
LECTURE XII: THE VISIBLE UNIVERSE II:

THE GALAXIES WE SEE

AST 204 March 12 2008

These notes contain material from previous classes and more detail than we can

cover in class, for the sake of completeness

I. Collapse and Violent Relaxation: The Formation of Dark Matter Halos

We have seen that if we have a tophat perturbation, the body of the perturbation collapses
all at the same time, and the surrounding material out to some rlast and corresponding
mlast rain in on top of it it in some slowly tailing-off infall. A more realistic perturbation
will have some central volume of roughly constant contrast which will collapse at roughly
the same time, will in general not be so violent as the tophat case, but will not differ much
in qualitative terms. We saw that the power spectrum of perturbations on the small scales
we are considering is roughly k−3, which corresponds to roughly equal ‘roughness’ on all
scales, so the tophat in the real universe will itself be pretty lumpy. These lumps will pull
other lumps away from their purely radial orbits a little, so the mass will in fact not all
bang into itself at the collapse time τc. Thus there will be some minimum size at about
τc, but there will be lots of kinetic energy and the system will be very lumpy (because
all the little lumps have grown during the collapse as well.) It will expand again, bounce
around, and finally settle down to some equilibrium configuration. Computer simulations
show that it is pretty settled in a short time, about τc/2 after the initial collapse, so after
a total elapsed time of about 3τc/2.

During these early phases, the system undergoes what is called violent relaxation—energy is
exchanged between the particles in lumps on all scales, but it is the interaction of individual
particles with lumps which is important during this phase. In a steady, equilibrium system
made of stars and gas, the total energy of a particle, kinetic plus potential, is conserved,
but in this violent phase, though the total energy of the system is conserved, the energy of
individual particles is not. Instead, energy is exchanged rapidly. The energy of individual
particles is not conserved whenever the gravitational potential is changing, and in fact it
can be shown that for an individual particle,

dE

dt
=

∂Φ

∂t
. (1)

We will see in numerous instances that the natural timescale in any gravitational problem
is of order 1/

√
Gρ; we have, in fact, already seen this. The Hubble constant is the inverse

of the timescale for expansion of the universe, and is of order
√

8πGρ/3 ; the collapse

time of our perturbation is π
√

r3
max/2Gm =

√

3π/2Gρ. When any self-gravitating system
does something in response to its own gravity, this is always the timescale. (Just for fun,
think about the orbital time of the earth, and show that it is of order 1/

√
Gρm, where

ρm is the density the sun would have if it were smeared out over a sphere whose radius is
that of the earth’s orbit). If the potential is changing on this timescale, the timescale of a
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particle orbit in the system, then particles essentially forget their initial energy and initial
velocities; they are scattered effectively both in velocity and energy.

The result of this is statistically rather interesting. During this phase a particle feels
numerous little kicks in each component of velocity which are essentially statistically inde-
pendent as it interacts with various lumps in the rapidly changing environment, and the
total change in velocity is large enough that it forgets what its initial velocity was. There
is a very powerful theorem in statistics, the Central Limit Theorem, which says that if
some variable (say the x component of the velocity) is a sum of a very large number of
statistically independent variables (the little changes) then the sum (the final velocity) has
a probability distribution which is normal:

P (vx) =
1√

2πσ2
exp(−v2

x/2σ2), (2)

the classical ‘bell curve’. Here the variance σ2 of the distribution is the square root of the
sum of the mean squares of the kicks in velocity it got along the way. In our example,
the mean kick is assumed to be zero, which it must be under the assumption of spherical
symmetry; if it is not, the quantity in the numerator in the exponent is −(vx − v̄x)2, and
v̄x is the mean x-velocity, which is the sum of the mean of the kicks. The quantity σ is
called the dispersion or, more correctly the standard deviation, and is often referred to as if
‘sigma’ was its name–a value which lies three standard deviations from the mean is referred
to as a ‘3-sigma’ point. The multiplier, 1/

√
2πσ2 is just to make the integral (probablilty

that vx has some value) unity. Physicists and astronomers do not use the term ‘normal’,
though everybody else in the world does; they instead call this a ‘gaussian’ distribution,
but they mean the same thing. So we can expect the velocity distribution of our final
object to be roughly gaussian or normal.

II. Hydrostatic Equilibrium

What is its density distribution like once it settles down? To think about this, we need to
consider the general equation which describes a system which has established an equilib-
rium with its own self-gravity and internal motions.

