THEORY OF STAR FORMATION: TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>565</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>566</td>
</tr>
<tr>
<td>2. BASIC PHYSICAL PROCESSES</td>
<td></td>
</tr>
<tr>
<td>2.1 Turbulence</td>
<td>567</td>
</tr>
<tr>
<td>2.1.1 Spatial correlations of velocity and magnetic fields</td>
<td>567</td>
</tr>
<tr>
<td>2.1.2 Turbulent dissipation timescales</td>
<td>571</td>
</tr>
<tr>
<td>2.1.3 Physical scales in turbulent flows</td>
<td>572</td>
</tr>
<tr>
<td>2.1.4 Density structure imposed by turbulence</td>
<td>574</td>
</tr>
<tr>
<td>2.1.5 Observations of turbulence</td>
<td>576</td>
</tr>
<tr>
<td>2.2 Self-Gravity</td>
<td>579</td>
</tr>
<tr>
<td>2.3 Magnetic Fields</td>
<td>584</td>
</tr>
<tr>
<td>2.3.1 Ionization</td>
<td>588</td>
</tr>
<tr>
<td>3. MACROPHYSICS OF STAR FORMATION</td>
<td></td>
</tr>
<tr>
<td>3.1 Physical State of Giant Molecular Clouds, Clumps and Cores</td>
<td>589</td>
</tr>
<tr>
<td>3.1.1 Dynamics of giant molecular clouds</td>
<td>591</td>
</tr>
<tr>
<td>3.1.2 Clumps and cores</td>
<td>595</td>
</tr>
<tr>
<td>3.2 Formation, Evolution and Destruction of GMCs</td>
<td>600</td>
</tr>
<tr>
<td>3.2.1 Cloud formation</td>
<td>600</td>
</tr>
<tr>
<td>3.2.2 Cloud evolution and destruction</td>
<td>606</td>
</tr>
<tr>
<td>3.3 Core Mass Functions and the Initial Mass Function</td>
<td>611</td>
</tr>
<tr>
<td>3.3.1 Observations of the stellar initial mass function and the core mass function</td>
<td>611</td>
</tr>
<tr>
<td>3.3.2 Theoretical proposals and numerical results</td>
<td>614</td>
</tr>
<tr>
<td>3.4 The Large-Scale Rate of Star Formation</td>
<td>618</td>
</tr>
<tr>
<td>4. MICROPHYSICS OF STAR FORMATION</td>
<td></td>
</tr>
<tr>
<td>4.1 Low-Mass Star Formation</td>
<td>624</td>
</tr>
<tr>
<td>4.1.1 Theory of core collapse and protostellar infall</td>
<td>624</td>
</tr>
<tr>
<td>4.1.1.1 Effects of rotation</td>
<td>627</td>
</tr>
<tr>
<td>4.1.1.2 Effects of magnetic fields</td>
<td>628</td>
</tr>
<tr>
<td>4.1.2 Bondi-Hoyle Accretion</td>
<td>632</td>
</tr>
<tr>
<td>4.1.3 Observations of low-mass star formation</td>
<td>633</td>
</tr>
<tr>
<td>4.1.3.1 Brown dwarfs</td>
<td>637</td>
</tr>
<tr>
<td>4.1.3.2 Binaries</td>
<td>638</td>
</tr>
</tbody>
</table>
4.2 Disks and Winds ... 639
4.2.1 Observations of disks ... 639
4.2.2 Accretion mechanisms .. 642
 4.2.2.1 Hydrodynamic mechanisms .. 643
 4.2.2.2 MHD mechanisms ... 645
 4.2.2.3 Self-gravitational mechanisms 646
4.2.3 Disk clearing .. 647
4.2.4 Observations of young stellar object jets and outflows 648
4.2.5 Driving magnetohydrodynamic winds and jets 651
4.2.6 Origins and effects of outflows 653

4.3 High-Mass Star Formation ... 654
4.3.1 Protostellar infall ... 654
4.3.2 Observations of high-mass protostars 658
4.3.3 Forming stars in the presence of radiation pressure 659
4.3.4 Photoionization feedback: HII regions 660
4.3.5 Star formation in clusters ... 661

5. OVERVIEW OF THE STAR-FORMATION PROCESS 664

LITERATURE CITED ... 666

FIGURES
 Fig. 1. Map of the molecular gas in the Orion-Monoceros region 575
 Fig. 2. Effect of stellar feedback in the Carina Nebula 609
 Fig. 3. The HH 111 jet and outflow system 649