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ABSTRACT 

The two principal phenomena associated with an underwater explosion are 

bubble motion and shock wave propagation. In this thesis both are investigated. 

The study of bubble dynamics proceeds by assuming irrotational flow in an 

incompressible and inviscid fluid. A technique is developed for the derivation of 

equations of motion for a spherical bubble in flow domains of simple geometry. 

The concept of the Kelvin impulse is exploited in this endeavour. The spherical 

model is used to infer the behaviour of bubbles that deform from spherical shape. 

The boundary integral method is then employed to compute the motion of 

underwater explosion bubbles. The pressure within the bubble is assumed to be 

a function of the bubble volume and it is demonstrated that under some circum

stances the increasing bubble pressure upon collapse will cause the non-spherical 

bubble to rebound. In these cases the high speed liquid jets characteristic of bub

ble collapse are shown to grow during the rebound phase of the motion. Data for 

the behaviour of bubbles described by a wide range of the physical parameters 

governing the motion is presented. 

The jet that forms upon collapse or rebound threads the bubble and ultimately 

impacts upon the far side of the bubble. To date, boundary integral methods 

have been unable to compute the motion beyond this time. Thus the impact is 

considered and a boundary integral method is developed to compute the motion 

of the toroidal bubble that is created by this jet penetration. The dynamics of 

toroidal bubbles is then investigated. 

The theory of geometrical shock dynamics is considered in the context of the 

propagation of an underwater blast wave. The significant feature of such a wave 

is the non-uniform flow field behind the shock. In order to account for this flow 

the propagation of a shock down a tube of slowly varying cross section is reconsid-
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ered. The solution of this problem is the basis for the theory of geometrical shock 

dynamics. It is found that the propagation is described by an infinite sequence 

of ordinary differential equations that can be closed by a process of truncation. 

Truncation at higher equations allows higher order derivatives of flow quantities 

evaluated at the shock to be included in the description of the shock motion. 

In this manner account may be taken of non-uniform flow conditions behind the 

shock. These equations are implemented in the numerical scheme of geometrical 

shock dynamics and the diffraction of an underwater blast wave is considered. 

viii 



1 

INTRODUCTION TO 
UNDERWATER EXPLOSION RESEARCH 

1.1. A brief history of underwater explosion research 

The detonation of a mass of explosive beneath the ocean surface causes a com

plex sequence of physical phenomena to occur. Supposing that the detonation 

occurs at the centre of the explosive, a detonation wave then propagates to the 

surface of the explosive where it meets the surrounding water. Left in the path of 

the detonation wave is an approximately spherical volume of gas at high tempera

ture and pressure, and we will refer to this volume of gas as the explosion bubble. 

The interaction of the detonation wave with the surrounding water causes a rapid 

compression and a shock wave is transmitted into the water. Accompanying this 

is the reflection of a wave back into the explosion bubble. At this time we further 

suppose that due to the high temperature associated with the detonation the wa

ter surrounding the bubble is rapidly heated and a phase transition to the gaseous 

state takes place. In addition, chemical reactions may still be taking place within 

the bubble, amongst the remnants of the detonation. 

Although this early behaviour is very complex, a short time later observations 

indicate that the primary behaviour can be described by a simpler picture. The 

principal phenomena occurring are the propagation of a spherical shock wave into 

the water at a speed of about 1500m«-1 and the oscillation of the explosion bubble, 

with a period of about one second. The initial high pressure of the gas inside the 

bubble drives its expansion, with the subsequent decrease of this pressure causing 

the outwards motion to be brought to rest by the hydrostatic pressure in the fluid. 

The bubble then collapses, with the now increasing pressure ultimately arresting 

the collapse and causing the bubble to rebound. The motion observed is thus 

oscillatory. 3 000o 02
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When a plane acoustic wave is reflected normal to a rigid boundary the pressure 

experienced at the boundary is twice that of the incident pulse. In the case of 

reflection of shock waves this factor is greater than two and because of the large 

shock wave pressures generated by an underwater explosion, the potential for 

damage due to the impact of the shock upon some marine structure is clear. As an 

example of the bubble phenomenon, if we consider the detonation of 1000/fc (453.6kg) 

of the explosive TNT at a depth of 50 ft (15.24m) then the bubble formed grows to a 

maximum radius of about 30/t (9.144m) and displaces 3630 tons (3200 tonnes) of water. 

This value is of the same order as the displacement of typical warships (a typical 

displacement for a destroyer is 7600 tons (6700 tonnes)). When this observation is 

coupled with the knowledge that this fluid at times undergoes a very high speed 

motion it becomes apparent that the fluid motion induced by the oscillations of 

the explosion bubble may be a damage causing agent of significance comparable 

to that of the shock wave. 

Each of these phenomena may be characterised by its own time scale. For the 

sake of comparison we might choose a time scale for the shock wave motion to 

be that time it would take the shock to propagate a distance of the order of the 

maximum bubble radius. For the above mentioned example this yields a value 

of t, ~ 6 x 10~3«. The bubble motion is well characterised by its period tb ~ Is, 

and that these values differ by two orders of magnitude gives strong support to 

the assumption that a very short time after the detonation has occurred the two 

phenomena may be considered as independent. The great majority of studies 

of underwater explosion effects have exploited this assumption and introduced 

independent models to describe the motion of the shock and bubble. 

An early study of considerable significance in the field of bubble research was 

the investigation by Lord Rayleigh (1917) of the collapse of a spherical transient 

cavity in an infinite fluid. In that study it was assumed that the gas within the 

bubble consists of the liquid vapour, exerting a constant pressure throughout the 

lifetime of the bubble. The significant demonstration is the very high pressure 
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generated in the fluid near to the bubble surface as it collapses to a singularity. 

This analysis was extended in the context of underwater explosion research by 

Lamb (1923) who assumed that the pressure within the explosion bubble varies as 

P = Po(v0/vy, (1.1.1) 

with V the volume, y a constant and the subscript denoting initial values. Lamb 

carried through the analysis for the cases y = 1 and y = 4/3. 

Early experimental effort was due to Ramsauer (1923) who used a system of 

electrodes to record radius vs. time data for the expansion of the bubble produced 

by the firing of guncotton charges. In the apparatus used, the water between 

a remote electrode and a series of electrodes placed at increasing distances from 

the charge completes a series of electrical circuits. As the bubble expands each 

electrode eventually becomes isolated from the water and the circuit is broken. 

Recording the time at which each circuit is broken provides a radius vs. time his

tory for the expansion phase of the bubble motion. Ramsauer found good agree

ment with the predictions of the simple theory of the variation of the maximum 

bubble radius with depth and mass of explosive. 

Little work of significance was done between this time and World War II, which 

provided the impetus for a great experimental and theoretical effort. The work of 

this period consisted of modelling the explosion bubble as spherical and assuming 

the surrounding water to be inviscid and incompressible and the flow induced by 

the bubble's motion as irrotational. Advances over the previous theoretical studies 

were the inclusion of buoyancy forces, certainly significant given the size of an 

explosion bubble, and a description of the influence of boundaries, the interaction 

with targets and the ocean surface providing the motivation for this consideration. 

For motion under the influence of buoyancy alone Herring (1941) first gave the 

system of equations describing the evolution of the explosion bubble. This system 

is 

jt {R*U) = 2g£
8, (1.1.2) 
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2xpB* (j§)3 + IP&V + ̂ pR*gz = Y - E(R), (1.1.3) 

dz 
17 = - - , (1.1.4) 

where R is the bubble radius, U the velocity of the bubble centroid and z is the 

position of the bubble centroid measured in the direction of the gravitational 

acceleration, whose magnitude is given by g. The internal energy of the bubble 

contents is given as a function of the radius via E(R), p is the density of the fluid, 

t the time and Y is the total energy of the system and hence constant. The 

hydrostatic pressure is pgz. A comprehensive numerical investigation of this system 

was undertaken by Taylor (1942). Herring (1941) also gave the equations for 

motion in the neighbourhood of a free or rigid boundary and these are 

£ 
dt 
<•»>-*£ (4MS)")-

and 

2*pRi 0 * Tz) (f)'+r*8* 7= Y - Ew> (116) 
where buoyancy is not included, z is measured away from the boundary and U is 

as defined in (1.1.4). The upper sign gives the equations for motion near a free 

boundary and the lower sign for motion in the neighbourhood of a rigid boundary. 

These equations were deduced by expanding the velocity potential for the flow 

in terms of spherical harmonics and performing a similar expansion for the radial 

co-ordinate of points on the bubble surface. To the order computed by Herring the 

action of the perturbation due to either gravity or nearby boundaries is to merely 

displace the bubble as a whole, rather than deform it from spherical shape. 

Accompanying these theoretical developments were experimental programs, 

the significant technique employed being high speed photography, which allowed 

accurate records of the bubble shape as a function of time and the migration be

haviour of the bubble to be obtained, with data also being recorded during the 

collapse phase of the motion. Significant studies in this context include those of 

Taylor and Davies (1943) and Bryant (1944). The results of these studies indicate 
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good agreement with the theoretical predictions of the bubble radius and centroid 

position during the expansion phase and early collapse phase. It was found, how

ever, that during the later stages of the collapse the bubble departs noticeably from 

spherical shape, with the bottom side of an upwards translating bubble becoming 

flattened as the bubble accelerates forward during its collapse. Accompanying this 

is a failure of the simple model to accurately predict the upwards migration of the 

bubble. A further study of significance is that of Swift and Decius (1947) in which 

up to three oscillations of the bubble produced by a deep explosion were observed. 

It was found that the maximum radius associated with each oscillation decreases, 

despite the simple model predicting an increase due to the decreasing hydrostatic 

pressure as the bubble rises. 

This observed departure from spherical shape raises the question of the stabil

ity of the spherical form. The observation that for deep explosions a mix of gas and 

water, rather than a connected bubble, reaches the surface indicates a break up of 

the initially spherical bubble and motivated Penney and Price (1942) to consider 

the stability of an initially spherical bubble rising under the action of buoyancy 

forces. They proceeded in their analysis by expanding the radial co-ordinate of 

points on the bubble surface and the expression for the velocity potential at this 

surface in terms of spherical harmonics, and assuming small perturbations in the 

shape were able to compute the initial growth of these perturbations. The results 

of the linear analysis indicate that the growth phase is stable against perturba

tions, but that upon collapse any initial perturbations in the shape will grow, 

buoyancy being a source of such perturbation. The results of that study are, 

however, limited by the fact that the analysis is linear. 

Although work on underwater explosion bubble dynamics has continued since 

this time the level of activity has not been so intense. The book Underwater Ex

plosions by Cole (1948) provides an excellent and complete review of the wartime 

research. A more recent review is that of Holt (1977) and little progression be

yond the war time modelling of Herring and Taylor is evident. A point of some 
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significance, however, is the postulate attributed to Snay (1960) that the bubble 

generated by a deep explosion rises for much of its lifetime with an attached vortex 

ring. This postulate is based upon the photographic records of bubbles deforming 

from spherical shape, with the flattening of the underside indicating the formation 

of a re-entrant jet that threads the bubble from the rear and ultimately penetrates 

it completely, generating a vortex ring. Holt presents some computations treating 

the bubble as a Hill's spherical vortex in order to make some assessment of this 

matter. The significant point is that a considerable amount of kinetic energy is 

bound in the vortex motion. As mentioned previously the experiments of Swift 

and Decius (1947) show a decreasing maximum radius as a bubble rises. Assum

ing a spherical form for the bubble produces estimates of a significant energy loss 

between pulsations. Herring (1949) presented a discussion of possible loss mech

anisms including radiation of acoustic energy, turbulence and heat transfer and 

concluded that although the principal loss mechanism is via radiation it cannot 

account for the apparent losses as computed from the experimental data. The 

computations of Holt indicate that the quantity of kinetic energy bound in the 

vortex motion is of the same order as that which appears to be lost between suc

cessive pulsations, as computed assuming a spherical form. This computation thus 

provides some evidence in support of the postulate that the bubble develops some 

vortex structure upon collapse. 

Although the specific problem of underwater explosion bubble dynamics has 

received little direct attention since WWII very significant advances have been 

made in the study of cavitation bubble dynamics, continuing on from the work 

of Lord Rayleigh. In the first instance considerable refinement and innovation 

has occurred in the development of experimental techniques. Landmark studies 

of the dynamics of cavities in the neighbourhood of solid boundaries include those 

of Naude and Ellis (1961) and Benjamin and Ellis (1966). These experiments 

respectively utilised spark discharge and the kinetic impulse method to generate 

cavities, but both employed high speed photography to record the bubble motion 
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and both demonstrated the non-spherical character of the collapse. It was found 

that the part of the bubble surface furthermost away from the boundary collapses 

at greater speed than other parts, ultimately forming a high speed liquid jet that 

threads the bubble and finally impacts upon the far side of the bubble, nearest 

the rigid boundary. It is the impact of the jet that is proposed as the mechanism 

for cavitation damage. Subsequent studies (see for example Gibson, 1968) have 

included an investigation of bubble motion near boundaries with some compliance 

and indicate a dependence of the character of the jet upon the nature of the 

boundary. 

In more recent times the spark discharge technique of bubble generation has 

been further refined and some excellent experimental results are available in the 

work of Chahine (1977, 1982) and Blake and Gibson (1981). Laser technology has 

also been employed in the generation of bubbles and the use of modern optical 

techniques, including holography, coupled with filming rates of up to 106 frames 

per second have allowed a more complete description of the bubble collapse phe

nomenon to be obtained. These techniques have been pioneered by Lauterborn 

and his co-workers (Lauterborn and Bolle, 1975; Lauterborn, 1982; Lauterborn 

and Vogel, 1984; Lauterborn and Hentschel, 1985). In a recent study (Vogel et al., 

1989) these techniques were implemented to study the motion of laser generated 

cavities in the neighbourhood of a rigid boundary, with significant results being 

the recording of multiple oscillations of the bubbles and the demonstration of the 

evolution into a vortex ring bubble as a result of penetration by the jet. 

In the study of Tomita and Shima (1986) the question of surface damage caused 

by the impact of the jet was experimentally investigated by utilising photoelastic 

materials in the construction of a boundary and a schlieren technique in order to 

visualise the stress field induced in the boundary by the impact of the jet caused 

by adjacent cavity collapse. Furthermore, the use of a soft material, indium, as a 

boundary demonstrated the pitting caused by the impact of jets. 

Accompanying these experimental efforts have been theoretical advances of 
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equal significance. In their landmark paper Benjamin and Ellis (1966) introduce 

the concept of the Kelvin impulse to the study of bubble dynamics. In their 

discussions qualitative features of the bubble collapse phenomenon, such as the 

deformation from spherical shape during the collapse of a translating bubble and 

its proposed ultimate fate as a vortex system, are plausibly explained using the 

properties of the Kelvin impulse. More quantitative approaches include full nu

merical solutions of Laplace's equation that describes the flow field, allowing the 

pressure and fluid velocity fields to be determined as a function of time. Plesset 

and Chapman (1971) employed a marker in cell technique and computed the col

lapse of an initially spherical vapour cavity adjacent to a rigid boundary. Their 

calculations demonstrate the formation of a high speed jet directed towards the 

boundary. The motion of the jet is followed up until the time that it impacts upon 

the far side of the bubble. 

Since this time the boundary integral method has been shown to be a pow

erful technique for the computation of bubble motion. The work of Guerri et al. 

(1981) and Blake et al. (1986, 1987) are particularly successful applications of the 

technique. The computations of Kucera and Blake (1988) utilising this method 

compare well with the results of experiment (Vogel et al., 1989). Although the 

bubble produced by an underwater explosion differs from the bubbles of these 

studies, both in magnitude and in the nature of the bubbles contents, the fluid dy

namics problem is the same and the evidence obtained during WWII indicates the 

formation of jets. The potential for damage due to jet impact, as demonstrated in 

experimental studies of small scale bubbles, gives an indication of the importance 

of consideration of this phenomenon in assessing the potential for damage by an 

underwater explosion. 

The mathematical description of the propagation of shock waves underwater 

requires the consideration of a compressible fluid, in contrast to the incompressible 

fluid description employed in modelling the bubble motion. Prior to any attempt 

to develop a theory for the generation or propagation of the shock wave produced 
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by an underwater explosion it was pointed out by Hilliar (1919) that a short 

distance from the charge the shock is weak so that entropy changes throughout 

the fluid may be neglected and the pressure considered as a function of density 

alone. In this regime the equations of compressible flow are invariant if the time 

and length scales are changed by the same constant factor, with the pressure left 

unchanged. The Rankine-Hugoniot shock jump conditions which are satisfied at 

the shock front also exhibit this invariance leading to the statement by Hilliar 

that the peak pressure, pi, experienced at some target point a distance r from the 

charge will be given as 

Pi = f(W
lf*/r), (1.1.7) 

where / is an unknown function and W is the charge mass. The length scale is 

given by the linear dimensions of the charge, proportional to Wll3. This concept 

has become known as the principle of similarity and it is discussed in some de

tail by Cole (1948), including a description of the criteria for it to be applicable 

and circumstances under which it will fail. The experimental results reported by 

Hilliar (1919) mark the first attempt to verify this principle. Although previous 

experimenters had compiled data for the peak pressure produced by a shock wave 

by employing crusher gauges, Hilliar developed his own variant with the signifi

cant capability of recording to some extent the pressure-time history of the wave 

form. His results provided not only confirmation of the principle but also a good 

body of data which may be applied to charges of any mass via the principle of 

similarity (provided of course that the constraints on its applicability are not vio

lated). These results, although subsequently superceded by those obtained using 

superior apparatus, also gave an indication of what is now the generally accepted 

description of the pressure wave; that of an exponential decay. 

It is supposed that upon passage of the shock the pressure rises to some peak 

value, pi, and thereafter decays exponentially, this decay characterised by the time 

constant 7j. We write 

P = pie-
t/Ti. (1.1.8) 
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This form has been well verified by experimental studies employing piezoelectric 

gauges to record pressure vs. time data, the first such investigation using this 

method attributed to Keys (1921). The principle of similarity asserts that the 

time constant must vary as 

Ti = W
l'zg(Wxl*/r), (1.1.9) 

with the function g unknown. The experimental data has been successfully sum

marised by assuming power law functions in (1.1.7) and (1.1.9). Values for the 

coefficients and exponents in these power laws may be found in Cole (1948) and 

further data establishing an extended range of values of W1ia/r over which these 

expressions are applicable has been recorded by Arons (1954). In more recent 

times data for explosions near to the ocean surface has been compiled by Ross 

Chapman (1985) and relationships based on the principle of similarity fitted to 

the data. 

The classical theoretical treatment of the blast wave produced by an under

water explosion is that due to Kirkwood and Bethe (1942). In their theory the 

character of the shock wave is related to the detonation process by considering 

the generation of the shock by the rapid acceleration of the bubble/water inter

face during the early times just after the completion of the detonation. In this 

way relations may be deduced that give the parameters characterising the shock 

wave as functions of physical quantities describing the explosive. The theory is 

thus valuable in assessing the usefulness of particular explosives. A most signifi

cant approximation employed in the theory is the so-called peak approximation. 

This approximation involves assuming an exponential decay for certain quantities 

characterised by a high initial peak and very large and negative initial value of the 

first time derivative. It is this approximation that yields from the Kirkwood-Bethe 

theory the result that the pressure at some target point decays exponentially, and 

the expressions obtained for the peak pressure and time constant as functions of 

range are found to be in good agreement with the experimental data. 
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During this time a numerical investigation of the generation and propagation 

of an underwater blast wave was undertaken by Penney and Dasgupta (Penney, 

1941; Penney and Dasgupta, 1942) in which the equations of compressible flow 

were integrated along characteristics, with a shock fitted to the solution. The 

numerical calculation and the theory of Kirkwood and Bethe differ in their predic

tions close in to the charge but tend towards each other as distance increases. The 

difference is due to different assumptions about the conditions at the conclusion of 

the detonation. For further details regarding this comparison the reader is referred 

to Cole's book, including a discussion of the propagation theory of Kirkwood and 

Brinkley (1945). 

The review of Holt (1977) reports refined numerical computations and the ap

plication of the point blast solution (Taylor, 1950; Sedov, 1945 a,b) to propagation 

in water using an appropriate equation of state. This solution assumes propaga

tion of shocks in the strong shock limit and that the shock is generated by the 

instantaneous release of a finite amount of energy. As such it is only applicable to 

the case of a nuclear explosion and even so becomes invalid as the shock decays and 

the pressure ahead of the shock is no longer negligible compared to that behind. 

For propagation in such cases modifications must be made. 