What are the forces in such a system? First, there is gravity. The potential energy w of
a particle of mass m in a gravitational field is mΦ (indeed, this is the definition of the
potential Φ); the potential Φ in a spherical system outside the mass is just, of course,
GM/r, where M is the mass of the system. The force is just the negative of the gradient
of the potential energy because the work done in moving a particle from x to x + dx is
just the change in potential energy:

work = −dw = force · dx,

or
force = −dw/dx = −mdΦ/dx
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Where we have written things as if they dependended on only one variable x; in three
dimensions, this becomes, clearly

force = f = −m∇Φ.

So suppose the final system is spherical, and consider a little volume element oriented so
that it has faces perpendicular to the radius, has thickness dr in the radial direction, and
has faces of area A. The density in the volume is ρ, so the mass is dm = ρAdr, and the
gravitational force on the mass in the volume is radial and is −dm·dΦ/dr = −dm·GMr/r2,
where Mr is the mass contained within r. The system is in equilibrium by assumption,
so the mean radial velocity of particles in the box must be zero. If not, the body would
either be expanding or contracting. In general, the velocity of particles at some point in
the body can be broken down into two parts:

v = v̄ + u, (3)

where v̄ is the mean velocity in a small region surrounding the point, and u is the difference
from the mean. u is called the peculiar, or random, velocity. In our spherical example,
v̄ = 0. The peculiar velocities exert forces in the system called pressure forces. To see
this, imagine replacing the imaginary faces of our volume with perfect reflecting surfaces.
The particles bouncing off these faces clearly exert a force on the face, but since the mean
velocity of the particles is zero at the face, inserting the reflecting face can in no way
alter the physics of the problem. What is the force? The particles hit the face at a rate
An(ur)urdur, where n(ur)dur is the number density of particles at ur in dur. The change in
momentum of each particle when it hits the face is 2mur. The rate of change of momentum
is the force, so for the particles of peculiar velocity ur the force is df = 2n(ur)mu2

rdur.
If we are looking at the lower face, we are only interested in particles with positive ur,
because they are the only ones which hit the face. So the total force is

fr = 2A

∫

(ur>0)

mn(ur)u
2
rdur = A

∫

mn(ur)u
2
rdur,

where in the last expression we recognize that we are integrating only over half the particles
(the upward-moving ones), but that just cancels the factor of 2 in front. But the particle
mass times the number density is just the mass density ρ. So we can write

fr = Aρū2
r = Aρσ2

r

The quantity σr is called the radial velocity dispersion, and the product with rho is called
the pressure. If particles with different masses, if we have different masses, have different
velocity distributions, this is slightly more complex, but you get the idea. Now the box
must neither rise nor fall, (more accurately, be accelerated neither up nor down) which
means that the gravitational force on the box must just be balanced by the pressure
difference on its faces:

−ρAdrdΦ/dr = −ρGMr/r2Adr = AdP
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or
dP

dr
=

d(ρσ2)

dr
= −ρGMr/r2 (4)

This is called the hydrostatic equation for spherical geometry. If the system is not spherical,
then the general form of this is more complex and involves the mean velocity as well
(rotation, for example, develops centripetal accelerations, and in a rotatating system the
mean velocity is not, of course, zero, even though the system is not changing in time)
but this will serve us for the moment. This development is the same for a gas, in which
the pressure is a familiar concept, and for a system of stars or dark matter particles. The
physical difference is profound; in a gas there are lots of collisions, so it does not make much
sense to talk about the orbit of a gas particle, and the pressure is very intuitive. In a stellar
system or a system of dark matter particles, there are essentially no collisions, and particles
are in independent orbits, but the hydrostatic equation is the same, as is the definition

of the pressure. A system such as we are thinking about, in which the mean velocity is
everywhere either zero or contributes negligibly to the forces, is called pressure supported

and is referred to as a hot system, which has nothing to do with ordinary temperature
but does, as in the ordinary thermal case, refer to large random particle velocities. In
the opposite limit, in which, all the particles are in regular circular orbits in a disk about
the center of mass of the system, all the velocity is mean or bulk velocity and there is
no peculiar or random velocity. These systems are called rotationally supported and are
referred to as cold systems.

III. The Virial Theorem

For systems in hydrostatic equilibrium, such as stars or galaxies or planets or clusters,
there is an important and simple relation among the various kinds of energy in the system
which enables us to do simple calculations of their properties. To see where this comes
from, we consider again a spherical system, though the result is quite general. For each
particle in the system, we can write Newton’s second law as

mẍ = −m∇Φ = mg. (5)

Here g is the gravitational acceleration, which is radial, inward, and has magnitude
GMr/r2. If we dot this relation with the position vector x, we get

mx · ẍ = −mx · ∇Φ = −mGMr/r.

