar left the source at a time
when the universe was 1/(1+6.4) times as large as it is now. How old was it then? We do
not know the exact cosmological model, but if Ω = 1 then recall that R ∝ t2/3 or t ∝ R3/2,
so the universe was (1/7.4)3/2 = 0.050 of its present age–we are looking back at this object
95% of the way to the Big Bang; if the universe now is 13 billion years old, it was only 650
million years old then.

V. The Light Cone and the Observable World

Let us consider the paths of incoming light rays in the universe. At each place along the
incoming ray we must have

dr = cdt

R(t)du = cdt,

or
du = cdt/R(t),

u = c

∫ t0

te

dt

R(t)
.

Now again the exact evaluation of this integral depends on the details of the cosmological
model, but as an example again take the Ω = 1 model, and let us normalize the comoving
radius to be the physical radius at the present epoch, so R0 = 1 and R(t) = (t/t0)

2/3.
Then the integral is trivial, and

uem = 3ct0

(

1 −

(

t

t0

)1/3
)

=

(

2c

H0

)

(

1 − (1 + z)−1/2

)

The remarkable thing about this integral is that it converges!! As t → 0 or, equivalently,
z → ∞, u → 2/H0. Thus, even though the universe was very small in the past there is a
maximum comoving radius to which we can see, and so there is a most distant object we
can see. Note that this is not a peculiarity of the Ω = 1 model; we saw that all models
converge to the Ω = 1 one near t = 0, so even though the exact form of uem(z) is different,
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its qualitative behavior at high redshift, which is just dependent on R ∝ t2/3 for small t,
is unchanged.

This maximum uem to which we can see is called the particle horizon. Note that it gets
bigger every day; in comoving coordinates it expands at three times the speed of light (!).
Its edge defines the observable universe. Cosmologists carry on about whether the universe
is finite or infinite, but in fact it would appear that this is a question which is in principle
unanswerable; we can see only a finite part of it in any case.

VI. The Cosmic Microwave Background

Thus armed with some understanding of how electromagnetic waves propagate in the uni-
verse we are ready to undertake an understanding of one of the most important discoveries
in astrophysics of last century, certainly one rivaling in importance the discovery of the
expansion itself. Physicists for many years had wondered about conditions in the universe
near the epoch of the big bang, and by the middle 1960s several calculations had been
done assuming (as seemed intuitively likely, though there was no real evidence) that the
universe was very hot as well as very dense at very early times. In 1965 two physicists at
Bell Labs at Holmdel NJ, Arno Penzias and Bob Wilson, who were trying to calibrate a
new radio telescope very accurately to measure absolute fluxes in the microwave region of
the radio spectrum noticed that hard as they tried, there seemed to be a signal coming
from the sky which they could not find any source for in their equipment. Finally convinc-
ing themselves it was real, they undertook to measure it carefully. They looked at only
one wavelength, but it appeared to be a very uniform background which corresponded
to radiation from a blackbody at about 3K, 3 degrees above absolute zero. Hundreds of
measurements since, culminating in the beautiful measurements by the COBE (COsmic
Background Explorer) satellite have confirmed the existence, thermal nature, and incred-
ible isotropy of this radiation. We now know that it is very accurately a radiation field
corresponding to a black body at 2.7K, and that it is isotropic to about one part in 105

over the whole sky. Measuring any deviation from isotropy was an enormous challenge for
many years, though COBE first made a reliable but crude map, since improved in detail
over small regions of the sky by balloon experiments like BOOMERanG and recently done
exquisitely by the satellite WMAP.

What does this mean? First of all, even though the radiation is incredibly feeble by
terrestrial standards, it completely dominates the thrermal energy density of the universe.
The spectrum of a black body is given by the Planck function

Bν(T ) =
2hν3

c2
(ehν/kT − 1)−1

where ν is the frequency, h, Planck’s constant, k the Boltzmann constant, and T the
absolute temperature in Kelvins. Bν is the specific radiant intensity, the flux of energy
incident on a unit area per unit frequency in unit solid angle. The energy density associated
with this radiation field is obtained by multiplying by a factor of 4π/c— the 4π factor
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simply to account for all solid angles, the 1/c simply because the flux of energy is the
velocity times the energy density, and the velocity here is clearly the velocity of light.
Integrating the Planck energy density over frequency yields the simple relation

Ur(T ) = aT 4

where a difficult integral (which is π4/15) and all the physical constants are combined into
the radiation constant a = 8π5k4/15c3h3, which has the value 7.56× 10−15erg cm−3K−4.
At 2.7K, the energy density is

Ur = 4.0 × 10−13erg/cm3,

about 0.25 electron volts per cubic centimeter. For comparison, starlight in the Galaxy
has a comparable energy density, but by the time you are a Megaparsec (a typical galaxy-
galaxy spacing) from a galaxy, that energy density is down by a factor of ten thousand
(though you need to be a little careful–there are lots of galaxies, all contributing). When
you do the calculation carefully, the factor is more like 100, but still large. If you do not
count the kinetic energy of the expansion itself (which may be infinite), but just look at the
random orbital motions, you get an even smaller number; the random motions induced by
gravity about ‘pure’ expansion are about 300km/s = 3×107cm/s, and the matter density
is probably about 1× 10−30g/cm3, so the kinetic energy density UK associated with these
motions is