A further study since WWII that is of interest is that of Rogers (1977) in 

which the propagation of a weak shock in water is considered. It is assumed 

that at some initial range the pressure due to the passage of the shock decays 

exponentially. By assuming a weakly non-linear form for the solution, expressions 

are obtained for the variation of the peak pressure and time constant with range. 

Good agreement is found with the predictions of the Kirkwood-Bethe theory and 

available experimental data. In contrast to the Kirkwood-Bethe theory, though, 

this theory is merely one of propagation and does not address the relationship 

between the shock and the detonation. As such the initial wave form must be 

determined by independent methods. 

Although considerable attention has been paid to the generation and prop-
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agation of the blast wave produced by an underwater explosion, little work has 

addressed the question of its interaction with targets. The diffraction of the shock 

by solid boundaries gives rise to a pressure experienced at the boundary either 

greater or less than that in the incident wave, the exact value determined by the 

geometry. The phenomenon of shock diffraction thus assumes significance in as

sessing the potential for damage to a structure due to the impact of an underwater 

blast wave. 

1.2. Preface to this work 

As past workers have done we consider in this work the two major underwater 

explosion phenomena of bubble motion and shock motion as distinct. We do not 

concern ourselves with the very earliest times, when the detonation wave interacts 

with the surrounding water to initiate the shock wave, with the gaseous remains 

of this detonation providing the very high initial pressure that drives the bubble 

motion. We suppose that some short time after these occurrences we can well 

describe the motion of the shock wave and the bubble as independent phenomena. 

Indeed, the fundamental assumptions used to formulate mathematical descriptions 

of each are incompatible. 

In part I of this work we consider the motion of a bubble as assumed to take 

place in an incompressible and inviscid fluid, with the flow induced by the bubble's 

motion irrotational. Within this model a number of investigations are pursued, 

the principal concern being with the jetting phenomenon so well described in 

studies of vapour cavities. In the first instance global studies of fluid momentum 

are reviewed, the concept of the Kelvin impulse being exploited. The impulse 

corresponds to the effective momentum of the bubble and this interpretation allows 

an analogy to be drawn with the momentum of particle mechanics, an analogy 

which has been exploited in the past to determine gross aspects of the bubble 

motion, in particular its migratory response towards the end of its lifetime. In 

that work singularities are used to represent the lowest order contributions to the 
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velocity potential of the fluid and image theory is exploited to consider motion in 

the neighbourhood of some geometries in which the flow field is three dimensional 

and symmetry cannot be exploited to simplify the analysis. 

In this work we develop a technique for determining equations of motion for 

translating bubbles constrained to remain spherical throughout their lifetime. The 

concept of the Kelvin impulse is exploited in this endeavour and singularities are 

utilised to represent the velocity potential. Systems of ordinary differential equa

tions are deduced and these may be routinely and inexpensively solved. Just as 

the Kelvin impulse has been exploited by Blake and his co-workers to determine 

aspects of the later motion of bubbles, when they deform from spherical shape, so 

too can the consideration of translating spherical bubbles be similarly used. It is 

proposed that the direction of migration at the end of the bubble life (or first oscil

lation), as predicted by spherical bubble dynamics, corresponds to the direction of 

jet formation in asymmetric collapse. The equations of spherical bubble dynamics 

predict that this direction is co-incident with that of the Kelvin impulse at that 

time. The example of cavitation bubble motion in an axisymmetric geometry is 

one in which there is a body of experimental and numerical data and is thus used 

to validate the results inferred from the spherical model. The comparison suggests 

the value of the approach and extension to three dimensional flows is made, the 

validation of such results left for later study. 

Since our primary concern is with explosion bubbles, or bubbles containing 

non-condensible contents, the elementary model is employed to infer what be

haviour we should expect upon the collapse of such bubbles. The intriguing ques

tion is whether the high pressures that arise when the bubble collapses are ca

pable of arresting any jetting motion. The spherical model and consideration of 

the Kelvin impulse suggest circumstances under which this may occur. In order 

to validate such speculations numerical studies of explosion bubble motion are 

undertaken using the boundary integral method. The predictions are confirmed, 

with jetting being generally observed, but under the circumstances identified by 
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considering the spherical model, the non-spherical bubble is found to rebound. 

Even in these cases, however, jetting is observed with the bulk of the growth of 

the jet occurring as the bubble re-expands. 

In all numerical simulations of bubble motion to date using the boundary 

integral method, it is only possible to complete the computation up until the time 

that the jet impinges upon the far side of the bubble. It is apparent that the 

bubble then evolves into a toroidal form with the flow possessing a circulation. 

Thus consideration is given to the moment of impact and a boundary integral 

method is developed to compute the motion of a toroidal bubble. To adequately 

deal with the circulation it is necessary to introduce a cut in the doubly connected 

flow domain in order to render it simply connected. Implementation of the method 

allows computation of the motion of the toroidal bubble and the oscillatory nature 

of the toroidal form is demonstrated. 

The propagation of the shock wave is considered in part II, the emphasis being 

upon the development of a technique for the computation of the diffraction of an 

underwater blast wave by targets of various geometries. To model this phenomenon 

we must specifically include a description of the compressibility of water in order 

that shock wave solutions to the equations of motion exist. This contrasts with 

the incompressible description of the fluid used in part I. 

The theory of geometrical shock dynamics, due to Whitham (1957,1959,1974), 

may be applied to propagation in water upon provision of an appropriate equa

tion of state and is ideally suited to computing the motion of diffracting shock 

waves. Reformulation of the theory using the Tait equation of state for water 

is a routine task, however, the uniform initial flow conditions behind the shock 

that are assumed in this theory are not approximately satisfied in the case of an 

underwater blast wave, as evidenced by the exponential decay of the pressure. 

Thus it is necessary to reconsider the motion of a shock down a tube of slowly 

varying cross section, the solution of this problem being the basis for the theory of 

geometrical shock dynamics. A mathematical structure following from the equa-
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tions of motion is noted, and this allows non-uniform flow conditions behind the 

shock to be included in the description of the propagation only via the value of 

derivatives of flow quantities evaluated at the shock. The motion of the shock can 

thus be computed without the necessity of obtaining a solution for the flow field 

behind the shock. The theory of geometrical shock dynamics is then appropriately 

modified and implemented in a numerical scheme in order that general problems of 

shock diffraction may be computed. The approach is validated by comparison with 

other theoretical studies of underwater shock propagation, the agreement found 

to be excellent. The numerical implementation for two dimensional problems al

lows further comparisons to be made with experimental data. With these results 

confirming the validity of the approach examples of the diffraction of underwater 

blast waves are computed. 
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PART I - BUBBLE DYNAMICS 



2 

THE DESCRIPTION OF THE FLOW FIELD 

2.1. The mathematical model 

We suppose that a bubble undergoes some motion in a fluid and we shall 

denote the domain occupied by the fluid as fi, with dQ signifying its boundary. 

The bubble surface, S, is a subset of dQ and in the case where motion occurs 

in an infinite fluid S = dfi. We shall further denote by n the normal to dil and 

choose that it be directed exterior to fi. We allow for the presence of a uniform 

gravitational field and choose a cartesian set of axes, defined by the orthonormal 

basis ex,ey,ez, such that the gravitational acceleration is given by g = —gez. A 

schematic representation of this geometry is shown in figure 2.1.1. 

We describe the fluid as inviscid and incompressible and the flow induced by 

the bubble's motion as irrotational. We may then introduce a velocity potential, 

<j>, so that the fluid velocity, u, is given by 

u = V<p, (2.1.1) 

with <f> satisfying Laplace's equation in 0; 

V2<£ = 0. (2.1.2) 

On dU we must employ appropriate boundary conditions. In this study dCl will 

only be composed of rigid and free boundaries. There is no flow normal to a rigid 

boundary so here we impose that the velocity potential satisfies 

Vtf>-n = 0. (2.1.3) 

To determine the free boundary condition we appeal to the momentum equation, 

the integrated form of which is the Bernoulli equation, which in our co-ordinate 

system takes the form 

^ + \\V<p\:'+p/p + 9*=Poo/p- (2.1.4) 
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Figure 2.1.1. The geometry used to consider general bubble motion. 



In this expression t,p,p and p«, respectively denote the time, density, pressure and 

hydrostatic pressure at z = 0, where 4> and its derivatives vanish. At a free surface 

the pressure in the fluid is equal to the pressure external to the fluid at that point, 

and this is assumed to be known independently of the description of the fluid. 

Use of this value for the pressure at the free surface in equation (2.1.4) defines 

a non-linear boundary condition to be satisfied by the potential function at the 

free surface. We comment that the bubble surface 5 is a free surface, with the 

pressure at the surface determined by the mathematical description we choose for 

the bubble contents. 

We will shortly have cause to employ a linearised version of (2.1.4). At an 

infinite free surface, defined as the plane z = z0, at which the pressure remains 

constant (such as the ocean surface), equation (2.1.4) gives 

^ + \m' + 9l<-zo) = 0, (2.1.5) 

when evaluated at this surface. In this expression £ is the elevation of the free 

surface. If the fluid velocity there is sufficiently small, so that its modulus squared 

can be neglected in (2.1.5), as can the term g{( — z0) due to the small displacement 

of the free surface, then if the initial potential there is zero we obtain the linearised 

free boundary condition of 

<f> = 0. (2.1.6) 

It can be routinely shown that for the motion of a spherical bubble not too close 

to an infinite free surface neglect of the fluid velocity and surface displacement in 

(2.1.5) is valid. 

We comment at this point that we have neglected surface tension effects. To 

account for this phenomenon would require the addition of the term 

-C<r/P (2.1.7) 

to the left hand side of (2.1.4), when applied at the surface of the bubble. In this 

expression cr is the surface tension and ( is the curvature of the surface, measured 
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positive with respect to a centre of curvature exterior to 0. Computations including 

this effect have been performed and the reader is referred to the work of Chahine 

and Perdue (1988) and Chahine (1990) for details. 

We employ an elementary description of the bubble contents. Studies of cav

itation bubble dynamics have assumed that the bubble contents consist of the 

liquid vapour, and that it exerts a constant pressure, pe, throughout the lifetime 

of the bubble. An explosion bubble, however, contains the gaseous remnants of a 

detonation. We suppose that we can describe this gas as ideal, and that on the 

timescale of the bubble oscillation there is negligible heat exchange with the sur

rounding fluid, so that the expansions and compressions of this gas are adiabatic. 

Indeed, Herring (1949) has discussed this aspect and demonstrates that over the 

period of oscillation of the explosion bubble the heat lost to the surrounding fluid 

is negligible compared to the internal energy of the bubble contents. Hence we 

write the pressure, pg, exerted by the gaseous bubble contents as a function of the 

volume, V, via 

P3=Po(Vo/Vy, (2.1.8) 

where the subscript 0 denotes initial quantities and y is the ratio of specific heats. 

For the products of various explosives y is empirically determined. For instance 

TNT is characterised by y = 1.25. We typically choose y = 1.4 for air (diatomic gas 

with 5 degrees of freedom) and it is this value that we will utilise throughout this 

study. If we consider that the explosion bubble might also contain some liquid 

vapour then the pressure, p&, inside our explosion bubble is given by 

Pb =Pc +pa, 

(2.1.9) 

= Pc+Po(vo/Vr. 

Since we are concerned with a time dependent phenomenon we complete our 

description of the model with the provision of initial conditions. We will have cause 

to perform some calculations for cavitation bubbles so we first consider the initial 

conditions used in this case. The equation describing the motion of a spherical 
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cavitation bubble in an infinite fluid is (Lord Rayleigh, 1917) 

RR + -R3 + Ap/p = 0, (2.1.10) 
it 

where 

Ap=Poo-Pe, (2.1.11) 

and R is the radius of the bubble, with dots denoting time derivatives. In the 

study of cavitation bubble dynamics it is assumed that the infinite fluid, spherical 

bubble solution provides a valid description of the earliest motion of the bubble. 

This is not unreasonable as during this short time, when the bubble is very small, 

the buoyancy force is negligible and the presence of nearby boundaries is little felt. 

Thus we suppose that our bubble is initially spherical and has some initial radius, 

Ro, with the corresponding initial time determined from the solution of (2.1.10). 

The initial potential on the bubble surface is then uniform and given by 

fo = -RQRO- (2.1.12) 

If we denote by Rm the maximum radius to which this bubble grows, then we have 

(Blake et al., 1986) 

1/2 

«-*[!(*){(*)'-}] (2.1.13) 

to = 3Rm(i£p) 5«(5/6.3/2); a = (R0/Rmf, (2.1.14) 

where Ba denotes an incomplete Beta function (Abramowitz and Stegun, 1965). 

This provides the initial data from which we can compute the subsequent motion 

of the bubble. At stationary free surfaces the initial potential may be set equal to 

zero. 

Before departing from this consideration of the Rayleigh bubble we make note 

of the finite lifetime of the bubble. From inception the bubble grows to a maxi

mum radius and then collapses to a singularity. The motion is symmetrical about 

the time that the bubble achieves its maximum radius and we can exploit this 
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symmetry to compute the half life of the bubble from (2.1.10) and thus determine 

its lifetime. If we denote it by Te then we have (Lord Rayleigh, 1917) 

Te = 6v/372B(5/6,3/2)iZTO(p/Ap)
1/3, 

(2.1.15) 

» 1.8292MP/ Ap)1/2, 

where B(x,y) is a Beta function (Abramowitz and Stegun, 1965). 

It is useful at this point to introduce a time and length scale, and a number 

of the physical parameters that characterise the motion. We choose the maximum 

bubble radius, Rm, as a length scale and ^(p/Ap)1'2 as a time scale. The potential 

scale is thus Rm(Ap/p)l/3. In these scaled variables we choose an initial bubble 

radius of 0.1 and so obtain from (2.1.13) and (2.1.14) the initial conditions for a 

cavitation bubble as 

i?o = 0.1, <fo =-2.5806976, tQ = 0.0015527, (2.1.16) 

with a consequent initial radial velocity of 

flo = 25.806976. (2.1.17) 

Using this scaling the Bernoulli equation evaluated at the surface of the cavitation 

bubble becomes 

§* + \ I v>|' + «'* - 1 = 0, (2.1.18) 

where 

6 = (pgRm/Ap)1'3 (2.1.19) 

is the buoyancy parameter. Physically 6 corresponds to the ratio of the bubble half 

life to the time it would take a bubble of radius Rm to rise the order of one radius 

from rest due to buoyancy forces. It thus provides a measure of the strength of 

the buoyancy force. 

In the explosion bubble example, the presence of the non-condensible gas pro

vides a much greater freedom in the choice of initial conditions. At the initial 

small radius, Ro, the detonation products are highly compressed and the large ini

tial pressure, po, drives the motion, in addition to any initial radial velocity that 
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we may impose upon the system. W e thus have the option of choosing a multitude 

of combinations of initial pressure and radial velocity, the assumption that the 

bubble is initially spherical being retained. This freedom of choice is, however, 

superfluous due to the relative unimportance of buoyancy and boundary effects 

during the early phases of the motion. Let us consider the equation describing the 

purely radial motion of a bubble whose contents are described by (2.1.9). It is 

RR + |# = €{Ro/R)^ - 1, (2.1.20) 

where the above distance and time scales have been employed and we notice the 

introduction of the parameter 

e = po/Ap (2.1.21) 

as a measure of the strength of the initial high pressure, po, that drives the motion. 

We shall call c the strength parameter. Equation (2.1.20) describes oscillatory 

motion so that given an initial non-zero radial velocity we may integrate (2.1.20) 

backwards in time to obtain a new initial radius and pressure (new value of e) 

corresponding to a zero initial radial velocity. For all except very small amplitude 

radial oscillations the time over which this backwards integration must take place 

is negligible compared to the period of the oscillation so that the motion over this 

time is little influenced by the presence of boundaries or the buoyancy force. 

Thus we suppose that the initial radial velocity of our explosion bubble is 

zero, with the motion driven from rest by the very high initial pressure po. The 

initial potential on the bubble surface is thus taken to be zero. We choose our 

initial radius such that the maximum radius to which the bubble expands is one. 

Integrating (2.1.20) we have 

*' = s^TT) (*"8 " *"*) + | (R~* " 2) > (2L22) 

where we have used R = 0 at R = 1. R is also equal to 0 at RQ and this condition 

yields from (2.1.22) an equation for Ro which we solve using Newton's method. The 

value for the initial radius is dependent upon the value of the strength parameter, 
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e, with each value of it specifying a corresponding initial radius. Typical values of 

c and the corresponding initial radii are shown in table 2.1.1. 

Finally note that we have allowed account to be taken of a constant vapour 

pressure, pe, as contributing to the total pressure within the explosion bubble. In 

practice, we find that for those contracted phases of the motion where the non-

con densible nature of the bubble contents is important, the partial pressure due 

to the non-condensible gas is much greater than the vapour pressure, thus we 

may neglect pe in our expression for the internal bubble pressure. From a deeper 

viewpoint, the mathematical effect of the term pe is simply to displace the effective 

hydrostatic pressure, for the dynamics is dependent upon the fundamental pressure 

scale Ap = p^ — pc. 

e 

10 
25 
50 
100 
200 
500 
1000 

Ro 
0.3804 
0.2706 
0.2108 
0.1651 
0.1297 
0.0947 
0.0748 

Table 2.1.1. Values of the strength parameter and the corresponding initial radii. 
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2.2. T h e validity of the mathematical model 

The model presented in section 2.1 is the simplest possible description that 

we could employ for the flow field induced by the motion of a bubble. We have 

neglected the viscosity and compressibility of the water, surface tension at the 

bubble wall and any flow of the gas within the bubble. If we consider viscosity 

first then a number of elementary observations indicate that it is not unreasonable 

to neglect viscous stresses. 

The time scale of the motion is Rm (p/Ap)1'2, the lifetime of the bubble being 

of this order. The length scale is Rm giving the Reynolds number as 

Rt = Rm(pAp)
1/3/fi, (2.2.1) 

where p. is the dynamic viscosity of water. Now p ~ 103Jbgrm~3 and p, ~ \Q~lkgms~x 

and a typical value for the maximum radius of an explosion bubble is Rm ~ 10m. 

Since explosion bubble motion will typically take place in the neighbourhood of the 

ocean surface we have Ap ~ 106po yielding a Reynolds number Re ~ 10
6. It is also 

worthwhile to comment on small scale experiments of bubble dynamics. The spark 

discharge generated bubbles investigated in the experiments of Blake and Gibson 

(1981) were of maximum radius Rm ~ 10~3m and created at a reduced pressure of 

Ap~ 104po yielding a Reynolds number Re ~ 10
4. In both cases it appears that the 

effect of viscosity will be small. 

We can expand our consideration a little by considering the equation of motion 

of a spherical bubble including viscosity and surface tension. Both effects enter 

into the model via the consideration of the bubble/gas interface. Surface tension 

only acts at such a boundary and viscosity enters via the continuity of normal 

stress at the free surface, this effect having been first clarified by Poritsky (1952). 

The equation is 

** + \Ri + jl + W = Wn + Pc-Poo) /p, (2.2.2) 

where the pressure within the bubble is given as in (2.1.9). Introducing our usual 
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scaling this becomes 

RR+\R%+i\ii + \R-=lp{y)-l> (2-23) 

where Rt is as defined in (2.2.1) and 

T = ApRm/v, (2.2.4) 

is a parameter indicating the magnitude of surface tension forces. In (2.2.3) p(V) 

is the partial pressure due to the non-condensible bubble contents scaled by Ap. 

That the Reynolds number defined by (2.2.1) appears naturally in the equation 

of motion of a spherical bubble indicates the relevance of this definition in assessing 

the importance of viscosity in this case. It is not, however, appropriate for the 

consideration of a translating bubble, in which we should seek another definition 

that gives some indication of the thickness of the presumed thin boundary layer 

surrounding the bubble. If we consider a spherical bubble of constant radius Rm 

rising under the action of buoyancy then the acceleration is 2g. After translating a 

distance Rm the velocity of the bubble is 2(gRm)
xli which is an appropriate velocity 

scale and gives an expression for the Reynolds number of 

Rt = Ipg^RTlP- ~ 10
6i&/2, (2.2.5) 

indicating an exceedingly thin boundary layer about the translating bubble. The 

structure of this boundary layer and the thin wake trailing such a bubble has been 

considered by Moore (1963). 

These considerations of both radial and translational motion of a bubble indi

cate that viscosity may indeed be neglected. We can take this as strong evidence 

that even in asymmetric collapse the role of viscous stresses is negligible on the 

scale of the phenomenon that is of interest to us. 