The last term on the right comes from multiplying the radial component of x, which is r,
by the expression for the gravitional force. Now you can easily verify that

d2x2/dt2 = 2x · ẍ + 2(ẋ)2,

so we can write
d2

dt2

(

mx2

2

)

− m(ẋ)2 = −mGMr

r
. (6)
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Let us now sum over all the particles in the system. Then Equation (6) becomes

1

2

d2

dt2

∫

ρx2dV − 2T = W, (7)

Where we have replaced in the first term the sum over all particles by the integral of the
ρdV , which is clearly equivalent if we have lots of particles. The sum over the second term
in Equation (6) is clearly the total kinetic energy T of the system, and the RHS the total
gravitational energy W of the system. If the system is in equilibrium, its shape and density
distribution are not changing, so the first term, which is just the second time derivative
of the moment of intertia, vanishes. This is strictly only true for systems of very large
numbers of particles; for smaller systems one needs both to sum over particles and average
over time, but the result is the same:

2T + W = 0 (8)

which holds instantaneously for systems with very large numbers of particles, and in time
average for any bound system in equilibrium. This is called the virial theorem. We have
derived it for spherical systems, but it is, in fact, true for any equilibrium system; the
only difficulty in the general derivation is some algebraic messiness in the potential energy
term, the biggest problem being convincing oneself that the term obtained actually is the
potential energy and some bookkeeping worries about double counting, etc. Look at a
book if you are interested. In the general case, it is often useful to separate the velocity
into the average (bulk) velocity and the peculiar velocity, as in Equation (3); when we do
this, the virial theorem becomes

2Tav + 3Ptot + W = 0 (9)

for the case in which the velocity distribution is isotropic, so σ2
x = σ2

y = σ2
z , and here Tav is

the kinetic energy associated with the mean velocity and Ptot the integral of the pressure
over the volume of the system:

Tav =
1

2

∫

ρv̄2dV

Ptot =

∫

PdV

This provides a way of calculating the kinetic energy of the system without having to
worry about the details of the motion of individual particles; only the mean velocity and
the pressure appear. Why is there no cross term when you square the velocity of Equation
(3) and sum everything up???

To see how one might use this relation, ask a question. Suppose we have some system of
mass M with some velocity dispersion σ. Roughly how big is it when it is in equilibrium?
The gravitiational energy of each particle is −GmM/r̄, where r̄ is some average radius
of the particle in its orbit, so it must be that the gravitational energy of the system is,
just summing over the particle masses, W = −GM2/Rg, where Rg is some average of the
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radii over the particle orbits of all the particles. The quantity Rg is clearly a reasonable
measure of the size of the system, and is called the gravitational radius for obvious reasons.
The kinetic energy is, if the velocity dispersion σ is reasonably constant over the system,
T = 1/2Mσ2, so the virial theorem says

Mσ2 =
GM2

Rg

or

Rg =
GM

σ2

.

Now it is a happy coicidence that there is a very close but essentially coincidental relation
between the gravitational radius and the so-called ‘half-mass’ radius R1/2, the radius con-
taining half the mass of the system, which is usually much easier to compute than Rg and
is a much more intuitive notion of the size of a system. Over a very large range in density
distributions, from uniform spheres, exponential spheres, power laws, etc, etc, the relation

Rg ≈ 2R1/2

holds to an accuracy of about ten percent, and better for realistic density distributions.
Notice that for a system in equilibrium the total energy, sometimes called the binding

energy, is negative and since E = T + W , 2T + W = 0, it must be that

E = −T

= W/2

IV. The Dark Matter: Isothermal Spheres

After the collapse and violent relaxation, the dark matter in a body which forms out of
the fluctuations in the early universe does not change much unless it merges with another.
The baryonic matter can do interesting and wonderful things like make stars and planets
and people, but the dark matter particles can only move in their more-or-less original
orbits. We do not see the dark matter directly, but know it is there and can measure its
gravitational effect. How do we do this?