UK = ρv2/2 ≈ 4.5 × 10−16erg/cm3,

about a factor of a thousand smaller than the blackbody radiation density. The only energy
density which is not small compared to this is the total rest mass energy density Um in
the universe; for this one multiplies the mass in each cubic centimeter by c2:

Um = ρc2 ≈ 9 × 10−10erg/cm3,

a factor of about 2500 larger than the energy density of the radiation field. Thus if one
could magically annihilate all the matter in the universe, one would produce much more
energy than is in the radiation field at present.

But was this always so? Think about how the radiation field changes with time. Each
photon has a wavelength which as it travels through space overtakes galaxies which are
ever receding from where it was last, and the wavelength grows proportional to R; the
frequency ν and hence the energy hν decreases by the inverse of this. The shape of the
blackbody spectrum does not change, but as the frequencies increase as you go back in
time (Rν = const for each such photon) the temperature must increase in step. (Think
about a photon at the peak of the blackbody spectrum–at a time when R(t) is half its
present size, the frequency of that photon is twice its present frequency, and it is still at the
peak, because all the other photons have been moving in frequency with it–so the shape of
the curve at that time is still like a blackbody, but at twice the temperature.) So it would
appear that T ∝ 1/R.
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But what about the normalization? That works, too. Each photon has an energy which
scales like 1/R, but the density of photons clearly scales like 1/R3 as the universe expands,
so the energy density scales like energy × numberdensity, so

Ur ∝ 1/R4 ∝ T 4 ∝ (1 + z)4

What have we learned? If the universe is filled with a blackbody radiation field at some

temperature T at any epoch and that field does not interact with anything in a way to

change the number or energy of the photons, then the universe at any other epoch is also

filled with a blackbody field, and the temperatures at the two epochs are related by

T1/T2 = R2/R1.

.

But note that the radiation energy density increases as one goes back in time like R−4

because both the energy and the number density are changing with R, but the matter

density and hence also its rest mass energy density increase only as R−3. So even if their
ratio now is 2500, this ratio decreases as one goes back in time:

Ur

Um
∝

R−4

R−3
= 1/R.

Thus at a redshift factor (1 + z)eq ≈ 2500, the energy density of radiation is equal to that
of even the rest energy of matter, and ever earlier it was greater. The temperature Teq at
this epoch is about

Teq ≈ 2.7K(1 + z)eq ≈ 6800K.

The mass density at that time was about 1× 10−30(1 + zeq)
3 ≈ 1.6× 10−20, or about 104

hydrogen atoms per cubic centimeter, still a good vacuum but comparable to the density
in fairly high density regions in the interstellar medium in the galaxy. The age of the
universe at this time was about t0(1 + zeq)

−3/2, about 100,000 years. Thus at redshifts
greater than about 2500, the universe was radiation dominated, meaning that even the rest
energy of the matter becomes insignificant. Clearly our Newtonian ideas do not work in
this case, and we will have to reexamine such things as the Friedman equation and our
conclusions about the inevitability of the big bang–but note that the energy density, which
is, after all, what gravitates, goes up into the past even faster than in the case of matter
alone, so we should not expect, and indeed will not receive, a respite here.

It is interesting that something else very significant happens at about this time. If one has
a very dilute hydrogen gas at these temperatures and densities, a significant fraction of the
gas becomes ionized. Even though the average photon energy is only about kT ≈ 0.6 eV
and it takes 13 eV to ionize a hydrogen atom, there are a few photons in the high-energy
thermal tail, and so vastly many more quantum states available in the continuum than in
the bound states that the gas becomes essentially completely ionized at a temperature of
about 4000K, at (1+zrec) ≈ 1500. This is called, rather inappropriately, the recombination
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epoch, but it should perhaps more properly be called the combination epoch—prior to
this, the universe was completely ionized, and after, at least for a long while, completely
neutral, and the transition happens very quickly indeed. The significance of this period
to the discussion at hand is that when the universe was ionized there were lots of free
electrons around, and free electrons can scatter radiation with the Thompson cross section,
σT ≈ 6.6×10−25cm2. The number densities are about 3×103 at this epoch (this is a little
later than teq, and the calculation is exactly as before). A photon will then travel about
1/nσ, about 5 × 1020cm, about 1.5 kiloparsec, before scattering off an electron. To travel
this far takes about 4000 years, much less than the age of the universe then, so the universe
is essentially opaque prior to recombination—after, it is almost completely transparent.

But electron scattering does not change the frequency very much, nor does it make or
destroy photons, so the blackbody character of the photons remains; at some much earlier
time, the photons were actually made; we will consider this epoch later.
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