Equation (2.2.3) allows us to make some estimate of the importance of surface 

tension via the constant T. The surface tension between water and air at 20°C is 

<r ~ 7.28 x 10"*Nm~x and representative of the value between water and a gas, so that 
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for Ap ~ 10spo and Rm ~ 10m we have T ~ 107. The largeness of this value indicates 

that unless R ~ 10~7 then this term is neghgible compared to the pressure terms on 

the right hand side of (2.2.3). On the scale that is of concern in the consideration 

of underwater explosions such small radii will never arise. Even in most small 

scale experiments such small values of the radius are unlikely to eventuate. In the 

general case of non-spherical bubble motion, surface tension is accounted for in 

application of the Bernoulli equation at the bubble surface and the parameter r 

arises with the term quantifying surface tension being 

2</T, (2.2.6) 

with C the local curvature of the bubble surface. Again we comment on the ex

ceedingly large curvatures that would be required in order that this term becomes 

significant compared to the pressure terms in the Bernoulli equation, indicating 

that except for very extreme circumstances the fluid motion is inertia dominated. 

The circumstances under which surface tension may assume some significance arise 

in the case of small scale experiments with jet formation giving rise to regions of 

sufficiently high curvature. 

Regarding our description of the water surrounding the bubble we make a 

few final comments on the compressibility of water. Water has a finite but small 

compressibility as indicated by the large value of approximately 1500m*-1 for the 

speed of propagation of small amplitude acoustic disturbances. There are two 

circumstances under which the effects of fluid compressibility may become signifi

cant. The first is if the fluid velocity becomes comparable with the speed of sound. 

The Rayleigh analysis yields a fluid velocity at the surface of the bubble that be

comes singular as the bubble radius tends to zero. Under these circumstances 

compressibility must become significant and this effect has been comprehensively 

investigated. An excellent summary and source of further references is the book 

by Hammitt (1980). 

In these investigations equations of motion are developed for spherical bubbles 
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in a fluid of small compressibility, with the results indicating a divergence from 

the predictions of the Rayleigh solution which becomes significant as the radius 

falls below about one tenth of its maximum value. However, as noted by Ham-

mitt, in any real flow field there are asymmetries, which may be due to buoyancy 

or the presence of nearby boundaries, and in the presence of such perturbing in

fluences spherical shape cannot be maintained to sufficiently small radii for such 

high fluid velocities to be attained, and for compressibility effects to become sig

nificant. Indeed, the experimental and numerical evidence to date confirms this. 

The experiments of Benjamin and Ellis (1966) and Gibson (1968) indicate peak 

fluid velocities in the high speed liquid jet that forms upon collapse of 50 - 75m*"1. 

More recent experiments by Lauterborn and Bolle (1975) and Shima et al. (1981) 

indicate velocities in the range 90 - 100m*-1. The numerical computations of jet 

formation by Blake et al. (1986) are in good agreement with these values. We 

note that these peak fluid velocities are small compared to the speed of sound 

in water and indicate that during the growth and collapse of a bubble it is not 

unreasonable to neglect fluid compressibility. 

The fundamental difference between an explosion bubble and cavitation bub

ble is the nature of the bubble contents. Although as a cavitation bubble collapses 

some of the vapour will not condense due to the small time over which the col

lapse occurs, there is a much greater quantity of non-condensible gas inside an 

explosion bubble which generates very high pressures within the bubble and ul

timately causes the bubble surface to rebound. It is at this moment of rebound 

that the second circumstance arises under which the compressibility of the fluid 

may become significant. At rebound we may consider the surface of the bubble, 

that changes direction over a very short period of time, as a piston driving against 

the inrushing fluid, generating a wave of finite amplitude and possibly a weak 

shock. This phenomenon of wave emission upon rebound is well documented in 

experimental studies of underwater explosion bubbles and is significant from the 

viewpoint that the periodic emission of waves may excite resonance in structures. 
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Computations of this phenomenon are presented by Hammitt (1980). 

The incompressible model cannot provide a description of this wave emission, 

however, we again expect that any asymmetry in the flow field will cause non-

spherical bubble collapse and that this lack of spherical symmetry will lead to 

reduced fluid acceleration upon rebound and somewhat mitigate the significance 

of this phenomenon. We further comment that the fast rebounding motion of the 

bubble surface that drives the emission of acoustic energy occurs only over a very 

short period of time. Thereafter it is again a very good approximation that the 

flow is incompressible. Because of the short period over which this compressible 

phenomenon may manifest itself we expect that the incompressible model will 

provide a good indication of the general behaviour. The lack of a description of 

compressible effects is perhaps the greatest defect of the model, but in this work 

we endeavour to determine significant features of the motion of explosion bubbles 

by describing the fluid as incompressible. 

Finally, we note that the gas within the bubble is itself a fluid, however its 

viscosity is negligible compared to that of water. Further we note that the speed 

of sound in this gas is approximately 300m*"1 which is about three times greater 

than the peak fluid velocities observed and computed for non-spherical cavitation 

bubble collapse. This is not sufficient to raise the possibility of generation of 

pressure waves of such an amplitude that they will influence the motion of the 

surrounding fluid. Indeed, due to the high compressibility of gas, in order to 

generate a wave of significant pressure amplitude would require that the motion of 

the bubble boundary be at least of the same magnitude as the speed of sound in 

the gas. In view of these considerations it would be inconsistent with the level of 

approximation used in the description of the water to attempt any more detailed 

description of the bubble contents. 
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3 

KELVIN IMPULSE AND SPHERICAL BUBBLES 

3.1. Introduction 

The phenomenon of jet formation during the collapse of transient cavities near 

boundaries, or underwater explosion bubbles in the neighbourhood of marine craft, 

is postulated as a principal mechanism for causing damage. Although asymmetry 

in the flow field is known to cause the formation of these jets, and buoyancy and 

nearby boundaries are common causes of this asymmetry, the phenomenon is not 

so well understood that given the physical parameters describing the motion we 

can completely determine the character of the jet (the time of formation, the speed, 

the breadth, the mass contained within it) without the necessity of computing the 

whole of the flow field. 

H, however, we choose an aim more modest than specifying the complete char

acter of the jet given the physical parameters governing the motion, then progress 

can be made. In particular, by considering the global conservation of fluid mo

mentum via a quantity known as the Kelvin impulse it is possible to estimate 

the direction of migration of a bubble at the end of its lifetime, and in the case 

where a jet is formed identify this with the direction of the jet. This method has 

met with considerable success when applied to cavitation bubble motion in an 

axisymmetric geometry, as confirmed by the results of numerical simulations of 

the bubble motion. In this chapter we review the concept of the Kelvin impulse 

and its application to cavitation bubble dynamics, along with the extension of 

the ideas developed in an axisymmetric geometry to geometries where the three 

dimensional character of the flow field is essential. 

A particular observation exploited in the analysis using the Kelvin impulse is 

that for much of its lifetime we can well approximate the bubble's shape as spher

ical. This feature is evident in a multitude of experimental (Benjamin and Ellis, 
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1966; Gibson, 1968; Lauterborn and Bolle, 1975; Tomita and Shima, 1986; Vogel 

et al., 1989) and numerical (Guerri et al., 1981; Blake et al., 1986, 1987) investi

gations. If we introduce this observation into the mathematical model presented 

in chapter 2 then we may derive a system of ordinary differential equations that 

determine the radius and centroid position of the bubble as functions of time. The 

study of the dynamics of spherical bubbles forms the remainder of this chapter. 

In achieving this end we exploit the Kelvin impulse to determine a momentum 

equation of motion and the Bernoulli equation to determine an energy equation. 

The assumption of spherical shape provides a description applicable through

out much of the lifetime of a bubble. It is only in the later stages of this life, 

when the bubble deforms significantly from spherical shape and jets are formed, 

that this description is no longer applicable. Typically, the time over which this 

non-spherical collapse occurs is of the order of 2-3% of the bubble life. Lifetime 

here refers to the time from inception of the motion to the instant that the jet 

completely penetrates the bubble. The investigation of the Kelvin impulse indi

cates that we can infer aspects of the motion of deforming bubbles from the early 

behaviour, when the bubble is spherical. With this in mind we can compute the 

time dependent early behaviour of bubbles in various geometries, and from the be

haviour predicted towards the end of the bubble life attempt to infer the character 

of the collapse of deforming bubbles. In particular, application to the problem of 

axisymmetric motion near a rigid boundary validates the approach. 

The study of spherical bubbles also allows us to begin an investigation into the 

effect that a non-condensible gas inside the bubble has upon its motion. Having 

developed some confidence in inferring from the behaviour of spherical cavitation 

bubbles the later behaviour of deforming bubbles, we consider the dynamics of 

spherical bubbles containing a non-condensible gas and attempt to infer the be

haviour we should expect from a deforming bubble. The intriguing question here is 

that of the possibility of bubble rebound. Of course a spherical bubble containing 

such a gas will oscillate, but when jets are formed it is not obvious what behaviour 

29 



we should expect. It might be supposed that the increasing pressure within the 

bubble as it collapses might arrest jet formation. The consideration of spherical 

bubbles and the Kelvin impulse suggests in what physical regimes a non-spherical 

bubble should rebound. 

3.2. The Kelvin impulse in the context of bubble dynamics 

Considerations of fluid momentum when a body moves through an infinite 

expanse of fluid require some care due to the possible divergence of the momentum 

integral. For the case of rigid body motion through a fluid the formalism that 

addresses this problem in an appropriate manner was investigated by Lord Kelvin 

who considered the impulse required to establish the rigid body/fluid motion at 

any instant. Lamb (1932) discusses the concept of impulse at length, noting that 

"whatever the motion of the solid and fluid at any instant, it might 

have been generated instantaneously from rest by a properly adjusted 

impulsive 'wrench' applied to the solid." 

Equivalently, an equal and opposite impulse will bring the observed motion to rest. 

Let us expand further on this concept in the context of a non-spherical bub

ble. In figure 3.2.1(a) we have a typical bubble shape during the later stages of 

the collapse when a jet has formed and is threading the bubble. Suppose that 

in this figure the fluid is at rest and we wish to generate the motion from rest 

by the application of an impulsive force over the surface S. Since the fluid is in

compressible the disturbances associated with this impulse are transmitted with 

infinite speed throughout the fluid and establish the observed flow field. Following 

the discussion in Batchelor (1967) we consider the momentum equation 

— + u • VU = -Vp/p. (3.2.1) 

During the short interval over which the impulse is delivered the fluid velocity may 

change in value discontinuously. However, throughout this change the values of 

the velocity and its spatial derivatives remain finite and are negligible compared 
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to — , so that over the short interval during which the impulse is delivered we can 

write 

|£ = -VPIP- (3-2.2) 

Integrating over the duration of the impulse we have 

u' - u< = -VH/p, (3.2.3) 

where 

n= [ pdt, (3.2.4) 

is the pressure impulse and the superscripts t and / denote values immediately 

prior to, and immediately after the delivery of the impulse. This argument is valid 

when viscosity is included, but in our case where the fluid velocity is the gradient 

of a velocity potential we deduce from (3.2.3) that 

<pf - <p* = -E/p. (3.2.5) 

In the example under consideration, where we generate the motion from rest, 

we take ft = 0 and drop the superscript /. On an element of the bubble surface dS 

the impulse applied is 

dl = -IlndS = p<pndS, (3.2.6) 

noting that n is directed into the bubble and <f> is the potential for the observed 

flow field. Hence the total impulse required to establish the flow from rest is 

I = p I <pndS, (3.2.7) 

and this expression has become known as the Kelvin impulse of the bubble. The 

procedure of generating the flow field impulsively from rest is illustrated in figure 

3.2.1 and it is clear that in the case of jetting motion the Kelvin impulse and jet 

direction should be closely correlated. 

The utility of this concept lies in the fact that the Kelvin impulse varies in 

response to the action of external forces just as the momentum of a finite dynamical 

system does. Kelvin established that for rigid body motion through an infinite fluid 

ft=F, (3.2.8) 
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where F is the external force acting. Lamb notes that the arguments of Kelvin 

carry through when the body is deformable (or when we have a collection of bodies, 

or when we replace them by masses of fluid moving rotationally). If we consider 

that the bubble possesses an impulse I, with the impulse changing in response to 

the action of external forces as described by (3.2.8) then there is an obvious analogy 

with the dynamics of a rigid particle under the action of forces. For motion in the 

neighbourhood of boundaries familiarity with the phenomenon of the impact of 

rigid particles gives an intuitive appreciation of the potential for impact phenomena 

in the case of bubble motion. This view has been central to the development of 

the Kelvin impulse as an analytical tool in bubble dynamics, the principal work 

being that of Benjamin and Ellis (1966), Blake et al. (Blake and Cerone, 1982; 

Blake et al., 1986,1987; Blake, 1988) and Oguz and Prosperetti (1990). This work 

has primarily addressed the question of what form expression (3.2.8) must take for 

the motion of a deformable body (bubble), when the motion takes place in some 

semi-infinite domain in which boundaries occur, and this expression has then been 

used to determine aspects of jet formation, the impact phenomenon associated 

with the collapse of cavities. 

We shall restrict our attention to the case where conservative body forces act 

so that the Bernoulli equation takes the form 

^ + \ W +P/p+* = Poo/P, (3.2.9) 

where $ is the potential for the conservative force field such that the body force 

per unit mass, f, is given by 

f = -VS. (3.2.10) 

In the far field, where p = ?«,, we assume that $ vanishes. By considering con

servation of momentum within some control volume enclosing the bubble and 

considering the limit where the control volume becomes the domain of the flow, 

we may deduce the expression for the time rate of change of the Kelvin impulse 
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(see Blake, 1988, for details of this calculation), 

£=F«>=>/J>I'-!H dS + p f V$dV, 
Jv 

(3.2.11) 

where V is the volume of the bubble, and St consists of any naturally occurring 

boundaries in the domain of the flow, excluding the bubble surface. Examples of 

possible geometries for Et will be discussed later. In our case where $ = gz (uniform 

gravitational field) the final contribution to F is just the buoyancy force pgVet. 

The contribution to the force, F, of the integral over the boundary Ej, quantifies 

the influence upon the Kelvin impulse of the flow induced by the presence of 

boundaries. This force is known as the Bjerknes force. 

A case of particular interest is that of the collapse of a cavitation bubble above 

a rigid boundary where the Bjerknes attraction of the boundary and the buoyancy 

force are in opposition. The bubble is characterised by a constant vapour pressure, 

pc, within the cavity throughout its lifetime. The geometry is shown in figure 3.2.2. 

This problem has been the subject of numerical simulations using the boundary 

integral method (Guerri et al., 1981; Blake et al., 1986. A marker in cell technique 

was employed by Plesset and Chapman, 1971). During the expansion phase of 

the motion the bubble retains an approximately spherical shape. As the bubble 

collapses an initial perturbation on either the upper or lower pole develops and 

quickly grows into a jet which rapidly penetrates the bubble. Whether this jet 

forms at the upper or lower pole depends upon the distance from the boundary 

at which inception occurs and the magnitude of the buoyancy force (Blake et al., 

1986, 1987; Vogel et al., 1989). 

The Kelvin impulse has been proposed as a tool for predicting the direction of 

this jet. The argument proceeds as follows. Integrating (3.2.11) we have 

I(t) = 1(0) + / F(r)dr. 
Jo 

(3.2.12) 

For an initially stationary spherical bubble we have 1(0) = 0 so that the Kelvin 

impulse at some later time may be determined if F is known. The expression of 
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(3.2.11) assumes its usefulness from the fact that we require an expression for the 

potential at the surface E& which is remote from the bubble surface, 5. Hence, 

in any approximate determination of F, only the contribution to <j> of the lowest 

order terms need be used. For flows in semi-infinite domains this lowest order 

contribution to <f> is that due to source like terms. In this example the lowest order 

contribution to the potential is due to a source singularity of time dependent 

strength m(t) located at the bubble centroid and an image source, so we may write 

m(t) m(t) 

^ - 4 7 [ F i " ^ | F i + - ' (3-2>13) 

where r is the position vector of some point in the flow field relative to the bubble 

centroid and r* is the position vector of this point relative to the image of the 

bubble centroid reflected about the rigid boundary. The image is required so that 

the lowest order terms satisfy the rigid boundary condition. Making use of (3.2.13) 

in (3.2.11) we find that 

where the only non-zero component of F is in the z-direction and £(t) is the location 

of the bubble centroid above the rigid boundary (figure 3.2.2). In order to carry 

out the integration of (3.2.12) expressions for m(t), V(t) and ((t) are required. The 

assumption made is that for much of the bubble lifetime it remains approximately 

spherical and so is described by the Rayleigh solution for a spherical cavitation 

bubble (equation (2.1.10)). Consistent with the use of the Rayleigh solution we 

suppose that ((t) is constant throughout the motion and equal to its initial value 

£o- For a spherical bubble m(i) = 1TR?R SO we have 

-«—*l?(?)GH 
with this quantity positive during the expansion phase of the motion and negative 

during the collapse phase. We make use of these results and integrate (3.2.14) 

over the lifetime, Tc, of the bubble to obtain the Kelvin impulse at the end of the 

collapse as (Blake, 1988) 

I(Te) =
 2V^<(pAp)* [2T^Jfl(11/6) 1/2) _ £(7/6,3/2)] , (3.2.16) 
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where B(z,w) is the beta function (Abramowitz and Stegun, 1965). W e have defined 

7 = tolRm (3.2.17) 

as a dimensionless parameter specifying the point at which the motion begins. 

The buoyancy parameter, £, is as discussed in chapter 2. 

Having established (3.2.16) it is proposed that the direction of the Kelvin 

impulse at the end of the bubble lifetime determines the direction of the centroid 

migration and if a jet is formed, the direction of the jet. Thus, if we examine the 

y - 6 parameter space there exists a fine given by 

that partitions the space into a region for which I(TC) is positive, corresponding 

to migration away from the boundary, and a region for which I(TC) is negative, 

corresponding to migration towards the boundary. Since I(Te) = 0 for points on 

this line we shall refer to it as the null impulse line. 

This simple idea appears to be a reliable predictor of bubble motion. It com

pares well with the results of numerical simulations (Blake et al., 1986). Success 

is also apparent in studies of motion in the neighbourhood of a free surface, where 

experimental data has been included in the comparison (Blake et al., 1987). Fur

thermore, extensions to the consideration of compliant boundaries are in reason

able agreement with the scarce experimental data available (Blake, 1988). The 

success of this technique no doubt depends upon the fact that for much of the 

motion the bubble is spherical, with departures from sphericity and jet formation 

occurring over a very short period of time, an observation that is to be important 

in our later considerations. 

3.3. Extension to three dimensional geometries 

We will now consider bubble motion occurring in a variety of simple geometries. 

The assumptions of section 3.2 allow us to determine the Kelvin impulse, I(TC), at 

35 



the end of the collapse phase. W e then propose that gross aspects of the bubble 

motion at the conclusion of the collapse may be inferred from knowledge of I(TC). 

Motion near an inclined plate 

Suppose that there is an infinite rigid boundary whose normal makes some 

angle a with the direction of gravity, and that bubble motion takes place in its 

neighbourhood. The appropriate geometry is shown in figure 3.3.1. We introduce 

co-ordinates (£, n) to describe the bubble's position, where £ measures the distance 

from the wall and n measures the distance travelled parallel to the wall. We choose 

initial conditions £(0) = &, and 17(0) = 0. It is useful to note the transformation to 

the usual cartesian set of axes with the direction e* being in opposition to the 

gravitational acceleration g. We constrain our motion to occur in the x-z plane so 

that the relevant transformation is 

x = (£ — £0) sin a — n cos a, 

(3.3.1) 

z = (£ — £0) cos a -|- 77 sin a, 

where a is the angle between the exterior normal to the plate and g. 

In order to evaluate F we require the lowest order contribution to the potential 

at the boundary E& which consists of the rigid plate as shown in figure 3.3.1. 

The appropriate potential is due to a source of strength 4xR2R located at the 

bubble centroid and an image source of the same strength reflected about the 

rigid boundary. It is then a routine matter to evaluate (3.2.11), whence we obtain 

the components of F as 

4 I 3 R*R? 1 
F(= 3 » P < - ^ - 7 3 - + » f i , « > 8 a > l (3.3.2) 

Fv = -xpgR
zsma. (3.3.3) 

The behaviour that we expect to occur in general (as suggested by the experimen

tal results of Benjamin and Ellis, 1966) is that the bubble, which is well modelled 

as spherical at inception, retains this shape approximately as it expands to its 

maximum radius, then collapses with a well defined jet formed at some character

istic angle, 0, measured with respect to the normal to the plane, exterior to the 
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flow domain. W e propose that this angle is given by the direction of the Kelvin 

impulse at the end of the bubble lifetime, which is 

9 = atctan (-I^yi^Tc)) . (3.3.4) 

We proceed as in section 3.2 to obtain expressions for the components of the 

Kelvin impulse at the end of the bubble lifetime. We make use of the Rayleigh 

bubble solution for R(t) and assume that throughout the bubble lifetime £(t) = £0, its 

value at inception, in order that we may integrate equations (3.3.2) and (3.3.3) to 

obtain expressions for the components of the Kelvin impulse required for evaluation 

of 6. We routinely obtain (Blake and Prosperetti, 1989) 

2y363B{U/G, 1/2) sin a 
8 — arctan (3.3.5) 

.5(7/6,3/2) - 2y*62B(U/6,1/2) cos a] ' 

where the dimensionless parameters y and 6 are as previously defined. Example 

computations of 6 will follow shortly. 