First of all, what forms do we expect the dark matter to take–that is what shapes of the
density distributions? Remember that we expected the velocity distribution to be roughly
normal and for all particles to have roughly the same velocity dispersion. If we look at the
equation of hydrostatic equiblibrium, we thus have, approximately,

dP

dr
=

d(ρσ2)

dr

= σ2 dρ

dr
=

−GρMr

r2

(10)
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Can we find a simple solution for this equation? Let us look for a power law. Since we know
that the hydrostatic equation requires a decreasing density with radius, look at solutions
of the form ρ = ρ0(r/r0)

−α. If this the the density, the contained mass Mr is

Mr =

∫ r

0

dm

= ρ0

∫ r

0

(

r′

r0

)−α

4πr′
2
dr′

= 4πρ0r
3
0

1

3 − α

(

r

r0

)3−α

.

(11)

Note that this is not correct if α ≥= 3, in which case the mass is divergent as one
approaches r = 0, and no power law is both well behaved at the origin and contains
finite mass as r → ∞. We will see whether there is a satisfactory solution for Equation
(10). Substituting our expression for ρ and the expression (11) for Mr into the hydrostatic
equation, we get

−ασ2ρ0r
−1
0

(

r

r0

)−α−1

=
−4πGρ2

0r0

3 − α

(

r

r0

)1−2α

Since the powers of r have to be the same on both sides,

1 − 2α = −α − 1,

or α = 2, and
σ2 = 2πGρ0r

2
0

Mr = 4πρ0r
2
0r

= 2σ2r/G

ρ = σ2/2πGr2

(12)

Notice that the density goes to infinity at the origin, but it is an integrable singularity and
the contained mass is proportional to the radius all the way to the origin. This solution
is called the singular isothermal sphere. If we demand that the density be finite at the

origin, we discover that it falls slowly at first, approximately like ρ = ρc

[

1 + (r/rc)
2
]−1

,
reaching about half its central value ρc at the core radius rc = 3σ2/(2πGρc). Thereafter
it wiggles a bit and settles down to the behavior of the singular model.

Before we leave the isothermal sphere, let us ask a simple question. Suppose we have a
test particle in a circular orbit of radius r about the center of the structure. Then the mass
contained within r is 2σ2r/G. In a circular orbit, the centripetal acceleration just balances
the gravitational force, so the circular velocity vc is

v2
c

r
= GMr/r2

v2
c = GMr/r

= 2σ2

vc =
√

2σ

(13)
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and is constant with radius. Thus if we can measure the circular velocity of some test
particles in a dark matter isothermal halo, we can determine the velocity dispersion in
the halo and, if the circular velocity is constant, demonstrate that it is approximately
isothermal. This is a very powerful result.

We have seen that the continued infall keeps adding material to the object we have formed;
in the problem set you will show that this material forms a halo with a density distribution
which is approximately ρ ∝ r−9/4, only trivially different from the expected r−2 in the
central parts. This will cut off quite sharply as the last bound shell is approached.

Let us now think about the dynamics of the final object. How can we connect the present
quantities (velocity dispersion, size) of the object with its properties before it formed and
indeed with its initial conditions?

V. Dynamics Before and After Collapse

Consider the perturnbation near the epoch of maximum expansion. It is approximately a
uniform sphere, and you will show in the problem set that its gravitational energy (which
is its total energy, because it has no kinetic energy at that epoch) is

E = − 3GM2

5Rmax
.

After it has collapsed and stabilized (we use the term virialized, which means that it has
settled enough to satisfy the virial theorem), we have E = −T = W/2

E =
GM2

2Rg
≈ GM2

4R1/2
.

Thus the half-mass radius of the final configuration is, roughly,

R1/2 ≈ 5

12
Rmax ≈ 0.4Rmax

So the final dark matter configuration is roughly half the size at maximum expansion. If
we can determine any two of the half-mass radius, the mass, or the velocity dispersion,
we can determine a great deal about the perturbation that made the system, since these
three quantities are related by

T =
3Mσ̄2

2
= |E| ≈ GM2

4R1/2
,

or

σ̄2 =
GM

6R1/2
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so we can, having R1/2, get Rmax ≈ 2.5R1/2, and thus determine the collapse time

τc = π

(

R3
max

2GM

)1/2

≈ 8.2

(

R3
1/2

GM

)1/2

≈ 3.3
R1/2

σ̄

Notice that the last line of this says that the collapse time is of order the average travel
time across the body. Given τc, the amplitude of the perturbation can be calculated from
the relation we developed last time,

τc =
π

Hi

(

δ+
)−3/2

For the Galaxy, the central value of σ is about 160 km/sec, as deduced from the rotation
velocity of about 220 km/sec. This value of σ corresponds to a mass of about 1010M⊙

per kpc of radius (Equation (3)). We believe that the total mass of the Galaxy is about
1012M⊙, so the radius extends to something like 100 kpc, but we do not know exactly what
the form of the cutoff is like. The cutoff can happen only if the dark matter is colder in the
outer parts, so the mean σ will be less than the central value. If we do not worry about
this too much, take a mean σ of, say 100 km/sec and a half-mass radius of 50 kpc, we get
a collapse time of about 1.7 × 109 years. This is about 7 rotation periods of the Galaxy.
The velocities in the collapse near the end must be near the circular velocity, about 200
km/sec.