Motion near a horizontal free surface and vertical rigid wall 

In the previous example the motion of the bubble was influenced by the pres

ence of the rigid boundary and the effects of buoyancy. The rigid boundary attracts 

the.bubble whereas buoyancy causes the bubble to rise in the direction opposite 

to the gravitational field. It is possible to proceed to further examples in which 

a third influence on the bubble is present and it is expected that interesting be

haviours will result. A case of particular interest is that of motion occurring both 

in the neighbourhood of a vertical rigid wall and the free ocean surface, an exam

ple in which we have the further effect of repulsion from the free surface. From a 

practical viewpoint this may represent a simplified model of some marine structure 

which is subject to attack by an underwater explosion. The geometry is shown in 

figure 3.3.2. 

We introduce a co-ordinate £ to measure the displacement from the vertical 

wall and a co-ordinate n to measure the depth of the bubble below the ocean 

surface. The appropriate image set that gives the lowest order contribution to 
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the potential at the boundaries consists of sources of strength 4xR3R at (±t,n) and 

sinks of strength i*R3R at (±£, -n). This image set satisfies the zero normal velocity 

condition at the rigid boundary, and the linearized boundary condition that the 

potential vanishes at the free surface. In this example the surface E& is given by 

with Xl = {{t,V) :* = 0, n>0}, (3.3.6) 

E* = {(*.»>) : ^ = 0 , * > 0 } , 

and integration over this surface allows evaluation of the components of F, which 

are given as 

F{ = -*pRAR3 ( 

F„ = *pR*R3 

£3 (v3 + t3)3/3\' 

1 

W (v3 + t3)a/3 

Introducing the dimensionless parameter 

/9 = W-Rm. 

-TP9R. 

(3.3.7) 

(3.3.8) 

(3.3.9) 

and with y and 6 as defined previously, w e m a y proceed making use of our usual 

set of assumptions to expressions for the components of the Kelvin impulse at 

the conclusion of the bubble lifetime. W e furthermore propose that the angle 6, 

measured with respect to the normal to the rigid boundary, exterior to the domain 

of the flow, that defines the orientation of the jet formed on collapse, is given by 

the direction of the Kelvin impulse at the time Te, so w e have 

0 = arctan(I„(Te)/Je(Tc)). (3.3.10) 

Carrying out the appropriate time integration yields (Blake and Prosperetti, 1989) 

"2^(11/6,1/2) - [j, + (/3,+;,),;,] J(7/6,3/2)' 

[^-T^rpT*] 5(7/6.3/2) 
0 — arctan (3.3.11) 

Motion in shallow waters 

T h e problem of the underwater explosion provides motivation for this further 

example of bubble motion in shallow waters. W e will suppose that the motion 
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occurs in water of depth £m with the free surface being at atmospheric pressure. 

Furthermore, the motion will commence at a depth £0. The geometry is shown 

in figure 3.3.3, where we retain the option of measuring distances downwards (() 

or upwards (z). In order to satisfy the boundary conditions at the parallel free 

and rigid surfaces we require an infinite set of images to represent the lowest 

order contribution to the potential there. The image set consists of sources of 

strength (-l)n4*R3R at z = 2n£ra + £, -(2n&» - £) and of strength (-l)
n+14*R3R at 

z = 2n£m - £,-(2n£TO + £), with n € (1,2,...). This choice of n excludes the image 

source of strength -\-KR3R at z = £, and the source of strength 4xR3R at the bubble 

centroid (figure 3.3.4). The potential, <f>s, due to this distribution of sources may 

be written in the useful form 

r 2»*Ajg* MrTyMhTl£h-$r
hr'dT, z>-i 

<j>s{r,z)={ *~ , (3.3.12) 
\ -2*R3RJ~ Mrrymh^;^+Mdrt z < ~i 

which is obtained by solving the equation V2<f> = 4xR3R6(x)6(y)6(z + $) using the 

Hankel transform. In this notation (r,z) are cyUndrical polar co-ordinates, (x,y, z) 

are cartesian co-ordinates and J0 is a Bessel function of zeroth order. This expres

sion for the potential expediates the determination of the force driving the Kelvin 

impulse. 

In order to determine ff = dl(/dt we notice that the surface E& consists of 

the upper and lower surfaces of the flow domain, as shown in figure 3.3.3. If we 

introduce 

u = ̂ ' v=az' 
d<f> d<j> 

u — " ~ 

then we may write 

(3.3.13) 

r f°o /•«> 

F(=*p\ v3(r, 0)rdr + I u2(r, ~U)rdr - \*P9R\ (3-3.14) 

where the axial symmetry of the problem allows the surface integral to be written 

only in terms of the cyUndrical co-ordinate r and we can routinely show that 

u(r)0) = 0. If we denote by VO(T,0) the zeroth order Hankel transform of v(r,0) and 

let UI(T, -£m) denote the first order Hankel transform of u(r, -£m) then application 
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of Parseval's theorem to (3.3.14) yields 

r f°° t°° T 4 
F( = *p\J vl(T,0)rdT+l U3{T,-im)TdT --TpgR*. (3.3.15) 

We deduce the appropriate Hankel transforms from (3.3.12), whence we obtain 

F( = l*pR*R
3 r I cosh

2 T(jn ~j) + sinh
3 rj 

cosh2 7"£ 
rdr - -xpgR?, (3.3.16) 

which may equivalently be written as the infinite series 

F{ = *pB*B
3^(-ir 
n=0 

+ 
(*m+0a ((n+l)U-tf 

- 2*P9R (3.3.17) 

W e m a y evaluate the Kelvin impulse as the bubble collapses to a singularity 

with the help of our usual set of assumptions and we obtain 

l(T.) = 2 v ^ U / * p ) « [B(7/6,3/2) - 2?V*(ll/6,1/2)] , (3.3.18) 

with 7 defined as 

7 = ^LD-1)" 
n=0 

+ 
•1/2 

(3.3.19) 
.Km+W2 ((n+lKm-£0)

2J 

We note that just as in the case of motion near a rigid boundary (as discussed by 

Blake, 1988) we have a null impulse line given by 

j6 = 0.442, (3.3.20) 

and w e propose that for yh < 0.442 the Kelvin impulse at the conclusion of the 

collapse is directed downwards and thus the jet formed is directed downwards, 

and for y6 > 0.442 the jet formed is directed upwards. The concept of a null 

impulse state in this geometry is alluded to in the war time work of Shiffman and 

Friedman (1944). 

3.4. Spherical bubble dynamics 

A bulk of work on the dynamics of spherical bubbles was carried out in WWII 

in the context of underwater explosion research. A summary of this work may 

be found in the book by Cole (1948). The significant point is that if we further 
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restrict the model presented in chapter 2 by introducing the assumption that the 

bubble remains spherical throughout its lifetime then we may derive a system of 

ordinary differential equations that describes the motion. We exploit the Kelvin 

impulse and Bernoulli equation to determine respectively momentum and energy 

equations. The theory of images is used to obtain expressions for the velocity 

potential of the flow. 

Application of the Kelvin impulse 

Let us suppose that a bubble of radius R(t) exists in a fluid and that there is 

a uniform gravitational field -gez acting. The expression for the force, F, driving 

the Kelvin impulse becomes 

F(<) =pfs{\ l
v^|2 n ~ §£v4 ds + P9V(t)ez. (3.4.1) 

We make use of the Kelvin impulse as follows. The impulse, I, may be evaluated 

using the definition (3.2.7) in conjunction with an appropriate expression for the 

potential at the surface of the bubble. The force, F(<), may be evaluated by 

integrating over the bounding surface Et. We then substitute into the equation 

f5 = F, (3.4.2) 

to establish an equation of motion for our dynamical system. The utility of this 

method follows from the observation that in many geometries only those compo

nents of the potential that vary as 1/r (r is the distance from the bubble centroid) 

need be considered in the evaluation of F, as exemplified by the results of section 

3.3. 

Energy conservation 

For the geometry chosen, with a uniform gravitational field acting, the Bernoulli 

equation is given by (2.1.4). We suppose that the pressure within the bubble is 

uniform and may be written as a function of V (and consequently R as V = f *.ff3). 

This constraint includes the important cases of transient cavities and explosion 
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bubbles. At the surface of the bubble continuity of pressure allows us to write the 

Bernoulli equation there as 

96 1 . i 
-ft + g lV^l + (P(R) ~ ?°°)/P + 9* = °. (3-4.3) 

which, upon substitution of an appropriate expression for the potential and inte

gration over the surface of the bubble, yields an equation of motion complementing 

that derived via the Kelvin impulse: 

/.[fhs^M^H dS = 0. (3.4.4) 

W e now proceed to establish that, in the case of the spherical bubble, (3.4.4) 

yields an equation equivalent to that of energy conservation for the dynamical 

system. In this case the area element is R3 sin 0d0d6 and letting the bubble centre 

be located at z = -< the integral of (3.4.4) yields 

/.[ «+iwf dS + AxR3p(R)/p - 4TR3 \px/p + gQ = 0. (3.4.5) 

Let us now integrate with respect to R, from R to Ro, with RQ being some arbitrary 

initial condition. We obtain 

IR {fs [^ + 5 m'\ dS) dR> + (4T/P) IR R'2pWdR' - !* (*o - R3) \P~/P + 9<] = 0-
(3.4.6) 

Interpretation of the terms appearing here leads us to deduce this equation as 

rRo 

being that of energy conservation. The term 4x / R'3p(R')dR' is the work done on 
JR 

the gaseous bubble contents in expanding from Ro to R and if we assume that the 

thermodynamic processes are adiabatic is equal to the change in internal energy 

of the gas. The expression -(4T/3) (R% - Ra) [?«, + pgh] is the work done against the 

hydrostatic pressure at infinity and thus represents the change in potential energy 

of the system. We are thus led to interpret pi < A \-£- + - \V6\3 dS > dR' as the 

change in the kinetic energy of the flow and the expression of (3.4.6) as describing 

energy conservation in our dissipationless system. 

Proceeding as with the Kelvin impulse we will make use of appropriate ex

pressions for the potential at the surface of the bubble in substituting into (3.4.5) 
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to obtain the equation of motion complementary to that derived via the Kelvin 

impulse. The dynamics of the bubble motion is completely embodied in equa

tions (3.4.2) and (3.4.4). Supplementary kinematical conditions will be required 

to solve the appropriate equations. To proceed we require an expression for the 

potential for the flow induced by the bubble motion. Since we have chosen simple 

geometries the theory of images is most useful, and it is pertinent to discuss the 

relevant features which will allow us to proceed directly to equations of motion 

for the bubble dynamics. Since we require expressions for the potential at the 

bubble surface we must expand upon the image systems utilised in the previous 

computations of the Kelvin impulse. 

Image theory for spherical bubbles 

The potential for the flow induced by the motion of a spherical bubble in an 

infinite fluid is given as 

m(f) d(f) • r 
4ir|P|~ 4w\r\* 

^ = _ ^ . _ ^ ! i _ l , (3.4.7) 

where r is the position vector of some point in the flow field relative to the bubble 

centroid. The time dependent source and dipole strengths, m(i) and d(i), are given 

as 

m{t) = i*R2R, (3.4.8) 

d(t) = 2*R*U, (3.4.9) 

where R is the radius of the bubble and U is the velocity of the centroid. We note 

that the source term describes changes of the bubble's volume and the dipole term 

describes translation of the bubble centroid. For motion in the neighbourhood 

of boundaries we introduce images in order to satisfy the appropriate boundary 

conditions. 

Since plane boundaries are of interest the following geometry assumes signifi

cance. Suppose that we have a plane boundary with a bubble of radius R(t) located 

a distance ((t) from it. We define a set of orthonormal axes such that the unit vector 
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e, is perpendicular to the boundary with the origin located at the bubble centre. 

The plane boundary is thus defined as z = {. In the first instance, we introduce 

an image of strength ±m(t) at (0,0,2£) in order to satisfy the boundary condition 

at the plane. We choose +m(t) for a rigid boundary and -m(t) for a free boundary 

noting that we are utilising the linearised free boundary condition. This image 

subsequently induces a net flow across the surface of the bubble which we correct 

by placing a source of strength ±rn(t)R(t)/(2£(t)) at (0,0, fl(t)2/(2£(t))) and a uniform 

linear distribution of sinks of density ±m(t)/R(t) from (0,0,0) to (0,0, R(t)3/(2t(t))) 

(Milne-Thomson, 1960), noting that a sink of negative strength is a source. This 

image set further disturbs the boundary condition at the plane which can be cor

rected by the addition of further images which contribute to higher order in (R/() 

than the previous set. For the problem at hand only the lowest order corrections 

to the infinite fluid case are of interest so only the above mentioned images are of 

concern. 

Recall that we also have a dipole contribution to the potential. We will re

strict our attention to motion constrained to 2-dimensions so we write d(t) = 

(dx(t),0,dz(t)). We may introduce images reflected about the plane z = £, however 

the contribution to the potential is of higher order in (R/() than the contribution 

of the source images and is therefore not of interest in the current formulation. 

We display this image system in figure 3.4.1. The expressions for the potentials 

6i (i = 1,..., 6) due to these singularities (as shown in figure 3.4.1) are 

1 m(t) 1 dz(t)r-ez _ 1 dx(t)r-ex _ 1 m{t) 

4*lrT' * 2 - ~ 4 * |r|» ' **~ 4* |r|8 ' *4 ~ 4* |r-(0,0,2Of 

1 R{t)m(t) _ m{t) fR7IM) dS 

8x £(i) |r - (0,0, R3/(2l))\ ** - 4xR(i) J0 |r - (0,0,6)\' 
(3.4.10) 

Without loss of generality we have chosen the specific case where the boundary 

is rigid. To proceed to equations of motion for spherical bubbles we write the 
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The potentials <pi, 64 and <p& are due to sources. The potentials <p3 and </>3 are due to dipoles, 

graphically displayed as arrows. <p6 represents a linear distribution of sinks. 



potential as 

* = £*, (3.4.11) 
i 

where the fa are the contributions to the potential of the singularities (sources and 

dipoles) used to represent the flow field. In this study the fa will have the form of 

those potentials listed in (3.4.10). 

The integral quantities required are 

j> 6ndS = Y^f &I*dS, (3.4.12) 

/ |V<£|2 dS = y2? V<Pi- VfadS. (3.4.14) 
Js ^Js 

We thus evaluate the above integrals for the potentials fa (i = 1,...,6). Evaluating 

the integral of (3.4.12) we find that the only non-zero contributions are 

f<p3ndS = jdz{t)ez, j> fandS = id»(0e„ £ ^ n d S = ^ g ^ e z , 

/A«^C "*(<)**(*)- /inr -™(*W)_ 
(3.4.15) 

T h e integral of (3.4.14) yields 

(3.4.16) 

V^a • VfodS = 
2iri?4(t)' 

All other integrals of this kind are either zero or of higher order in (R/£). In order 

to determine /5 ^-dS we introduce explicit expressions for the fa using equations 

(3.4.8) and (3.4.9). We then find, that to appropriate order in (#/£)> the integral 
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of (3.4.13) yields 

j ^-dS = -ixR3(2R3 + RR), 

j ^-dS = -2T*8(2J22 + RR)/(, 

(3-4.17) 

I ^-dS = -2xfi3(3i2 + RR)/t, 

I ^-dS = 2*R*(3R3 + RR)/t, 

with fas and 6% contributing integrals of value zero. In cases where more than one 

boundary is present (for example, the geometries discussed in section 3.3) each 

boundary requires the introduction of a principal source (of appropriate strength) 

reflected about the boundary. Each such source necessitates the introduction of 

a corresponding source and uniform linear distribution of sinks within the bub

ble, as discussed in this section. We can then write the potential in the form of 

(3.4.11) and use the integral quantities of (3.4.15), (3.4.16) and (3.4.17) to proceed 

immediately to equations for spherical bubble dynamics in the neighbourhood of 

boundaries with simple geometry. 

3.5. Spherical bubble dynamics in particular geometries 

Using the results of the previous section we may, upon introduction of ap

propriate image sets, proceed directly to equations of motion for spherical bubble 

dynamics in the geometries discussed in section 3.3. 

Motion near an inclined plate 

Consider the motion near an inclined plate as presented in section 3.3. We let 

the velocity components of the bubble centroid parallel and perpendicular to the 

wall be Uv and U( respectively, so that we have 

Uv = V, Ut= (. (3-5.1) 

The image set for this motion is exactly that discussed in section 3.4. We have 

a source of strength 4xR2R at {t,n), a source of strength 4vR3R at (~t,v), a dipole 

of strength (2wRiUi,2rR
aUn) at (£,*,), a source of strength 2irR*R/Z at (( - R

3/(2t),v) 
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and a uniform linear distribution of sinks of density 4*RR per unit length from 

(£ — R3/(2t)tn) to (£,n). Using the integrals of (3.4.15) we find that the components 

of the Kelvin impulse are 

If = 

I, = l ^ t f , , (3.5.3) 

where only the lowest order correction in (R/Q to the infinite fluid case has been 

retained. Notice the form of this correction. During the expansion phase, when R 

is positive, the impulse has an extra component directed towards the wall. This 

reflects the fact that the fluid near to the wall is less mobile compared with the 

infinite fluid case and an extra impulse is required to generate the given bubble 

motion from rest. During the collapse R is negative so that the correction is 

directed away from the boundary again reflecting the extra impulse required to 

draw the fluid in from the side of the boundary. The components of the force, F, 

driving the Kelvin impulse are given by (3.3.2) and (3.3.3) and on substituting the 

expressions for I( and I, into the equation dl/dt = F we obtain 

UR3U() = ~ [sR* + RR] + 2R3gcoSa, (3.5.4) 

^-(R3UV) = 2R
3g sin a, (3-5.5) 

at 

where a term of 0(R/()3 that arises in differentiating (3.5.2) has been neglected. 

These equations differ from the infinite fluid case in the appearance of the term 

f K \$R2 + RR] which describes the effect upon the bubble motion of the flow field 

induced by the presence of the boundary. For much of the motion it is negative, 

since R is negative for most of the motion, and thus describes the Bjerknes attrac

tion of the wall. If gravity is neglected then these equations reduce to that given 

by Herring for motion in the neighbourhood of a single boundary (see chapter 1). 

We now proceed, as described in section 3.4, to an equation equivalent to 

energy conservation. Integrating the Bernoulli equation over the surface of the 
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bubble we obtain, with the help of (3.4.16) and (3.4.17), 

RR [1 + R/ (20] + \k3 [1 + 2R/ (30] - \ [U3 + V3} = ^ P(R) | P9Z 1 

Poo Poo 
(3.5.6) 

P 

where ?„ is the hydrostatic pressure at the initial depth of the bubble. If, for 

instance, the bubble was initially at a depth of H below a surface at atmospheric 

pressure then 

Poo = Pa + P9B. (3.5.7) 

The co-ordinate of the bubble centroid, z, may be transformed using (3.3.1), 

whence we obtain 

RR [1 + R/ (20] + \k3 [1 + 2R/ (30] - \ [U\ + U3] 

Poo 

P 

. . _ (3.5.8) 
P(-ft) • Pff r/,. ^ ^ , -ii 

1 [(c - co)cosa + ?7sinaJ — 1 . 
Poo Poo 

The bubble motion is thus described by (3.5.1), (3.5.4), (3.5.5) and (3.5.8). 

Motion near a horizontal free surface and vertical rigid wall 

Recall also the example of motion in the neighbourhood of a horizontal free 

surface and vertical rigid wall as discussed in section 3.3 and which geometry we 

will refer to as a quarter plane. The components of the centroid velocity are 

U( = & Un = rj. (3.5.9) 

Upon introducing the appropriate image set we may routinely proceed to the 

equations of motion for the bubble dynamics. The set of singularities repre

senting the flow consists of a source of strength 4wR?R and a dipole of strength 

(2xit8irf,2ir.R3l/1|) located at (£,»?). The image set required consists of the follow

ing: a source of strength 4irR3R at (-£,*?), sources of strength -4nR3R (sinks) 

at (-£,-TJ) and (£,-»?), sources of strength 2rRaR/£,-2*R!iR/T),-2-KRsR/{T)7 + C2)' at 

{i-R3l (20 ,u), (t,V-R3/(2r,)) and (t-R3t/ {2((3 + v
3)) ,V-R

3
V/ (2(£

2 + v2))) respectively, 

with corresponding uniform linear distributions of sinks of density 4*RR, -A-KRR 

and -4xRR from these points to (t,y). This distribution of singularities is shown 

in figure 3.5.1. 
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Figure 3.5.1. Image system for the motion of a spherical bubble in the neighbourhood of a 

horizontal free surface and vertical rigid wall. Circles denote sources/sinks, rectangles denote 

linear distributions of sources/sinks and arrows denote dipoles. 



T h e components of the Kelvin impulse are 

lt = §*, {#Ut - \#k [1 - J-r^} } , (3.5.10) 

I, = \*p [R
3UV + i# A [£ + ^-^] } , (3.5.11) 

so with the help of (3.3.7) and (3.3.8) we obtain the equations of motion 

i (**<) = lRA K+RR] [£ - jprer*] • (3<5-12) 

|(**,) = -f*[,* +**][? + - 2ffii
3. (3.5.13) 

(i|»+ *»)«/» J 

Integrating the Bernoufli equation over the surface of the bubble completes the 

description of the dynamics. We obtain 

= P(£) -(*f+ »0i-*)), 
(3.5.14) 

where TJQ is the initial depth of the bubble below the free ocean surface and p,*, is 

the hydrostatic pressure at this depth. 

Motion in shallow waters 

Finally we consider again the problem of bubble motion in shallow waters. 

Measuring the centroid velocity downwards we have 

uf = C (3.5.15) 

T h e image set consists of those sources as described in section 3.3 along with their 

associated sources and uniform linear distributions of sinks within the bubble. 

Furthermore, we have a dipole singularity at the bubble centroid. We find that 

the Kelvin impulse (in the direction of increasing £) is 

h = J*P R
3U(-^R

5k\j^(-l)n+1 

Ln=0 
+ .{[n + iKm-0 Km + O ) 

(3.5.16) 

M a k i n g use of (3.3.17) w e obtain the equation of motion 

i(H8^) = IR* [ZR3 + RR] f > i r + 1 

n=0 {(n + l)U~03 Wm+O2 
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Integrating the Bernoulli equation over the surface of the bubble we establish the 

complementary equation of motion 

RR 1-
I* ^ * « ( » 2 e - a / J + 2 * I1 3 \Tt + 2^n<m(nHl-?)j\-4U< 

_ P(#) /Poo , u t\ 

(3.5.18) 

with po, the hydrostatic pressure at £0 and all other notation is as previously 

defined. These equations were derived by Shiffman and Friedman (1944) using a 

different approach. 

3.6. Axisymmetric computations - Predictions of jet direction 

We have developed the ideas of the previous sections under the premise that 

certain gross aspects of the bubble motion during the non-spherical collapse phase 

can be inferred from the early motion, a time during which the bubble is spher

ical to a very good level of approximation, and a time which occupies much of 

the bubble life. The bulk of experimental and numerical results clearly establish 

these facts. For instance, the numerical studies of Blake et al. (1986) demon

strate the approximate spherical growth and collapse of axisymmetric cavitation 

bubbles, with asymmetry in the flow field induced either by the ambient pressure 

gradient or the presence of boundaries causing a jet to form and penetrate the 

bubble in only a small fraction of the bubble lifetime. These numerical results 

compare well with experimental results (Gibson, 1968; Blake and Gibson, 1987) 

with such studies alluding to the speed of the non-spherical collapse phase. As an 

example of this we note the results reported by Benjamin and Ellis (1966) which 

demonstrate rebounding bubbles with the bubble at minimum volume not being 

photographically captured due to the collapse and rebound occurring faster than 

the filming rate. 

It is this speed of collapse that we wish to exploit. Over some interval, At, the 
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change in the Kelvin impulse is 

F{t')dt', (3.6.1) 

so that 

|AI|<A< sup |F(<)|, (3.6.2) 
(M+At) 

where sup denotes the supremum value. We can reasonably presume that F is 

bounded throughout the motion (in the case of a buoyancy force alone this is 

obvious as |F| = pgV and the bubble volume is bounded) so that over a sufficiently 

small time interval the magnitude of the impulse change is small. If we consider 

a collapsing spherical bubble then, up until the time that the bubble enters the 

rapid collapse phase and becomes highly non-spherical, we can estimate the Kelvin 

impulse using the results of sections 3.2 and 3.3, or obtain a more accurate result 

using the equations of spherical bubble dynamics (at the expense of having to 

solve a system of coupled non-linear ordinary differential equations, but this is a 

routine matter). If we can then identify the time at which the collapse is initiated, 

then because of the generally short time, At, over which the collapse occurs the 

estimate obtained from our simple theory should provide an excellent predictor 

of the impulse of the non-spherical collapsed bubble, the change in the impulse 

brought about by the deformation from spherical shape being small. 

We then propose to relate the direction of the impulse to the direction of 

migration of the collapsing bubble, and if a jet is formed to the direction of the 

jet. Recalling that we can interpret the Kelvin impulse as the impulse that we 

would have to apply over the surface of the bubble to generate the observed motion 

from rest, it is clear that in order to generate this jetting motion from rest the 

Kelvin impulse at collapse must be closely correlated with the direction of the 

jet. This is the physical basis for the calculations of sections 3.2 and 3.3 where 

by making various assumptions we may estimate the Kelvin impulse at the end of 

the bubble life. 

The case that we particularly address is that of motion above a rigid boundary 
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in which we have postulated the existence of a null impulse fine that partitions the 

y-6 parameter space. Although the existence of such a partition has been estab

lished by Blake et al. (1986) we can demonstrate its existence using the equations 

of spherical bubble dynamics derived in section 3.5. To obtain the appropriate 

equations of motion we set a = 0 in (3.5.4) and (3.5.5) and for a cavitation bub

ble set p(R) = pc, the constant vapour pressure within the bubble throughout its 

lifetime. Introducing the length and time scales discussed in chapter 2 and apply

ing the initial conditions chosen for a cavitation bubble we may proceed to solve 

the coupled equations of spherical bubble dynamics by standard techniques. We 

have used the 4'th order Runge-Kutta method. Examples of such calculations 

are shown in figure 3.6.1. For the example of figure 3.6.1(a) we have plotted the 

centroid velocity as a function of time for the buoyancy parameter 6 = 0.15, with 

the motion beginning at y = 2.0. As the bubble expands it moves little but upon 

collapse it undergoes a period of rapid acceleration towards the rigid boundary. In 

this example the influence of the boundary is the dominant factor. If, however, we 

increase the buoyancy parameter to 6 = 0.25 we note the motion depicted in figure 

3.6.1(b). As the bubble collapses it accelerates away from the rigid boundary, 

again with characteristic high acceleration. Buoyancy is dominant in this case. 

Thus the equations of spherical bubble dynamics demonstrate the existence of 

a partition of the y-6 parameter space. Furthermore, the phase of the motion 

during which time the bubble undergoes a rapid acceleration is identified with 

that phase during which collapse and jet formation will occur. If we consider our 

expression for the Kelvin impulse in this case, 

r{=firp{j^-|(|)'*»*}, (3.6.3) 

we note that as the terms -R3!^ and R3R are of the same order we find that upon 

collapse (R —• 0) the term (R/t)3 vanishes, resulting in the Kelvin impulse and 

centroid velocity being similarly directed at the conclusion of the collapse. This 

result is conceptually appealing as we expect the jet direction to be related to the 

Kelvin impulse, but furthermore, the rapid acceleration of the bubble centroid and 
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the asymmetric pressure field associated with it is the cause of bubble collapse and 

we expect the jet direction to be closely correlated with the direction of centroid 

acceleration just prior to collapse. Since the rapid centroid migration upon collapse 

almost begins from rest, and the direction of the acceleration varies little as the 

collapse proceeds, the directions of acceleration and centroid migration are almost 

identical. The coincidence of the direction of migration and Kelvin impulse at 

the end of the collapse, in the simplified theory of spherical bubble dynamics, is 

comforting in that both approaches to predicting the direction of jet formation 

appear to be consistent with each other. 

We may use the equations of spherical bubble dynamics to calculate the null 

impulse line by running the full dynamics and using a bracketting type procedure. 

The results are illustrated in figure 3.6.2 along with the null impulse line computed 

in section 3.2. The data points shown as triangles are from the original analysis 

of this question, as found in Blake et al. (1986). The direction of the triangle 

apex denotes the direction of centroid migration (and jet formation, if a jet was 

observed) at the end of the bubble lifetime as calculated by the boundary integral 

method described in that same paper. It is clear that the two null impulse lines 

diverge as we approach the rigid boundary. In order to clarify which null impulse 

fine provides a more exact partition of the parameter space we have run a number 

of simulations using the improved boundary integral method of Kucera (1991). 

This numerical algorithm will be discussed in some detail in the next chapter 

and the data points are shown as arrows and listed in table 3.6.1. It is clear 

from inspection of this figure that spherical bubble dynamics allows us to predict 

with some certainty aspects of the motion during the collapse phase, in particular 

the direction of centroid migration and jet formation. We find, however, that at 

y = l.O we have results that violate the predictions of our simple model. This is 

not unexpected as in our theory we have only corrected the equations of motion to 

lowest order in {R/£) and in any case the results of boundary integral simulations 

(see for instance Blake et al., 1986, 1987) demonstrate that the close proximity of 
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Figure 3.6.1. Centroid velocity as a function of time for the motion of a buoyant, spherical 

cavitation bubble above a rigid boundary. In both cases the point of inception is y = 2.0. The 

buoyancy parameter is (a) 6 = 0.15 , (b) 6 = 0.25 . 
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Figure 3.6.2. The null impulse line in the y — 6 parameter space as determined by the method 

of section 3.2 and also by spherical bubble dynamics. The direction of the triangle or arrow 

denotes the direction of centroid migration (jet formation) at the conclusion of the bubble lifetime 

as determined via the boundary integral method. The equations of spherical bubble dynamics 

predict well this partition to y = 1.125 . 



7 
2.5 
2.5 
2.0 
2.0 
1.5 
1.5 
1.25 
1.25 
1.125 
1.125 
1.0 
1.0 
1.0 
1.0 

8 
0.155 
0.171 
0.193 
0.209 
0.249 
0.265 
0.286 
0.302 
0.312 
0.328 
0.343 
0.351 
0.359 
0.367 

Jet direction 

— 

+ 
— 

+ 
— 

+ 
— 

+ 
— 

+ 
— 

— 

— 

+ 

Table 3.6.1. Cavitation bubble migration data computed using the boundary integral method. 

The notation +, — signifies respectively upwards and downwards jet formation. For y = 1 a jet 

was not formed so the direction given denotes that of the centroid migration at the end of the 

bubble lifetime. 



the boundary causes the bubble to be non-spherical for much of its lifetime, not 

only that time when it collapses. In fact, the observation that the null impulse 

line is well predicted to y = 1.125 is remarkable. 

These calculations have established the value of studying the dynamics of 

spherical bubbles. We will now proceed to consider features of the motion in 

the geometries considered in sections 3.3 and 3.5 that can be inferred from the 

dynamics of spherical bubbles. The value of this consideration lies in the fact that 

for these essentially 3-dimensional motions the computational requirements are no 

greater than in the axisymmetric case. To do simulations of the 3-dimensional 

problem using boundary integral techniques is computationally very demanding 

and still in the early stages of development (Chahine and Perdue, 1988). 

3.7. Motion in some three dimensional geometries 

We have derived in section 3.5 equations for the dynamics of spherical bubbles 

in geometries in which the three-dimensionality of the problem is essential. In 

the first instance, we have considered the case of cavitation motion near a plate 

inclined at some angle to the uniform gravity vector, with the equations of motion 

given in section 3.5. Let us solve these equations for a cavitation bubble, imposing 

the usual initial conditions. We choose the plate inclination a = 135°, the buoyancy 

parameter 6 = 0.1 and the point of inception is at y = 2.0. Pertinent features of the 

motion are displayed in figure 3.7.1. 

During the early stages of the expansion the bubble drifts away from the rigid 

boundary, with buoyancy causing an upwards component of drift parallel to the 

boundary. As the bubble expands, however, this drift away from the boundary 

slows, and then reverses so that the bubble migrates towards the rigid bound

ary. The time scale of the motion depicted by the trajectory of figure 3.7.1(a) is 

displayed by the points shown denoting equal time intervals. We note that for 

much of the motion the bubble moves little, however, during the collapse phase 

we observe the large displacement of the bubble centroid, the speed of this motion 
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Figure 3.7.1. Buoyant cavitation bubble motion in the neighbourhood of an inclined plate. The 

plate inclination is a = 135°. The buoyancy parameter is 6 = 0.1. The point of inception is 

y = 2.0. The frames display (a) the trajectory, (b) the direction of migration vs. time, (c) the 

component of the velocity perpendicular to the plate, (d) the component of the velocity parallel 

to the plate. The points marked on the trajectory are at equally spaced times with the initial and 

final times respectively denoted by to and if . 



displayed by the plots of the velocity components vs. time (figures 3.7.1(c), (d)). 

A particularly interesting feature of the trajectory is the well defined direction 

of migration as the bubble collapses, this aspect being exemplified by the graph 

of the direction of migration vs. time (figure 3.7.1(b)). We again propose that 

this direction provides us with information regarding the direction of migration 

of deforming bubbles and that in cases where we observe jet formation, gives the 

orientation of the jet. As in the case considered in section 3.6, at the conclusion of 

the collapse phase the Kelvin impulse and centroid velocity are similarly directed. 

Since the direction of migration at the conclusion of the collapse phase is at 

some well defined orientation to the rigid boundary we may consider how it varies 

with varying plate orientation. In this way we may obtain a plot of jet-angle vs. 

plate angle. We have introduced the term jet-angle to refer to the direction of 

migration at the conclusion of the collapse phase. We may then compare this with 

the analytic expression of (3.3.5). We display the results for 6 = 0.15 in figure 3.7.2. 

Shown as a solid line is the result deduced from spherical bubble dynamics and the 

dashed line indicates the analytic expression of (3.3.5). The predominant feature is 

that the curve is skewed to the left. We expect this behaviour on physical grounds. 

Recall that the effect of the boundary alone is to cause migration towards it. We 

can then think of buoyancy as a perturbing influence, causing a deviation from 

motion normal to the boundary. For a given pair of plate inclinations, r/2 - a and 

w/2 + a (0 < a < ir/2), the angle between -g (the direction of the buoyancy force) 

and the normal exterior to the plate (the direction of the Bjerknes force) is greater 

for x/2 - a so that the perturbing effect of buoyancy is greater in this case. Thus 

we expect a greater deviation of the direction of migration from the normal in this 

case. Thus the displayed curves are skewed to the left. 

We also observe the effect of varying the distance from the plate at which 

inception occurs (7). As we increase y the influence of the boundary is felt less by 

the bubble. With buoyancy then becoming a greater relative perturbing influence 

we note the greater deviations from normal motion. This is further exemplified 
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Figure 3.7.2. Jet angle vs. plate angle for cavitation bubble motion in the neighbourhood of 

an inclined plate. The buoyancy parameter is 6 = 0.15. The solid line represents the results of 

spherical bubble dynamics. The dashed line is the analytic expression obtained in section 3.3. The 

term jet angle is used for the direction of migration of the spherical bubble as it collapses to a 

singularity. Note that the curve is skewed to the left. 



by the result for y = 3.0. In this case we note that for small plate inclinations, 

the perturbing influence of buoyancy is so great that the migration is away from 

the rigid boundary. For smaller values of y an increase in the buoyancy parameter 

gives rise to a similar effect. Finally, we note the difference in the results predicted 

by spherical bubble dynamics and the expression of (3.3.5). On all occasions 

the expression of (3.3.5) understates the deviation of the jet from the normal, the 

neglect of bubble migration and the sharing of kinetic energy between translational 

and radial motion (as expressed in equation (3.5.8)) being major factors in this 

regard. In any case, the simple ideas of sections 3.2 and 3.3 and consequent 

analytical expression for the jet angle display well the general features of the 

motion and are thus valuable from this viewpoint. 

Similarly we may consider the motion of a cavitation bubble near a vertical 

rigid wall and horizontal free surface, the equations of motion having been derived 

in section 3.5. We propose that the direction of migration at the conclusion of the 

bubble life well predicts the direction of migration and jet formation for deforming 

bubbles, noting the coincidence of this direction with that of the Kelvin impulse, 

in this model. In figure 3.7.3 we have plotted the variation of the jet angle as a 

function of the distance of inception from the rigid boundary (7), for given values 

of /3 (distance of inception from the free surface), for a buoyancy parameter of 

0.15. The jet angle, 0, is measured with respect to the normal exterior to the rigid 

boundary. We have an analytic expression for this jet angle, obtained in section 

3.3, and this is shown as a dashed line. We see that for a given value of 7, as we 

increase /3 the jet angle increases, reflecting the fact that the deeper the bubble 

the less felt is the Bjerknes repulsion of the free surface. Also note the interesting 

result that for a chosen value of p, as we increase 7 the jet angle, in general, either 

increases or decreases, depending upon the value of /3. We can explain this feature 

generally by considering the rigid boundary as a perturbing influence upon the 

two similarly directed effects of the free surface and buoyancy. For small values 

of 7 we have a large perturbation of the upwards effects, and this perturbation 
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decreases as the point of inception moves further from the rigid boundary. In 

essence what we are considering is a vector sum of the forces acting on the bubble, 

namely the horizontal and vertical Bjerknes forces and buoyancy. Consequently, 

as this horizontal force decreases, whether the jet angle increases or decreases then 

depends upon which of the vertical effects is predominant. For large B buoyancy 

becomes the predominant factor and so the jet angle increases with 7, however 

for small 3 the influence of the free surface dominates, causing the jet angle to 

decrease as the influence of the rigid boundary becomes less important. 

Along this line of reasoning, we could perhaps be led to expect that the jet 

angle should be a monotonic function of 7, for a given 3. If we note the result of 

figure 3.7.3 for 3 — 3.5 we notice that 0(7) has a stationary point. Furthermore, we 

may perhaps suppose that the jet angle should remain either positive or negative, 

depending upon the relative strengths of the buoyancy and vertical Bjerknes forces. 

Inspection of the results shows this to be true in general but there are exceptions. 

Thus we see that we can deduce qualitative features of the motion by considering 

Bjerknes and buoyancy effects as combining as forces in the manner in which the 

forces of mechanics do. We expect this from the analogy between the impulse of 

a bubble and the momentum of a rigid particle, and the expression of (3.2.8). We 

must note, however, that under some circumstances the coupling of these effects via 

the energy equation (equation (3.5.14)) renders these interpretations incorrect. It 

is clear that such violations occur for jet angles about zero and are thus associated 

with the bubble being in the neighbourhood of the vertical null impulse state. 

Since we are in this neighbourhood we expect that any small perturbations to this 

null impulse state due to bubble migration could cause migration in directions 

both greater than or less than zero. Finally, we again note the value of the simple 

considerations of section 3.3. The analytic expression for the jet angle appears to 

provide an excellent indicator of the general behaviour. 
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3.8. Discussion - The effect of non-condensible bubble contents 

A principal aim is to begin an investigation of the effect that non-condensible 

bubble contents have upon the motion of the bubble, the dynamics of the bubble 

caused by an underwater explosion being a practical example in this regard. We 

may proceed to study the bubble motion using the techniques of spherical bubble 

dynamics. Experimental results and elementary theoretical considerations point 

to the behaviour that we expect. On collapse the contents compress until a stage 

is reached where the inwards motion of the fluid is arrested and the bubble then 

rebounds, so that an oscillatory motion is observed. The work of Herring (1941), 

Taylor (1942) and others during WWII displayed these features. Similarly, the ex

perimental work of the period was in qualitative agreement with such predictions. 

Our concern is to consider these bubbles in the context of the previous section, 

for much experimental work, in which the importance of the non-condensible na

ture of the bubble contents is clear, displays the characteristic jetting phenomena 

that we have much knowledge of in the context of cavitation bubble dynamics 

(Taylor and Davies, 1943; Bryant, 1944; Benjamin and Ellis, 1966; Lauterborn, 

1980; Tomita and Shima, 1986; Vogel et al., 1989). Thus we shall make use of 

spherical bubble dynamics to determine the early motion of these bubbles and 

attempt to infer from the early behaviour aspects of the later motion when the 

bubbles deform from spherical shape. We choose this course of investigation as 

the results for the case of axisymmetric cavitation motion confirm that by careful 

interpretation of the analysis of spherical bubbles we can predict with some confi

dence aspects of the motion of deforming bubbles. Of special concern is the effect 

of a non-condensible gas when jets are formed. We might suppose that as the bub

ble contracts the high pressure developed within the bubble might be sufficient to 

arrest this jetting motion and cause the non-spherical bubble to rebound. 