VI. Angular Momentum

We have seen that gravity causes perturbations to grow, but in the absence of gravity
perturbations in velocity die away very quickly. You can use the reflecting box trick to
show that peculiar velocities are proportional to 1/R as the universe expands; all momenta
vary thus, and this is another way to get the redshift relation, since the energy of photons
is proportional to their momentum. Now angular momentum is a radius times a velocity,
so since radii go like R and velocities like 1/R, angular momentum is conserved in the
expansion. Cool. Spiral galaxies are typically rotating at 200-300 km/sec today, and
a galaxy like the Milky Way has most of its baryonic mass, about 1011M⊙ contained
within about 10 kpc radius, which corresponds to a baryon density of about (1011 ∗ 2 ×
1033)g/[(4π/3)∗(3×1022cm)3] =≈ 2×10−23g/cm3. at recombination, the total density was
about 3× 10−21g/cm3 and the baryon density about a tenth of that, say 3× 10−22, about
a factor of ten higher than the mean spherical density in a spiral galaxy at the present
epoch. Thus the mass was contained in a radius smaller by the cube root of 10, about a
factor of two, and the velocities thus a factor of two higher, say 500 km/sec. Velocities
this high, 1.5× 10−3 of the velocity of light, would result in fluctuations in the microwave
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background of this same size, and these are not observed. If one goes back even farther
into the past, one soon runs into relativistic velocities, which are clearly at variance with
inflation (as are any appreciable peculiar velocities), and almost certainly at odds with
primordial nucleosynthesis, the exact thermal nature of the background, and many other
things. Conserved angular momentum, also, inflates away just as conserved baryon number
does in the inflationary scenario, but the observations rule out enough angular momentum
early in the universe to explain galaxies even if one does not believe inflation. It seems
clear that the rotation does not arise from conserved angular momentum from the early
universe.

Where else can rotation come from?

Like energy, angular momentum is conserved in the large, but can be exchanged between
structures. Consider two nearby tophat perturbations in the universe, neither one com-
pletely spherical and aligned randomly with respect to one another. For the sake of ar-
gument assume that they are ellipsoids. Then since gravity is a 1/r2 force, the tidal force

exerts a torque on both—the nearer bulge is pulled harder than the farther one, and harder
than the center. So relative to the center, the nearer bulge is attracted and the farther is
repelled—the mechanism is precisely the same as the tides on the earth, but here we have
an intrinsically nonspherical shape. The angular momentum is the torque times the time,
and since the shape of the perturbations do not change very much while they are in the
linear regime, it is changing the angular momentum in a progressive, steady manner. We
could easily estimate the effect knowing what we know, but there is not really time. What
we can do is figure out how we might characterize it.

How might we characterize the importance of rotation?

Dynamically, that is. One measure is clearly how much kinetic energy is associated with ro-
tation versus the total; we can make a dimensionless measure of this by setting a parameter
λ

λ2 = CTrot/Ttot ≈
C

3

v2
rot

σ2
(5)

Where C is some number of order unity we can choose later for our convenience, and vrot

is some mean rotation velocity. Now from the virial theorem, Ttot is the binding energy
of the structure, |E|, and Trot is Mv2

rot/2, where vrot is some mean rotation velocity. The
angular momentum J = MRvrot, where R is some measure of the size of the object. Thus

λ2 =
C

2

J2

MR2|E|

But E ≈ −GM2/4R, R ≈ GM2/4|E|, so

λ = 2
√

2C
J
√

|E|
GM5/2

. (6)

If we take 2
√

2C = 1, C ≈ 1/8, this is actually the usual definition of λ. The quantity
λ, which is called the angular momentum parameter, is thus approximately 0.4 for a cold
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disk (Trot = Ttot and is zero for a nonrotating spherical, pressure supported object. How
big can we get λ from tidal torques during the formation of structure? It is not hard to see
that the effect of the torquing is pretty small on average–the structures as they grow are
probably not long, thin bars or dumbbells, which you need to transfer angular momentum
efficiently; the near bulge is not that much closer to the other perturbation than the far
one, it is unlikely that the major axes of the shapes are at 45 degrees to the separation,
which one needs for most efficient transfer, etc., etc. Both reasonable rough estimates and
numerical experiments indicate that, on average, λ is about 0.05, with a large statistical
spread, independent statistically of the details of the power spectrum or anything else that
has been thought about. It is certainly not big enough to explain disks; with the value of
C indicated, the value of lambda for a cold disk is about 0.4; we are short by something
like a factor of 8 in rotation velocity and 60 in energy. But spiral disk galaxies are very
common, and in fact most galaxies are disks.