The first geometry in which we have chosen to investigate the motion of explo

sion bubbles is that axisymmetric geometry in which motion occurs above a rigid 
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boundary, as considered in section 3.6. W e consider the motion for various values 

of the strength parameter, e, the details of the motion being displayed in figure 

3.8.1. Also shown on the graph, for comparison, is the behaviour of a cavitation 

bubble characterised by the same physical parameters (buoyancy parameter, 6), 

as determined by spherical bubble dynamics. The graphs of quantities for the 

cavitation example stop as derivatives become singular and the simple numerical 

scheme fails. We notice the phenomenon of rebound as indicated in the plot of 

bubble radius vs. time (figure 3.8.1(a)). We observe that the rebound is charac

terised by very high radial acceleration (figure 3.8.1(b)). As with the motion of 

cavitation bubbles the reducing added mass upon collapse gives rise to a period 

of rapid acceleration. As the bubble rebounds the increasing added mass causes 

the bubble to decelerate rapidly to a very small velocity. These features are well 

displayed in the plots of centriod position vs. time and centroid velocity vs. time 

(figures 3.8.1(c), (d)). 

Of interest is the behaviour as we increase the strength parameter, e, through 

the values 50, 200, 800 and 3200. As the increase occurs the gross behaviour tends 

to that of the cavitation bubble, the essential difference being that the compression 

of the bubble contents must eventually arrest the collapse of the explosion bubble. 

In any case, for large e, we notice that for all except those brief contracted phases 

of the motion about rebound the non-condensible nature of the bubble contents 

has negligible influence upon the dynamics of the bubble. In view of this we may 

speculate as to the behaviour of real explosion bubbles in which the bubble is not 

constrained to remain spherical. Our experience of cavitation bubble phenomena 

indicates that for large regions of the physical parameter space governing the mo

tion, the initial deformation from spherical shape that ultimately results in the 

formation of a jet is caused at volumes greater than the initial value. From our 

current observations we deduce that at such volumes the explosion bubble is virtu

ally indistinguishable from a cavitation bubble characterised by the same buoyancy 

parameter. Thus we conclude that the modes of non-spherical collapse will gen-
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Figure 3.8.1. Buoyant explosion bubble motion for various values of the strength parameter, e, 

compared with cavitation bubble motion. The buoyancy parameter is 6 = 0.15. Inception has 

occurred at y = 2.0 above a horizontal rigid boundary. The strength parameter takes on the 

values e = 50,200, 800 and 3200. The frames display (a) the radius vs. time, (b) the radial 

velocity vs. time, (c) the centroid position vs. time, (d) the centroid velocity vs. time. The 

incomplete curve describes the cavitation bubble. The curve corresponding to the greatest period 

denotes c = 50 . As e increases there is a systematic trend towards the cavitation example. 



erally be very similar in character, with jets forming and completely penetrating 

the bubble. 

The possibility of rebound should not be dismissed and we speculate as to 

the circumstances under which it may occur. W e comment that in the theory 

of spherical bubble dynamics the behaviour of explosion and cavitation bubbles 

diverges as the strength parameter decreases (figure 3.8.1). W e therefore speculate 

that a corresponding divergence in the behaviour of real, deforming bubbles will be 

evident in this regime. In particular, the decrease of the peak radial velocity with 

decreasing c, as predicted by the spherical model, is suggestive that in the case of 

a real explosion bubble the increasing gas pressure upon collapse may sufficiently 

arrest the inwards motion of the fluid so that jetting is suppressed, with the bubble 

retaining much of its spherical character as it approaches a minimum of volume. 

Under such circumstances we propose that the non-spherical bubble will indeed 

rebound prior to the complete penetration by any jet. W e further speculate that 

the rebound phenomenon may be observed in the neighbourhood of a null impulse 

state. In support of this contention we note the results of Blake et al. (1986) in 

which characteristic jets were not observed, or very weak jetting was observed, 

upon the collapse of cavitation bubbles in the neighbourhood of the null impulse 

state. In this region of the physical parameter space jetting is suppressed and the 

bubble may retain a spherical character to very small volumes, thus suggesting 

the possibility of rebound. 

It is pertinent to note that since the behaviour of the explosion bubble tends 

to that of the cavitation bubble with increasing e, the ideas pertaining to the 

Kelvin impulse as applied to cavitation bubbles should provide a valuable tool for 

understanding gross aspects of the motion. This behaviour is to be expected as a 

result of the internal bubble pressure varying as V-">. It is only during the highly 

contracted phases of the motion that this pressure becomes a significant factor 

in the dynamics, as exemplified by the case of purely radial motion described by 

equation (2.1.20). The term c (R0/R)*
y only assumes significance for (R-Ro)/Rm < 1, 
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that is when the bubble volume is in the neighbourhood of its initial value. 

We can proceed to examine explosion bubble motion in some essentially 3-

dimensional geometries, as discussed in section 3.7. The character of the motion 

is much as that predicted for a cavitation bubble, however, as indicated by figure 

3.8.1 the bubble has an oscillatory behaviour. As in the cavitation example the 

first collapse phase is characterised by a very high acceleration of the centroid and 

it is this motion that precipitates the non-spherical collapse and formation of a 

jet. If we consider the expressions for the components of the Kelvin impulse, 

2 f 8rr 3R*R] 
Ie = -TplB*U(---jS- I (3.8il) 

Iv = j*pR
aUv, (3.8.2) 

then at rebound R = 0 so that the centroid velocity and Kelvin impulse are similarly 

directed. We should note that in the cavitation example the impulse and centroid 

velocity become similarly directed as the bubble collapses and R —• -co due to 

R*/(£3) vanishing at a greater rate, however in this case the similarity of these 

orientations is exact at rebound because R -* 0. This apparent difference in the 

causes of coincidence should not be seen to cast doubt upon our assertion that both 

the Kelvin impulse and direction of migration should be closely correlated with the 

jet angle. Since the motion of the explosion bubble is so closely described by the 

cavitation solution (especially for large e) the radial velocity upon collapse is very 

high, except in the small interval about rebound. Thus for those times during the 

collapse not in this interval it is the smallness of the ratio (R/t)2 that causes the 

Kelvin impulse and centroid velocity to be nearly similarly directed, just as in the 

cavitation case. From our previous considerations we expect that jets will form 

upon collapse prior to the time of rebound, when the spherical model predicts high 

radial velocities, and so the cause of the close relation between the direction of 

the impulse and the centroid velocity is exactly as in the cavitation example. As 

a consequence, for motion in the neighbourhood of an inclined rigid plate we may 
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prepare a graph of jet angle vs. plate inclination and this is shown in figure 3.8.2 

for a buoyancy parameter of 0.1. The value chosen as the jet angle is the direction 

of migration at the end of the first oscillation. We have shown as the dashed fine 

the analytic expression of section 3.3 as well as the results for c = 50,200,800 and a 

cavitation bubble, as predicted by spherical bubble dynamics. For each value of 

7 the uppermost curve in the corresponding set of curves is described by c = 50. 

As e increases there is a systematic trend towards the curve corresponding to the 

cavitation bubble. From previous considerations we expect this behaviour. 

3.0. Concluding remarks to chapter 3 

In this chapter we have considered the motion of bubbles constrained to re

main spherical throughout their lifetime. By varying the description of the bubble 

contents we may describe the motion of cavitation or explosion bubbles. Such a 

model is valid during much of the bubble lifetime as experimental observations 

show that to a good level of approximation the bubble does indeed remain spheri

cal. By considering the fluid momentum via the concept of the Kelvin impulse we 

have attempted to infer aspects of the bubble's later motion, when experimental 

and numerical studies indicate that the spherical model must fail. In particular, by 

relating the direction of the Kelvin impulse of spherical bubbles (and co-incident 

direction of migration) at the end of the bubble lifetime to the direction of jet 

formation in non-spherical collapse, we have been able to successfully determine 

the partition in the y - 6 parameter space for axisymmetric motion above a rigid 

boundary. The success achieved in the axisymmetric geometry motivates us to 

develop these techniques for geometries in which the fluid motion is essentially 

three-dimensional, and full numerical solutions are computationally demanding. 

It remains for future experimental and numerical work to establish how closely 

our ideas model the physical and mathematical reality. In any case, we have 

confidence that the salient features of the motion may be well inferred from our 

simple study, the elementary considerations providing considerable insight into the 
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physics of the bubble collapse phenomenon. 

Finally, we have made comparisons of explosion bubble motion with the cavita

tion bubble motion of which we have much knowledge. The essential difference in 

the explosion example is the presence of a non-condensible gas within the bubble. 

The close correspondence between the motion of an explosion bubble and cavita

tion bubble for large values of the strength parameter leads us to expect similar 

non-spherical collapse modes for the explosion bubble case. We do, however, pro

pose that as the strength parameter decreases, and in the neighbourhood of null 

impulse states, a range of interesting behaviours will be observed as under such 

circumstances the possibility exists that the non-spherical bubble will rebound. 

We devote the next two chapters to this question. 

63 



4 

THE BOUNDARY INTEGRAL METHOD 

The boundary integral method has become one of the standard techniques for 

computing the motion of cavities in an incompressible, inviscid and irrotational 

flow. Guerri et al. (1981) applied the technique to compute the flow field in

duced by the collapse of a vapour cavity adjacent to a rigid boundary. Blake et al. 

(1986, 1987) demonstrated that the growth phase of the bubble motion may sig

nificantly influence the character of the collapse. This work also set a benchmark 

against which many subsequent numerical investigations have been compared (see 

for example Chahine and Perdue, 1988). 

It is the boundary integral method which will here be used to investigate the 

motion of explosion bubbles, whose internal pressure is a function of the bubble 

volume. It is pertinent, then, to outline the theoretical origin of this method and 

discuss in some detail the algorithm of Kucera (1991) which has formed the basis 

for these studies. The algorithm of Kucera was developed to describe the motion 

of cavitation bubbles. Subtle modification is required to adequately describe ex

plosion bubble motion and detailed discussion of the algorithm at this point will 

facilitate a rapid description of these modifications at a later time. 

Application of Green's theorem allows us to write the solution of Laplace's 

equation in the domain n as 

****i)=L{&-*£)"• (4i) 

with 

*>={£ SI&, («) 
The surface d(l bounds fi and is supposed to be everywhere smooth. The point p 

is somewhere in the flow domain and d/dn = n • V is the normal derivative at the 

boundary. The Green's function is given by G and the notation (1/dQ denotes the 

complement of dii in n. W e comment that if d(i were not smooth (such as in cases 
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where there are corners) then the expression of (4.1) remains valid but the value 

of the function c at the points where the surface is not smooth would differ from 

2*. It is a routine matter to determine the value of this function given the surface 

geometry. The reader may consult Seybert et al. (1985) for details. 

In developing the boundary integral method for the solution of problems in 

bubble dynamics we note that the surface, 50, that bounds the flow domain in

cludes the bubble surface S. If we consider motion in an infinite fluid then dfi is 

indeed the surface of the bubble and the Green's function is 

where q is the position vector of some point on S. We notice that when p € S the 

integrand of (4.1) exhibits a singularity at p. In this case the integral over S is in 

a principal value sense. 

In cases where the geometry of the flow domain is particularly simple we 

may circumvent the need to include boundaries, other than the bubble surface, 

in our description by appropriate choice of the Green's function. The geometry 

of particular relevance here is that of motion in the neighbourhood of a rigid 

boundary. If we choose our Green's function as 

lp-q| |p-q'l 

where q' is the image of q reflected about the rigid boundary then we need only 

take dft in (4.1) as the surface of the bubble. From a computational point of 

view this alleviates the necessity of having a description of the rigid boundary and 

evaluating integrals over this surface. 

The spirit of the method is as follows. We suppose that at some time, t, the 

bubble geometry, S, and the potential on S are known. Equation (4.1) is then a 

Fredholm integral equation of the first kind for the normal fluid velocity, d6/dn, 

at the bubble surface. Solution for this quantity allows the fluid velocity at the 

bubble surface to be determined. We obtain the tangential component of the 
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velocity from our assumed knowledge of 6 on S. Knowledge of this velocity allows 

the bubble surface at some short time, St, later to be determined. The potential 

on the surface at t + St may similarly be determined and we may solve (4.1) for 

d<j>/dn at t + 6t. In this manner we iterate the solution for the flow field in time. 

In particular, if X denotes the position vector of some point on the bubble 

surface and u denotes the fluid velocity there, then solution of (4.1) allows deter

mination of u and hence integration of the equation 

dX 

dt 
= u, (4.5) 

describing the motion of points on the bubble surface in the Lagrangian sense. 

The rate of change of the velocity potential following some fluid element is 

1 (4-6) 

= 21V6\3 + (P°° " P)/P ~ 9{* ~ *o), 

where we have eliminated 86/dt using the Bernoulli equation and p^ is the hy

drostatic pressure at z = ZQ. If the fluid element is at the bubble surface then the 

pressure in (4.6) is known as a function of the bubble volume and our prior knowl

edge of |V^|2 (= |u|2) allows (4.6) to be integrated simultaneously with (4.5), thus 

giving the potential on the bubble surface as a function of time. 

To solve (4.1) Kucera (following Blake et al. (1986)) employs a collocation 

method in an axisymmetric geometry. A set of n + 1 nodes are chosen on the 

surface of the bubble, with the assumption of axisymmetric motion necessitating 

only the description of a curve in two dimensions. W e denote the cyUndrical co

ordinates of the i'th node as fc, z4) with i e {0,1,..., n}. The surface of the bubble 

is then represented by a cubic spline, constrained to pass through the node points. 

The spline parameter is the arclength along the curve that is the bubble surface. 

W e denote this arclength by £. W e shall further denote the arclength from node 0 

to node i by & and shall write 

6ti=ti-£i-i, « = l,...,n, (4.7) 
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as the arclength between adjacent nodes. Note that £0 = 0. W e write the spline 

functions f and z as 

r(0 = ru + {£ - &) (r„ + (£ - &)('* + G " &K)), (4-8) 

2(0 = *i< + (£- 6) (** + « - 6)(*« + U - &)*«)), (4.9) 

for 

6<{<&+i. * = 0,...,n-l. (4.10) 

In (4.8) and (4.9) r,-< and «,-< (j = 1,..., 4, t = 0,..., n - 1) are the spline parameters 

and ru = rj and zu = z<. The spline functions f and z are clamped at the end 

nodes 0 and n in order that the bubble shape remains axisymmetric throughout 

the computation. The geometry is shown in figure 4.1. 

The arclength along the spline is not known, a priori, but Kucera obtains it in 

an iterative manner. If we denote by a superscript the order of the approximation 

to the arclength and corresponding spline functions then we may write 

^|0) = |Xf-Xi_1|, » = l,...,n, (4.11o) 

with Xj denoting the position vector of the i'th node. In order to implement 

this method an initial approximation to the arclength is chosen to be the linear 

distance between nodes. This is then used to determine an initial approximation 

to the spline functions, f(°)(£) and z^(£). Using these functions we obtain a further 

approximation by evaluating (4.11b) and using the resultant arclength to generate 

new spline functions. Integration of (4.11b) is performed numerically and Kucera 

found that a highly accurate representation of the arclength is obtained after 2 or 

3 iterations of (4.11). 

The potential is considered known at the nodes and we represent its value 

over the surface S using a cubic spline, parameterised with respect to the above 

numerically found arclength. We write this as 

+(t) = +u + (£- tiX+u + (t- £i)(fau + (t- £i)6ti)), (4.12) 
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Figure 4.1. The discretisation of the bubble surface as employed in the boundary integral algo

rithm. 



with the notation as previously defined. W e shall denote the value of 86/dn at 

node t by fa. It is these quantities that are unknown and for which we seek a 

solution. We choose to represent 86/dn on S linearly with respect to the arclength, 

so we write 

to) = *i-i(t< ~ *)/*& + Mt ~ 6-i)/«fc, «' = 1 »• (4-13) 

Collocation of (4.1) at the node points, using the expressions of (4.8), (4.9), (4.12) 

and (4.13) yields the set of linear equations 

n n 

1*fa + X ) Aii = £ (B<i^i-i + CHV>i) . » = 0,..., n, (4.14) 
j=i i=i 

with 

^ = f1 to){/**«• *>^N>•)*}*• 

In (4.15) we have denoted by d the value of the Green's function evaluated at the 

i'th node. In the case of motion in an infinite fluid we may write it as 

Gi(£,0) = l/\Xi-x(t,0)\, (4.16) 

where x(£,0) is the position vector of some point on the bubble surface and r(£,0) is 

the radial co-ordinate of this point, parametrised with respect to arclength, £, and 

azimuthal angle, 0. Integration over 0 and £ yields the surface integral of (4.1). 

The integration over 0 is performed analytically, yielding expressions involving 

elliptic integrals of the first and second kind. The integration over £ is performed 

numerically using Gauss-Legendre quadrature formulae. When the integrand is 

singular, the logarithmic singularity is subtracted and an appropriate quadrature 

scheme is utilised to complete the integration. For details concerning these aspects 

the reader is referred to the work of Taib (1985). 

The system of (4.14) is solved using standard techniques and yields fa,i -

0, ...,n. The radial and vertical components (denoted respectively by it and v) of 
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the fluid velocity m a y be evaluated at the bubble surface via 

848? -8z 

* (4.17) 

We note that the normal interior to the bubble is given by (-8z/8£, 8f/8£). In 

particular, we may evaluate (4.17) at the nodes and use an Euler integration 

scheme to determine the position of the nodes after some small time interval St. 

We have 
n{t + St) = ri(t) + ui(t)6t + 0(6t2), 

(4.18) 

Zi(t + St) = Zi{t) + Vi(t)St + 0(St
3), 

and may also determine the potential at this time using 

fa(t + St) = fa(t) + 
> 

St + 0{6t3)} (4.19) 

with d6/dt given by (4.6). Having determined the geometry of the bubble surface, 

and potential distribution on it, at t + 6t we may again solve (4.1) for 86/8n and in 

this way the motion of the bubble surface is computed as a function of time. 

In the algorithm of Kucera (and that of some previous studies, such as that 

of Blake et al., 1986, 1987) the motion of the initial node points used to represent 

the bubble surface is followed in time. In this manner the trajectories executed 

by these points are readily computed and are a valuable aid in visualising the flow 

and interpreting the behaviour of the bubble. As an example of such computations 

see the work of Blake et al. (1986, 1987) and that of Kucera and Blake (1988). To 

initiate the computation the initial conditions for a cavitation bubble, as discussed 

in chapter 2, are utilised. 

A final point that we should note is the employment of a variable time step 

St. The Euler time stepping is robust and produces excellent results with the 

computational effort somewhat optimised by the choice of St according to the 

expression 

St = ^ (4.20) 
m a * [l + i |u|2 - 6*{z - z0)\ 
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where A6 is some constant, the scaling of chapter 2 has been introduced and maxj 

denotes the maximum value over all node points. In the example of cavitation 

bubble motion use of this expression imposes that the change in potential at all 

nodes is bounded above by A^ for each step of the Euler integration scheme. 
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5 

REBOUNDING BUBBLES 

5.1. Modification of the boundary integral algorithm for the 

computation of explosion bubble motion 

The models utihsed in this study for cavitation and explosion bubble phe

nomena differ only in the description of the bubble contents and the conditions 

used to initiate the computation. The significant new feature we expect to be 

characteristic of the explosion phenomenon is that of bubble rebound due to the 

non-condensible nature of the gaseous explosion products. Experimental evidence 

suggests that even in cavitation bubble motion the later stages of the collapse 

proceed so quickly that the liquid vapour inside the bubble cannot completely 

condense and the cavitation bubble rebounds. This feature has not been evident 

in numerical computations to date as the bubble pressure has been assumed to 

remain constant. Thus the investigation undertaken here may equally be con

sidered as one of cavitation bubble motion in which not all of the liquid vapour 

condenses upon collapse. In order that the boundary integral method provides 

an accurate description of this behaviour, modification of the basic algorithm dis

cussed in chapter 4 is required. At a given time, the bubble surface and potential 

at this surface are known and the collocation method described in chapter 4 for the 

determination of 86/dn is applied unchanged. It is only the time iteration process 

that is in need of modification. 

The Bernoulli equation evaluated at the surface of the bubble is 

^ + i \V6\3 + e(V0/Vy + 6
3(z - z0) = 1, (5.1.1) 

where we have chosen a reference depth of z0 and denned e and 6 in terms of the 

hydrostatic pressure at this depth. It is this expression which we now use in (4.6) 

to eliminate 86/8t from the expression for d6/dt, which is then integrated to give 

the potential at the surface of the bubble as a function of time. The computation 
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is initiated by supposing that the bubble surface is a sphere of radius Ro and at 

rest, so that the potential everywhere is zero. A high initial pressure inside the 

bubble drives the motion from rest and this is characterised by the parameter e. 

As discussed in chapter 2 the initial radius Ro is chosen, given the value of c, such 

that radial oscillations in an infinite fluid would give rise to a bubble of maximum 

radius 1. 

It was noted in chapter 3 that spherical bubble dynamics, when applied to 

the explosion bubble phenomenon, predicts very high radial velocities about the 

moment of rebound. At rebound, however, the radial velocity is zero although 

the acceleration remains high, due to the change in sign of the velocity occurring 

over a very short time interval. In order to capture this fast motion numerically 

considerable care must be exercised in the choice of the time step. The formula 

of (4.20), extensively utilised in cavitation research, has the particularly advanta

geous feature that during those phases of the motion characterised by high fluid 

velocities, such as during the later stages of the collapse, very small time steps 

are given in order to accurately capture this fast motion. In the case of spherical 

oscillations of an explosion bubble in an infinite fluid, at least, the radial velocity 

of the bubble surface is zero at rebound and (4.20) consequently gives a large time 

step. Provided second and higher order time derivatives were small at the time of 

rebound the Euler time stepping scheme utilising this choice of time step would 

provide a good estimate of the change in position of the bubble surface and poten

tial on it for such large time steps. However, as we have just remarked the radial 

acceleration of the bubble surface is very high at this time and causes large errors 

in the integration of the bubble surface and potential. In particular, we have that 

the Euler time stepping formula yields 

R(t + St) = R(t) + R(t)6t + 0(6t3), (5.1.2) 

with the error term of order St3 given by 

R{t')6t3/2, t'efat + St), (5.1.3) 
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which is large. In practice the magnitude of this error causes the bubble to under

shoot or overshoot its minimum volume and the subsequent computation of the 

motion fails. This problem is quite dramatic in the integration of the equations of 

spherical bubble dynamics and even more so in the case of non-spherical bubbles 

computed by the boundary integral method. 

In order to capture numerically the moment of rebound, then, it is necessary 

to reconsider the choice of time step. At the bubble surface we have 

^ = \ \V6\3 - e(V0/Vy - S\z - z0) + 1. (5.1.4) 

Following the philosophy utilised in selection of the time step via (4.20) we might 

maximise this expression over the bubble surface and choose St such that, in an 

Euler integration scheme, the change in 6 at all nodes is bounded above by A6. 

This, however, is not an appropriate choice because d6/dt may be close to zero 

shortly after inception and about the time of rebound, yielding a very large time 

step. For the motion of spherical explosion bubbles in an infinite fluid it may 

be routinely verified that d6/dt = 0 at times about the minimum volume. This is 

in contrast to the cavitation behaviour, modelled by a constant bubble pressure, 

where d6/dt is always greater than zero. 

Taking the sum of the absolute values of the terms in (5.1.4) we note that d6/dt 

is bounded above by 

maxs Q |V^|
2 + e(V0/Vy + 6

3\z- z0\ + l) , (5.1.5) 

and this expression is always greater than one. If we choose 

St = -. ^ r-, (5.1.6) 
maxs (i \V6\

3 + e(Vo/Vy + S* \z - z0| + l) 

then the change in 6 at each node is bounded above by A6 over the time interval 

St in an Euler integration scheme. This formula, with the maximum evaluated 

over all the nodes defining the bubble surface, possesses the necessary features 

to enable an Euler time stepping formula to capture bubble rebound with the 
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computational effort somewhat optimised. W h e n the fluid motion is fast the time 

step is reduced. Furthermore, when the bubble is contracted and V0/V ~ 1, then 

irrespective of the value of |V^| the expression of (5.1.6) yields very small time 

steps due to the largeness of e and this allows the rebound of the bubble to be 

numerically captured using an Euler time stepping scheme. For the computations 

presented here, A6 was chosen to be in the range 0.05-0.08. 

The largeness of the second derivative about rebound is the apparent cause of 

the difficulty in capturing rebound using an Euler time stepping scheme and this 

identification of the cause is suggestive that implementation of higher order time 

stepping schemes may be advantageous. In the work of Guerri et al. (1981) a 

second order accurate multistep time integration scheme was employed, but found 

to be unstable during the expansion phase of the bubble motion. In view of this, 

second and fourth order Runge-Kutta integration schemes were implemented, the 

particular feature of the Runge-Kutta scheme that we wish to exploit is the fact 

that it is a single step method. In order to implement the second order method we 

proceed as follows. At time t the bubble surface is defined by the nodes (ri(t),Zi(t)) 

with the potential at node t given by fa(t). Equation (4.1) is then solved, using 

this data, for 86/8n at the nodes and the fluid velocity there may be computed. 

We define 

drn = unSt, (5.1.7) 

dzn = vnSt, (5.1.8) 

St, (5.1.9) 

with (un,vn) the fluid velocity at node i and ^ is determined in the usual 

manner. We further define 

rii = ri{t) + driif (5.1.10) 

ZiX =Zi(t) + dzn, (5.1.11) 

&i = &(i)+ #u, (5.1.12) 
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as the intermediate bubble geometry and surface distribution of potential. W e 

solve (4.1) in this intermediate geometry to obtain the fluid velocity at the surface 

of the intermediate bubble, and if (K^VH) denotes this velocity then we write 

dra = uaSt, (5.1.13) 

dzi7 = vi3St, (5.1.14) 

dfai = dt 
St, (5.1.15) 

• 3 

so that the bubble surface and potential on it at time t + St are given by 

ri(t + St) = ri(t) + (dm + dri7)/2, (5.1.16) 

Zi(t + St) = Zi(t) + (dza + dzi2)/2, (5.1.17) 

fa(t + St) = fa(t) + {d6a + d6i3)/2, (5.1.18) 

with the error of order St*. The fourth order method is implemented similarly. 

Both second order and fourth order schemes were implemented with the com

putational effort per time step respectively two and four times greater than for 

the Euler scheme. Despite this the higher accuracy of the integration allows larger 

time steps to be taken and the overall effect is a saving in computational effort 

whilst achieving a solution of superior accuracy. The example of the oscillation 

of a spherical explosion bubble in an infinite fluid was used to validate these high 

order time stepping routines and in this specialised geometry the fourth order 

method gives considerable improvement over the second order scheme. It was 

found, however, that for the computation of the motion of deforming bubbles the 

fourth order method offers no noticeable increase in the accuracy of the solution 

over the second order scheme, but merely increases the effort. It is believed that 

this is due to the errors associated with the solution of (4.1) being comparable with 

the errors of the Runge-Kutta scheme of order greater than 2. For this reason all 

subsequent calculations were performed using the second order scheme. 

During the early attempts to compute the rebound of non-spherical bubbles it 

was found that a saw tooth type instability developed in the bubble shape in that 
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region where the jet was about to form. In the first instance the mesh represent

ing the bubble surface was redefined such that the nodes were evenly spaced, with 

respect to arclength along the bubble surface, and although allowing the computa

tion to proceed to a slightly greater time did not prevent the development of, and 

rapid growth of this instability. Thus a smoothing scheme is employed and that 

chosen is the 5-point formula first used by Longuet-Higgins and Cokelet (1976) in 

their study of steep surface waves on water. If a function / is defined on an evenly 

spaced mesh £, (» = 0,1,..., n) and exhibits an oscillatory behaviour of period 2 in i 

about some mean curve then we can approximate the value /< of / at & by 

fi = (ao + aid + a*£i + • • • + *»£*) + (-1)*(^ + h£i • • • + fcn-itf"1), (5.1.19) 

where the first term represents some mean behaviour and the second represents the 

oscillatory behaviour of period 2. We choose a smoothed value fi of the function 

/ at £i as 

fi = ao + at£i + a3£f + • • • + o»£\ (5.1.20) 

and the coefficients ao,•••,an,b0,•••,fcn-i in (5.1.19) may be chosen uniquely such 

that this expression holds at the 2n + 1 points £j (j = n - i,..., n +»'). Choice of n = 2 

gives the 5-point smoothing formula 

*i = h(_/*-2+4/<_i + 10fi+4/*+i ~fi+2)' (5*1-21) 
Application of this formula requires that the mesh upon which the function / is de

fined is evenly spaced. Thus before applying this scheme the nodes representing the 

bubble surface must be redistributed so that they are evenly spaced with respect 

to arclength. The functions representing r, z and 6 are then smoothed by applica

tion of (5.1.21). It was further found that a slight improvement in the accuracy of 

the method could be obtained by redefining the mesh after every time step so that 

all nodes are evenly spaced. When this strategy is adopted it becomes essential 

that the integration in time is performed by a single step method. The smoothing 

formula is applied every 5-20 iterations, with this application only being essential 

when attempting to numerically capture rebound. The application of smoothing 
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raises many questions regarding the stability of the bubble phenomenon. It is 

pertinent to postpone comments regarding this matter until after the numerical 

results have been presented. 

5.2. Non-spherical explosion bubble collapse 

We consider first a typical example of explosion bubble motion. The motion 

commences at a distance 7 = -2.0 from a rigid boundary, the negative value indicat

ing that the motion occurs below the boundary at z = 0. The buoyancy parameter 

is 6 = 0.0 so that the only asymmetry in the flow field is due to the presence of the 

rigid boundary. The strength parameter is e = 100 with the corresponding initial 

radius equal to 0.1651. The bubble surface is initially stationary. 

The bubble shapes at various times throughout the growth and collapse are 

shown in figure 5.2.1. We make a few pertinent observations. Firstly we note that 

to a very good level of approximation the bubble remains spherical in shape as it 

expands and also during the early stages of the collapse. As the collapse proceeds 

the rear side of the bubble becomes noticeably flattened and this perturbation 

from spherical shape grows rapidly to form the high speed liquid jet that threads 

the bubble. The computation cannot proceed beyond the time that the jet impacts 

upon the far side of the bubble. If we consider that the flattening of the rear of 

the bubble denotes the beginning of jet formation then inspection of the times 

corresponding to the profiles shown in figure 5.2.1 indicates that the jet forms and 

completely penetrates the bubble in about 2.5% of the bubble lifetime. 

In chapter 3 much was made of this speed of collapse. In particular, our 

assumption that the change in the Kelvin impulse during jet formation is small 

compared with the impulse itself allows us to make an estimate of the impulse of 

the deformed, jet pierced bubble using the spherical model, and is based upon the 

swiftness of the collapse. In this context it is of interest to compute the Kelvin 

impulse as a function of time for this example and the result of this computation 

is shown in figure 5.2.2, along with the value computed via the spherical model 
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Figure 5.2.1. Successive bubble shapes for the growth and collapse of an explosion bubble 

characterised by 7 = -2.0, 6 = 0.0, e = 100. The times corresponding to successive profiles are: 

(a) Growth phase: 0.0000 (innermost), 0.0082, 0.0237, 0.0860, 0.4108, 1.0692 (outermost), (b) 

Collapse phase: 1.7213 (outermost), 2.0197, 2.0719, 2.0878, 2.0984, 2.1076, 2.1158, 2.1231, 2.1269 

(innermost). 



Time 

Figure 5.2.2. The Kelvin impulse as a function of time for the bubble motion illustrated in 

figure 5.2.1. The solid line shows the impulse of the deforming bubble. The dashed line denotes 

the approximation to the impulse computed using the equations of spherical bubble dynamics 

developed in chapter 3. 



developed in chapter 3. If we consider that the jet forms at about t = 2.072, the 

time of the third collapse profile in figure 5.2.1 in which the rear of the bubble has 

become noticeably flattened, then inspection of figure 5.2.2 reveals a very small 

change in the Kelvin impulse over the small time that the jet is formed. We 

further note that the value of the impulse predicted by the spherical model is in 

good agreement with this final value. Since the change in the impulse over the time 

that the jet is formed is small this is no surprise. The main source of error in this 

approximation appears to be in the estimation of the bubble lifetime. Up until the 

time that jet formation occurs, in this example at least, the bubble may be well 

considered to be spherical and the model of chapter 3 is a good approximation. 

We shall present more data regarding this aspect of the study later in this chapter. 

We can consider the mechanism by which the jet is formed in a number of ways. 

In this case of motion in the neighbourhood of a rigid boundary, upon collapse 

fluid may be drawn preferentially from the side of the bubble furthermost from the 

rigid boundary. The increased mobility of the flow from this region causes that 

part of the bubble surface to collapse more quickly than other parts and it is this 

initial perturbation in the bubble shape that is the first element of the jet. 

We consider the mechanism in an alternative manner after computing the 

pressure field in the fluid by making use of the Bernoulli equation, as has been 

done previously by Blake et al. (1986,1987). The pressure field in the fluid about 

the bubble at the times t = 2.0197 and t = 2.1230 is shown in figure 5.2.3. At t = 2.0197 

(figure 5.2.3(a)) the bubble is approximately spherical, the pressure inside the 

bubble is 1.08 and the computed pressure field is typical of an accelerating sphere. 

There is a peak of pressure located behind the bubble, with respect to the direction 

of centroid acceleration. As the bubble accelerates this peak value increases and 

drives the jet into the bubble. This is indicated in figure 5.2.3(b) where at t = 2.1230 

the jet has pierced the bubble with the peak of pressure continuing to drive the 

fluid in the jet. The pressure within the bubble at this time is 47.63. Thus we 

can say that for motion in the neighbourhood of a rigid boundary the Bjerknes 
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Figure 5.2.3(a). The pressure field in the fluid computed for the motion illustrated in figure 5.2.1 

at time t = 2.0197. 
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Figure 5.2.3(b). The pressure field in the fluid computed for the motion illustrated in figure 

5.2.1 at time t = 2.1230. 



attraction of the boundary causes the bubble to accelerate towards it upon collapse, 

with the resultant peak of pressure that develops behind the bubble being the 

agent that drives the jet into the bubble. This latter view of the cause of jet 

formation is particularly useful when considering bubble collapse due to buoyancy 

forces alone. Upon collapse the reducing added mass of the bubble causes it 

to accelerate upwards causing the formation of, and rapid intensification of the 

pressure maximum which is sufficient to drive a jet into the bubble from the rear. 

In this example the qualitative behaviour of the bubble is as documented for 

the collapse of cavitation bubbles. There is no qualitative evidence to suggest 

that the high pressure developed within the bubble as the volume decreases acts 

to arrest the formation of the jet. It was postulated in chapter 3, however, that 

for small values of the strength parameter and in the neighbourhood of the null 

impulse state we should expect that the bubble may retain its spherical integrity 

upon collapse sufficiently that it may rebound before jet penetration is complete. 

We thus proceed to investigate this matter by considering various regions of the 

physical parameter space. 

5.3. Variation of the buoyancy parameter 

Let us investigate that subset of the physical parameter space characterised 

by a constant value of \y\ and c. We consider motion above and below a rigid 

boundary and choose 7 = ±1.5 with e = 100. Our aim is twofold. In the first 

instance, for 7 = 1.5 the values of the buoyancy parameter chosen He between 0.0 

and 0.35 and this region of the parameter space includes the state that we have 

referred to in chapter 3 as the null impulse state, in which neighbourhood we 

expect non-spherical bubble rebound to occur. Secondly, we know that buoyancy 

induces jet formation in a direction opposite to the gravitational field and that the 

Bjerknes attraction of a rigid boundary induces jet formation directed towards it 

so that for motion below and above such a boundary these effects will respectively 

act together and in opposition. It is of interest to investigate the features of 
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the collapse that vary as the buoyancy and Bjerknes forces vary and determine 

qualitative principles describing this variation. 

The primary result is shown in figure 5.3.1 where the computed bubble shape 

is shown at the time when the jet completely penetrates the bubble, or when the 

bubble achieves a minimum of volume. The time corresponding to the shown pro

file is given below each bubble shape. The outstanding result on a first inspection 

of this figure is for 7 = 1.5 and 6 = 0.25 where the bubble has achieved a minimum of 

volume, indicating that the non-spherical bubble rebounds before a jet penetrates 

it completely. We observe, however, that the beginnings of a jet is evident and we 

consider this further when we present the results of the computation of the whole 

motion. Of secondary interest is the bubble shape for 7 = 1.5 and 6 = 0.30. The jet 

penetration is not quite complete at minimum volume and the upper part of the 

jet has spread radially outwards, so that the radius of the jet there is greater than 

that at the base. We also consider this aspect shortly. 

Consider the upper sequence, characterised by 7 = -1.5, as 6 decreases from 

0.35 to 0.00. In this case the buoyancy and Bjerknes forces are similarly directed. 

As 6 decreases the time at which jet penetration is complete generally tends to 

decrease but this variation is negligible compared to the lifetime of the bubble. 

It thus appears that the lifetime of the bubble depends little upon the buoyancy 

parameter. As 6 decreases the breadth of the jet decreases, as does the volume of 

the bubble at the end of the life. To provide some quantitative data with which 

to assist in the interpretation of this behaviour we have computed the velocity 

of that point on the bubble surface that eventually evolves into the jet tip, as a 

function of time, and we call this the jet velocity. This variation for the bubbles 

currently under consideration is shown in figure 5.3.2(a). We have also computed 

the Kelvin impulse of the bubbles at the times shown in figure 5.3.1 and this data 

may be found in table 5.3.1. Also recorded in this table are the estimates of the 

final Kelvin impulse computed using the equations of spherical bubble dynamics 

derived in chapter 3. 
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6 = 0.30 

S = 0.35 

6 = 0.0 

v 6 = 0.20 

Figure 5.3.2. Jet tip velocity as a function of time for each of the motions considered in figure 

5.3.1. The frames display this velocity for the cases (a) y = —1.5 and (b) y = 1.5. In cases where 

each curve is not individually labelled there is a systematic trend in the corresponding value of 6, 

between the extremes noted. 



7 
-1.5 
-1.5 
-1.5 
-1.5 
-1.5 
-1.5 
-1.5 
-1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 

6 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0.00 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0.00 

Final Kelvin impulse 
Deformed bubble 

1.0103 
0.8293 
0.6763 
0.5523 
0.4554 
0.3863 
0.3447 
0.3309 
0.3774 
0.1798 
0.0223 
-0.1080 
-0.2057 
-0.2752 
-0.3169 
-0.3309 

Spherical bubble 

0.4709 
0.4100 
0.3547 
0.3188 
0.3065 
0.3873 
0.1921 
0.0320 
-0.0950 
-0.1903 
-0.2560 
-0.2941 
-0.3065 

Table 5.3.1. Final Kelvin impulse data for the bubble motions depicted in figure 5.3.1. Also 

tabulated is the estimate of the impulse obtained from the spherical model of chapter 3. No value 

of this estimate is shown in cases where the spherical computation failed, for reasons discussed in 

the text. The strength parameter is e = 100. 



The jet velocity data reveals a number of interesting features. In all cases the 

departure from spherical shape is signified by a rise in the velocity of that part 

of the surface, where the jet will form, above that value expected for a spherical 

bubble. The larger the value of 6 the sooner this occurs. This is due to the large 

value of the buoyancy force coupling with the Bjerknes force to accelerate the 

bubble more rapidly as it collapses, causing a premature departure from spherical 

shape. If we consider the buoyancy and Bjerknes forces as agents perturbing the 

spherical shape then the magnitude of the perturbation increases with 6 leading 

to premature collapse and a larger jet. Accompanying this behaviour, though, is 

a final jet velocity that increases with decreasing S and a final Kelvin impulse that 

increases with 6. 

There appears to be some inverse relationship between the jet velocity and the 

breadth of the jet, although these quantities are not well defined. This qualita

tive inverse relationship bears a remarkable similarity to the inverse relationship 

between mass and velocity for a particle of given momentum in rigid particle me

chanics. This is not unexpected in view of the previously noted analogy between 

particle momentum and the Kelvin impulse. It must be noted, though, that the 

final values of the impulse are different for each of these examples and this must 

impose some limit upon the extent of the analogy. We could perhaps proceed in 

quantifying this analogy by introducing mathematically precise quantities associ

ated with the jet width and jet velocity and investigating their relationship with 

the Kelvin impulse. These quantities may be appropriate averages over the volume 

of the jet but it is not obvious how we should proceed in such an endeavour. We 

leave such an investigation for later attention. 