So the rotation of galaxies is not primordial and apparently cannot be produced by grav-
itational torques during formation. But wait— we see the fast rotation and thin disks in
the baryons, not in the dark matter. Might this be something we should think about?

VII. The Baryons in the Collapse

What is happening to the baryons during this time? This depends on many factors, not
all of which are very well understood in detail, but the general picture is clear. Baryonic
material, which is mostly hydrogen gas with small amounts of helium at this time, differs
from the dark matter in one very important respect. Gas clouds can collide with one
another, but the dark matter particles cannot. We can assume that the gas and dark
matter are well mixed at the beginning; actually the gas will be smoother than the dark
matter for a while after τeq because the dark matter perturbations can grow immediately,
while the baryonic perturbations are kept from growing by the radiation pressure, but it
has been shown that as soon as the hydrogen recombines, lumps in it catch up with the
dark matter lumps very quickly. During the expansion of the perturbation, the baryons
and dark matter move together; there is no reason for them to separate, because they
feel the same gravitational field, and different parts of the perturbation have not tried to
collide with each other yet.

When they do, what happens?

The gas, which started all of this out at about 3000K, kT=0.3 eV, at recombination, has
been cooling off as the perturbation and the universe expanded. It has been doing so
adiabatically, that is, neither radiating energy nor absorbing it, because it is too cold to
excite even the first level in hydrogen (at about 9 eV) by collisions and the radiation is
too cold to excite it radiatively (which is why it recombined in the first place). We can
extend our argument about the reflective boxes in an expanding universe to consider the
perturbation–the momentum of a particle is inversely proportional to the size of the box,
or to its volume to the -1/3 power. But the temperature is proportional to the square of
the momentum (kinetic energy ≈ 3kT/2 ), so the temperature goes as the -2/3 power of
the volume, or as the inverse square of the size. So by the time maximum expansion has
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been reached, a factor of several hundred larger than the size at recombination, the gas
should be very cold, only a few degrees Kelvin. colder, in fact, than the radiation, since
the latter cools only inversely as the size of the universe, and though the perturbation is
not expanding as fast as the universe, the inverse square dependence wins.

Now the speed of sound in a gas is of order the velocity of particles in the gas. As a
rough rule to remember, a gas of mostly hydrogen at 10,000K has random motions and
soundspeed of about 10km/sec, so the particle motions and sound speed are small compared
to the velocities in the perturbation as it collapses. These velocities go as the square root
of the temperature, of course, since the kinetic energy of the motion is of order kT .

When two of these very cold gas clouds collide with some velocity vcoll, the kinetic energy
of the collision is immediately randomized into heat in the resulting shock wave — the
motion is supersonic with respect to the gas, and the disturbance cannot propagate into
the gas as fast as the gas itself is moving. Remember that we are talking about velocities
in the case of forming galaxies of order 100 km/sec or more. A proton with that velocity
has an energy of about 50 eV, more than enough to ionize a hydrogen atom, so the
gas after the collision is expected to be ionized. The collision kinetic energy is all in
one direction, and the energy gets shared with motions in all three directions after the
shock. A collision with a relative velocity of 200 km/s (so, say, two clouds falling in, each
moving at 100 km/s) results in random velocities after the collision of about 60 km/sec
and temperatures of about 250,000K; most of the mass falls in much faster, and collisions
with relative velocities of 400 km/sec result in million-degree gas. This is actually closer
to the characteristic temperature of the gas — we can ask ourselves what temperature the
gas must be in order to have a density distribution like the dark matter, and the answer,
if one looks at the hydrostatic equation, is that the ratio of pressure to density must be
the same.

For the dark matter, P/ρ = σ2. For an ideal gas, P = nkT = ρkT/µ, where µ is the
mean molecular weight. The gas is mostly hydrogen, about a quarter by mass helium,
and there is one free electron per hydrogen atom and 2 per helium atom. If one takes
a gram of material, therefore, there are .75/mp protons, .25/(4mp) helium nuclei, and
.75/mp +2∗ .25/(4mp) electrons, a total of about 1.7/mp particles. So the mean molecular
weight µ is mp/1.7 ≈ 0.6mp, and the temperature is µσ2/k. For the Galaxy, with σ =
160km/sec, the equivalent temperature is 1.8 million degrees.

How does such a gas cool? At the lowest temperatures considered here, primarily through
recombination. A proton captures an electron and the energy to bind the electron is carried
away by a photon. Subsequently more energy is released as the atom cascades to the ground
state. The atom will be ionized again soon, but the energy required to do so comes out of
the ionizing electron. Basically every recombination/ionization loses the ionization energy
plus the mean kinetic energy of an electron, so this energy times the rate of recombinations
is the energy loss rate. The recombination rate clearly is proportional to the number
density of electrons times the number density of protons, or, since they are proportional
(and roughly equal) to each other, to the square of the number density. The rate also
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depends on the electron velocity; it is much easier for a proton to capture a slow electron
than a fast one, but there are more collisions per unit time if the electrons are moving
rapidly. These do not cancel, and there is a slowly decreasing velocity (temperature)
dependence left.

At higher temperatures, the primary cooling process is bremsstrahlung, or free-free radi-
ation; this is radiation which occurs as an electron which is not bound to a proton is
accelerated by its electric field as it whips past. This dominates for temperatures higher
than a few hundred thousand degrees. It must also clearly be proportional to the square of
the number density, and here there is a slowly increasing temperature dependence, which
is why the switch to this process at high temperatures. A simple approximate expression
for this cooling (for a gas with the primordial composition) is

j = 2.4 × 10−27T 1/2n2
e erg/sec cm3,

which is the rate of energy loss per cubic centimeter per second from the gas.

A useful thing to look at is the cooling time tcool, which is just the characteristic time it
would take for the gas to radiate all of its energy by this process. The internal energy of
the gas is (3/2)nkT ≈ 3nekT , so

tcool ≈
3nekT

j

≈ 1.7 × 1011 T 1/2

ne
sec

≈ 5 × 106 T
1/2
6

ne
yr

Where T6 is the temperature in millions of degrees. We saw that the spread-out density of
the galaxy was about 3 × 10−22g/cm3, or a number density of protons or electrons about
200 per cubic centimeter. The cooling time for this is incredibly short, only 25,000 years.
Even if the baryons are fully distributed like the dark matter, 10 times as large radii, the
cooling time is of order 25 million years, short compared to the collapse time.

Suppose there were no cooling. Then, though collisions are important, the energy of
the gas would be conserved, and we would expect it to occupy roughly the same volume
and be distributed in roughly the same way as the dark matter. Then if one turned on
cooling suddenly, at least for a structure like the galaxy, the baryons would radiate away
their internal energy on a timescale short compared to the gravitational timescale. But
the internal energy density is just proportional to the pressure, so the gas can no longer
support itself, and it shrinks with respect to the dark matter.

How far? Well, until something stops it, because as it gets denser and denser it radiates
more and more efficiently. What can stop it? Only two things, as far as we know. We know,
and there will be much discussion of this later, that gas in galaxies eventually makes stars,
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by processes which are more-or-less well understood but much too complex to calculate
accurately. Once this happens, the ‘gas’ of stars behaves just like the dark matter; physical
collisions between stars are incredibly rare, and the stars do not lose energy any more, but
orbit in the combined potential of other stars and the dark matter.

The other thing that can stop it is angular momentum. Let us think about this carefully.
The dark matter has an amount of angular momentum from tidal torques which corre-
sponds to some angular momentum parameter, which in the mean is about 0.05. The
baryons and dark matter were well mixed while most of this was going on, so the ratio
J/M is similar for both. If now the baryons sink in the potential of the dark matter, they
rotate faster, of course, because their angular momentum is conserved and the radius is
decreasing. Let us see if we can calculate what we expect.

VIII. How Rotation Stops the Collapse

We saw in the last lecture that tidal torques produce a value of the angular momentum
parameter of about 0.05, and that the parameter in terms of simple quantities is about

λ ≈ 0.4
√

Trot/Ttot ≈ 0.24vrot/σ ≈ 0.05,

so
vrot

σ
≈ 0.2

Now as the gas cools, it shrinks, and if it shrinks by a factor F, it is clear by angular
momentum conservation that vrot ∝ 1/F ; But we have seen that a particle with a velocity
of σ

√
2 is in a circular orbit in the dark matter isothermal sphere, so this velocity is reached

when
vrot ≈ 0.2σ/F = σ

√
2,

or F ≈ 0.14. Thus the gas sinks into the dark matter halo by about a factor of 7 before
it finds itself spinning fast enough to support itself. Its density rises by about a factor
of 73 ≈ 350, of course, in the process. It has sunk into the dark matter structure, which
has a density distribution which is proportional to 1/r2, so the baryons find themselves
in a place where the dark matter density is a factor of 72 ≈ 50 higher, so the ratio of
baryonic to dark matter is up by a factor of about 7, 1/F . If there is 7 times as much
dark matter as baryons, when the baryons have finished settling in, there are comparable

amounts of dark and baryonic matter in the region which the baryons occupy, and that

region is of order 7 times smaller than the extent of the dark matter. By this time and at
these densities the cooling time of the gas is very short. There is nothing to support it
along the axis of rotation, and it settles into a thin disk until it cools to about 10,000K,
at which temperature it recombines; once it is neutral the cooling essentially stops. This
104K temperature is magic, as you will learn later. It takes only 1 eV per particle to heat
it from dead cold to this temperature, then 13.6eV to ionize it at this temperature, but
once it is ionized another 10eV takes it to 105 degrees, so it is a temperature where a lot of
gas typically lives. It is also true that cooling by recombination is very efficient for ionized
gas at 10,000K, so it is hard to heat it even when it is fully ionized.
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Before we go back and take a critical look at this picture, let us review the numbers for the
Galaxy. First, the observations say that the circular velocity is about 220 km/sec and that
there is about 1011M⊙ of baryonic matter (gas and stars) within a radius of about 15 kpc,
and rather little outside. The evidence is strong for our galaxy and absolutely convincing
for others (where the measurement can be made more easily) that the rotation velocity is
accurately constant at distances far beyond where the baryonic contribution to the mass
is important. This is one of the strong arguments for a dark halo; the density distribution
must be 1/r2 in order to produce a constant rotation velocity, just as we might expect
from the picture we have been describing. There is a body of evidence which suggests that
there is much more dark matter than baryonic, though the flat rotation curves of galaxies
merely demand that it exist; the measurements cannot be performed far enough out to
really measure how much there is. There are several ways, which we will discuss later, to
get at how much there is, and all agree that there is of order 7-10 times as much as baryonic
matter. If this is right, the total mass of the Galaxy is about 1012M⊙ and the dark halo
extends to of order 100 kpc, as we discussed earlier. In order that the circular velocity be
220 km/sec, the velocity dispersion of the dark halo must be about 220/

√
2 ≈ 160 km/sec.

The disk is a factor of 7-10 smaller than the halo, and everything fits pretty well.

The galaxy is in a small group of galaxies called the Local Group, which has of order 15
members, but it is completely dominated by the Galaxy and the great spiral in Andromeda,
M31, a galaxy probably a little more massive than our own but not dissimilar to ours in
general properties. If one thinks about the tidal torquing hypothesis, it should be that
the axis of rotation of the two objects, if there are but two objects, should be roughly
perpendicular to the line connecting them. In the Local Group, this is true of both M31
and the Galaxy within about 15 degrees.

It would appear that tidal torques do work, and work spectacularly well.

At this point let us think about what this general picture would look like without dark
matter. If there were only gas, then the Galaxy would have had to contract as a gas
cloud only under its own gravity; in that case, we can look at the evolution of the angular
momentum parameter directly, since the energetics are simple; we do not worry about the
large-mass, fixed dark halo. We must go from λ of roughly 0.05 to about 0.4. Recall that

λ ∝ J |E|1/2.

J is conserved, and E ∝ 1/r, so to make λ increase by a factor of 8, E must increase by
a factor of 64, and the system must shrink by a factor of 64, not 7 or 8 as we had in the
dark matter halo. Thus the maximum expansion radius must be huge, (about 2.5 Mpc)
and since the mass is only the baryon mass, 1011M⊙, the collapse time is very, very long,
several hundred times the age of the universe. So tidal torquing fails spectacularly to work
unless the universe is dominated by dark matter.

Galaxies which are not spiral disk galaxies exist, and they exist especially commonly in
large clusters of galaxies. The picture above suggests that disks should form, but it is
probably so that in regions of high density disks form and form some stars and are then
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disrupted by collisions/ mergers. This picture is not completely clear but qualitatively
explains what is seen, that in clusters one finds more massive galaxies than in the field,
but primarily ones with very little gas and often no disk at all—that is, elliptical galaxies.
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