A further significant feature of the jet velocity vs. time data is what we shall 

refer to as the terminal velocity characteristic. The jet accelerates rapidly shortly 

after formation, but this acceleration subsequently slows and the jet tip velocity 

levels to some constant terminal value. That this should occur may be explained 

in a number of ways. Recall the local maximum of pressure that develops in the 
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fluid behind the bubble, as it accelerates forward upon collapse. This causes the 

flow into the high speed jet, but as the flow continues this maximum of pressure is 

relieved and the pressure gradient between this point and the bubble surface, that 

accelerates the fluid here, falls and the jet tip decelerates and achieves a terminal 

velocity. Alternatively, as the bubble collapses much of the fluid momentum man

ifests itself in the jet. Since only a finite amount of momentum may be transferred 

to the jet it cannot continue to accelerate after this transfer of finite momentum 

has occurred. 

Consider now the collection of bubble shapes for motion at 7 = 1.5 above a rigid 

boundary as 6 ranges between 0.00 and 0.35. In this case the buoyancy and Bjerknes 

forces act in opposition and we note the transition in behaviour as 6 varies. In the 

case of small 6 the Bjerknes attraction of the rigid boundary dominates and the 

jet is directed towards the boundary. As 6 increases buoyancy assumes dominance 

and for large 6 the jet is directed upwards. The very interesting behaviour occurs 

at S = 0.25 where the buoyancy force and Bjerknes force are nearly equal in their 

effect. This set of physical parameters is in the neighbourhood of the null impulse 

state as confirmed from inspection of the final value of the Kelvin impulse shown in 

table 5.3.1. In this case the bubble shape at minimum volume is shown indicating 

that the non-spherical bubble rebounds. We consider this case in more detail. 

The collapse and rebound of an explosion bubble characterised by 7 = 1.5, 6 = 

0.25, e = 100 is shown in figure 5.3.3. The bubble remains approximately spherical 

during the growth phase. Due to the approximately equal and opposite buoyancy 

and Bjerknes forces there is little translations! motion of the bubble upon collapse, 

the result being that fluid is preferentially drawn in from the sides leading to an 

elongation of the bubble along the axis of symmetry. Buoyancy is slightly dominant 

in this case and the slight upwards acceleration upon collapse leads to the elements 

of a jet being evident at minimum volume. In this neighbourhood of the null 

impulse state jetting has been suppressed sufficiently that the bubble rebounds, 

this phase of the motion shown in figure 5.3.3(b). As the bubble re-expands the 
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Figure 5.3.3. Successive bubble shapes for the collapse and rebound of an explosion bubble 

characterised by y = 1.5, 6 = 0.25, e = 100. The times corresponding to successive profiles are: 

(a) Collapse phase: 1.6458 (outermost), 2.0656, 2.1537, 2.1677, 2.1754, 2.1829 (innermost), (b) 

Rebound phase: 2.1904 (innermost), 2.2055, 2.2214, 2.2380 (outermost). 



jet continues to be driven into the bubble. The inwards radial motion of the fluid, 

about the centre of the bubble, is arrested at rebound but causes what we shall 

call upper and lower lobes of the bubble to develop. As a result of this inwards 

flow the high pressure within the bubble at minimum volume preferentially causes 

the rapid re-expansion of the upper and lower parts of the bubble leading to the 

observed lobe structure. 

It is interesting to consider the jet tip velocity as a function of time for this 

example and this is shown in figure 5.3.4. As previously discussed the opposite 

coupling of buoyancy and Bjerknes forces gives rise to a very small initial per

turbation in the bubble shape resulting in delayed jet formation and a thin jet. 

Accompanying this small amount of mass in the jet, however, is a very high peak 

jet velocity achieved at around minimum volume. As the bubble re-expands the 

jet velocity falls, although the jet continues to travel through the bubble. The 

rebound causes the bulk of the fluid surrounding the bubble to flow outwards, this 

outflow reducing the rate of flow into the jet, causing it to decelerate. 

We consider the computed pressure field in the fluid. The pressure field at 

t = 2.1829 is shown in figure 5.3.5(a). This is the time at which the bubble has 

achieved minimum volume and the pressure within the bubble is 88.97. We note 

the point of high pressure located behind the jet and its close proximity to the 

bubble surface. This closeness gives rise to the very high pressure gradient that 

drives the thin jet into the bubble at high speed. The pressure field is shown at 

t = 2.2295 in figure 5.3.5(b). At this time the bubble has rebounded to a significant 

volume and the pressure within the bubble is 5.72. We notice that the peak of 

pressure behind the jet evident at earlier times is no longer a characteristic of the 

pressure field, so that the mechanism driving the jet is absent, an observation that 

is in accord with that of decreasing jet velocity during rebound. We also note the 

horseshoe shape contours around the top of the bubble, this region being where 

the maximum of pressure occurs. This region of high pressure begins to arrest the 

expansion of the upper part of the bubble and that this region extends around the 
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Figure 5.3.4. Jet tip velocity as a function of time for the motion depicted in figure 5.3.3. 
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Figure 5.3.5(a). The pressure in the fluid computed for the motion illustrated in figure 5.3.3 at 

time t = 2.1829. 
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Figure 5.3.5(b). The pressure in the fluid computed for the motion illustrated in figure 5.3.3 at 

time t = 2.2295. 



sides of the bubble prevents the outwards motion of the central part of the bubble, 

leading to the formation of upper and lower lobes. 

It is also of interest to consider the behaviour for values of the buoyancy 

parameter about the value of 0.25 just considered. The collapse and rebound of 

an explosion bubble characterised by 7 = 1.5, 6 = 0.23, e = 100 is shown in figure 

5.3.6. In this example the Bjerknes force slightly dominates the buoyancy force 

and the jet is thus directed towards the boundary. As the bubble collapses we 

note the elongation along the axis of symmetry. Since the buoyancy and Bjerknes 

forces act in opposition jet formation is delayed and the jet that forms contains a 

small amount of mass. Accompanying this is a very high jet velocity as evident 

from inspection of figure 5.3.4. We observe that the bubble achieves a minimum 

of volume just prior to the time that the jet completely penetrates the bubble. 

The collapse and rebound of an explosion bubble characterised by 7 = 1.5, 6 = 

0.27, e = 100 is shown in figure 5.3.7. This example exhibits many of the features 

discussed above although in this case the buoyancy force is slightly dominant with 

the jet that forms directed upwards. The interesting feature here is the pluming 

of the jet. As the jet is driven into the bubble the top broadens so that its radius 

there is greater than at its base. This appears to be a feature of explosion bubble 

collapse in the neighbourhood of the null impulse state, in the case where buoyancy 

is slightly dominant. This behaviour has been observed experimentally for the 

motion of two dimensional bubbles of constant volume rising slowly under the 

action of buoyancy forces alone (Walters and Davidson, 1962) and computations 

of this motion are in good agreement (Baker and Moore, 1989; Lundgren and 

Mansour, 1991). 

We remark that trends in the bubble behaviour upon collapse follow the general 

principles discussed for the case where buoyancy and the Bjerknes attraction act 

together. For a larger resultant perturbing effect jet formation is initiated early 

and a larger amount of mass is contained in the jet. This is accompanied by a 

smaller final jet velocity. About the null impulse state the initial perturbation 
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Figure 5.3.6. Successive bubble shapes for the collapse and rebound of an explosion bubble 

characterised by y = 1.5, 6 = 0.23, c = 100. The times corresponding to successive profiles are: 

(a) Collapse phase: 1.6578 (outermost), 2.1566, 2.1742, 2.1758, 2.1771, 2.1787, 2.1803, 2.1820, 

2.1838, 2.1857 (innermost), (b) Rebound phase: 2.1866 (innermost), 2.1886, 2.19068 (outermost). 

Figure 5.3.7. Successive bubble shapes for the collapse and rebound of an explosion bubble 

characterised by y = 1.5, 6 = 0.27, c = 100. The times corresponding to successive profiles are: 

(a) Collapse phase: 1.6304 (innermost), 2.1499, 2.1612, 2.1688, 2.1739, 2.1776, 2.1810, 2.1845, 

2.1888 (innermost), (b) Rebound phase: 2.1912 (innermost), 2.1939, 2.1966, 2.1993 (outermost). 



in the bubble shape is small with narrow jets being formed and characterised 

by the highest speeds. As postulated in chapter 3, in the neighbourhood of the 

null impulse state the non-spherical bubble has been shown to rebound. If we 

compare cases characterised by the same buoyancy parameter then we note a 

greater absolute value for the final Kelvin impulse in the case where the two forces 

act together. In this case we again note a broader jet and smaller jet velocity, in 

accord with our general principles. In the case where the forces are in opposition 

we have a smaller initial perturbing effect, giving rise to narrower jets of higher 

velocity. 

These examples for 7 = 1.5 also demonstrate the little influence that the buoy

ancy parameter has upon the lifetime of the bubble, the variation over the range 

of 6 considered here being insignificant compared with the lifetime of the bubble. 

Although it is tempting to infer trends in this variation of lifetime with 6, the vari

ation is of the order of the computational error (especially in deciding the exact 

time that jet penetration has occurred) and is probably not significant. 

Finally, we compare the value of the Kelvin impulse computed for the deformed 

bubble with the value computed using the spherical model of chapter 3. The results 

are shown in table 5.3.1. For motion above the rigid boundary the agreement is 

quite good. For motion below the boundary the agreement is acceptable for small 

6 and becomes worse with increasing 6. We can explain this by recalling that in the 

spherical model we modified the infinite fluid equations of motion to lowest order 

in R/£, where R is the bubble radius and c; the distance from the rigid boundary. 

For motion below such a boundary the coupling of the buoyancy and Bjerknes 

forces causes a very high acceleration upon collapse, this acceleration increasing 

with S. Thus as the bubble collapses in these cases it migrates rapidly towards the 

boundary and the ratio R/( is of order one. The failure of the spherical model to 

compute an adequate estimate of the Kelvin impulse in this case is no surprise. 

For motion above the boundary the opposite coupling of the forces results in 

reduced migration upon collapse and the bubble does not come so close to the 
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boundary that the spherical model fails completely. This data thus provides some 

confirmation that as long as the bubble is not too close to the rigid boundary 

the equations of spherical bubble dynamics provide a good estimate of the Kelvin 

impulse of a deformed bubble and from this we can infer aspects of the jetting 

motion. 

5.4. Variation of the distance of inception from a rigid boundary 

Let us now consider the varying behaviour of a deforming explosion bubble 

as we vary the distance of inception from a rigid boundary. The bubble shapes 

at the time of complete jet penetration, or minimum volume, are shown in figure 

5.4.1 over a range of values of 7 between 1 and 00, for a strength parameter e = 100. 

Motion is considered both above and below a rigid boundary and we have indicated 

this in the figure by assigning 6 > 0 for motion above the boundary and 6 < 0 for 

motion below. Again we consider both the positive and negative coupling of the 

buoyancy and Bjerknes forces. For each of the bubbles depicted in this figure the 

jet tip velocity is shown as a function of time in figure 5.4.2. 

As for the results presented for varying 6 we note similar trends in the changing 

character of the collapse with varying 7, although there are subtle differences. 

Whereas in section 5.3 the force perturbing the spherical bubble was varied by 

changing the buoyancy parameter it is here varied by changing the distance of 

inception from the rigid boundary. The larger the resultant perturbation the 

broader the jet and smaller the final jet tip velocity. For motions characterised by 

the same absolute value of the physical parameters, in the case of motion above 

the boundary the perturbing force is smaller due to the opposite coupling of the 

buoyancy and Bjerknes forces, giving rise to a smaller jet with higher velocity. 

For motion above the boundary we note the transition from jet formation 

directed upwards to jet formation directed downwards as the relative strengths of 

the buoyancy and Bjerknes forces change. It is interesting to consider the collapse 

and rebound of a bubble about the null impulse state. This is shown in figure 5.4.3 
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7 = 1.00 

Figure 5.4.2. Jet tip velocity as a function of time for each of the motions considered in figure 

5.4.1. The frames display this velocity for motion above (a) and below (b) a rigid boundary. In 

cases where each curve is not individually labelled there is a systematic trend in the corresponding 

value of 7, between the extremes noted. 



7 
1.0 
1.25 
1.5 
1.75 
2.0 
2.25 
2.5 
2.75 
3.0 
oo 

-1.0 
-1.25 
-1.5 
-1.75 
-2.0 
-2.25 
-2.5 
-2.75 
-3.0 
—co 

6 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 

Final Kelvin impulse 
Deformed bubble 

-0.3902 
-0.2262 
-0.1080 
-0.0291 
0.0237 
0.0606 
0.0874 
0.1075 
0.1229 
0.1991 
0.8274 
0.6675 
0.5524 
0.4718 
0.4154 
0.3747 
0.3447 
0.3220 
0.3042 

0.1991 

Spherical bubble 
— 

-0.1899 
-0.0950 
-0.0239 
0.0262 
0.0620 
0.0883 
0.1079 
0.1230 
0.1988 

— 

— 

0.4709 
0.4494 
0.4060 
0.3700 
0.3420 
0.3201 
0.3029 
0.1988 

Table 5.4.1. Final Kelvin impulse data for the bubble motions depicted in figure 5.4.1. Also 

tabulated is the estimate of the impulse obtained from the spherical model of chapter 3. No value 

of this estimate is shown in cases where the spherical computation failed, for reasons discussed in 

the text. The strength parameter is e = 100. 



for an explosion bubble characterised by 7 = 1.85, 6 = 0.20, e = 100. The significant 

features are much as for the rebounding bubble shown in the previous section. 

Upon collapse fluid is preferentially drawn in radially, leading to an elongation 

of the bubble along the axis of symmetry. The elements of a jet are evident 

at minimum volume. Upon rebound the thin jet continues to travel into the 

bubble and we note the formation of upper and lower lobes. Although the inwards 

radial motion of the fluid is arrested the rapid re-expansion of the lobes leads 

to a ring of very high surface curvature about the centre of the bubble. The 

thin jet also exhibits very high curvature during the later stages of the bubble's 

life. Beyond this time the computational scheme cannot proceed. In reality surface 

tension and pressure fluctuations within the bubble contents will break up this high 

curvature surface. Especially significant in the case of explosion bubble motion is 

the temperature of the bubble contents which may lead to a phase transition at 

the bubble surface and provide a further mechanism for the break up of these high 

curvature regions of the bubble surface. 

The behaviour of the explosion bubble as 7 varies exhibits a number of subtle 

differences from that noted in section 5.3. In this case there is a systematic trend in 

the lifetime of the bubble over the range of 7. In view of previous considerations we 

might expect that for motion below the boundary the increased perturbing force 

as 7 decreases would give rise to premature collapse. The opposite is the case 

as evident from inspection of the jet tip velocity data in figure 5.4.2(b). Despite 

this the final jet velocity exhibits the terminal velocity feature and a qualitative 

inverse relationship with the breadth of the jet. We also note that for motion above 

the boundary the lifetime of the bubble (or time to first minimum of volume) is 

virtually indistinguishable from that for motion below the boundary (except for 

7 = 1.00). This behaviour is as found in section 5.3. 

It is apparent that the lifetime of the deforming bubble is fundamentally de

pendent upon 7, and little upon 6. We can explain this behaviour as follows. It is 

the peak of pressure that develops in the fluid behind the bubble upon collapse that 
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Figure 5.4.3. Successive bubble shapes for the collapse and rebound of an explosion bubble 

characterised by y = 1.85, 6 = 0.20, e — 100. The times corresponding to successive profiles are: 

(a) Collapse phase: 1.6823 (outermost), 2.0528, 2.1201, 2.1341, 2.1410 (innermost), (b) Rebound 

phase: 2.1470 (innermost), 2.1553, 2.1963, 2.2747 (outermost). 



drives the jet into the bubble. It is the early acceleration of the almost spherical 

collapsing bubble that causes this to occur. For motion close in to the boundary 

the increased difficulty in displacing the fluid between the boundary and the bub

ble inhibits this initial acceleration of the bubble, delaying the development of a 

sufficient peak of pressure behind the bubble and thus delaying the formation of 

the jet. Further away from the rigid boundary this difficulty in displacing fluid 

ahead of the bubble is reduced and jet formation occurs sooner. The ease with 

which the fluid between the bubble and the boundary may be displaced is depen

dent upon the geometry of the flow field and quite generally 7 alone. Thus the 

bubble lifetime is found to be quite independent of 6 although the early migration 

due to buoyancy forces may have some minor influence. 

We close this discussion by considering the Kelvin impulse of the bubbles de

picted in figure 5.4.1. This data is compiled in table 5.4.1 along with the approx

imation computed using the spherical model. For motion in the closest proximity 

to the rigid boundary the spherical model fails to give an adequate estimate of the 

final Kelvin impulse. As the point of inception moves away from the boundary 

the agreement improves substantially. For a given value of 7 the estimate of the 

final Kelvin impulse is better for motion above the boundary due to the smaller 

translation of the bubble upon collapse. This behaviour is as discussed in section 

5.3. 

5.5. Variation of the strength parameter 

It was proposed in chapter 3 that non-spherical bubbles should rebound in 

connected form not only in the neighbourhood of the null impulse state but also 

for small strength parameters. We thus consider some examples of bubble motion 

over a range of strength parameters and the bubble shapes at the time of jet 

penetration, or minimum volume, are shown in figure 5.5.1, along with a cavitation 

bubble for comparison. The upper sequence shows motion under the influence of 

the buoyancy force alone and the lower sequence motion in the neighbourhood of 
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a rigid boundary alone. The jet tip velocity for each of these examples is shown 

in figure 5.5.2. 

The behaviour observed is as expected. As the strength parameter decreases 

the fluid velocities upon collapse decrease so that jet formation is incomplete at 

the time of minimum volume and the bubble rebounds in connected form. As the 

strength parameter increases the behaviour becomes similar to that of a vapour 

cavity, for the reasons discussed in chapter 3. This trend is also evident in the 

jet velocity data. The terminal velocity feature of the jet tip is generally evident, 

except for the examples of cavitation bubbles and motion under the influence 

of buoyancy alone, for larger values of the strength parameter. In these cases 

the pressure gradient that develops in the fluid behind the bubble is sufficiently 

large that a terminal velocity is not reached, although the jet tip is beginning to 

decelerate as the jet nears the far side of the bubble. 

For interest we consider the collapse and rebound of a bubble characterised by 

7 = oo, 6 = 0.15, c = 10. The bubble shapes are shown in figure 5.5.3 and the vertical 

scale is arbitrary. Due to the smallness of the strength parameter the amplitude of 

the radial oscillations is small. Since it is the reducing added mass of the bubble 

upon collapse that gives rise to the rapid acceleration phase that precipitates jet 

formation, the relative smallness of the change in added mass over the oscillation 

period of the bubble in this example gives rise to a smaller upwards acceleration 

upon collapse, so that only the elements of a jet are evident at rebound. As the 

bubble rebounds, however, the jet continues to travel into the bubble, the reducing 

pressure within the bubble assisting in this endeavour. Despite the formation of a 

jet, the bubble retains much of its spherical character. 

Finally we present data in table 5.5.1 for the final Kelvin impulse of the bub

bles illustrated in figure 5.5.1. Also tabulated for comparison is the approximation 

to this value obtained using spherical bubble dynamics. For motion under the 

influence of buoyancy alone the agreement is excellent. For motion in the neigh

bourhood of a rigid boundary the agreement is not as good, but still excellent. 
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e= 10 

-10- -10-

-15- -15-

-20- -20-

Figure 5.5.2. Jet tip velocity as a function of time for each of the motions considered in figure 

5.5.1. The frames display this velocity for motion under the action of buoyancy forces alone, (a), 

and in the neighbourhood of a rigid boundary alone, (b). In each case there is a systematic trend 

in the value of e corresponding to each curve from e = 10 to the cavitation example. 



7 
CO 

CO 

CO 

CO 

CO 

CO 

CO 

-2.0 
-2.0 
-2.0 
-2.0 
-2.0 
-2.0 
-2.0 

6 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

a 
10 
25 
50 
100 
200 
500 

cavitation 
10 
25 
50 
100 
200 
500 

cavitation 

Final Kelvin impulse 
Deformed bubble 

0.2194 
0.2070 
0.2019 
0.1991 
0.1969 
0.1954 
0.1915 
0.1549 
0.1791 
0.1896 
0.1968 
0.2011 
0.2052 
0.2088 

Spherical bubble 

0.2193 
0.2067 
0.2018 
0.1988 
0.1968 
0.1951 
0.1918 
0.1518 
0.1754 
0.1857 
0.1925 
0.1970 
0.2009 
0.2163 

Table 5.5.1. Final Kelvin impulse data for the bubble motions depicted in figure 5.5.1. Also 

tabulated is the estimate of the impulse obtained from the spherical model of chapter 3. 
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Figure 5.5.3. Successive bubble shapes for the collapse and rebound of an explosion bubble 

characterised by 7 = 00, S = 0.15, c = 10. The times corresponding to successive profiles are: 

(a) Collapse phase: 1.7991 (outermost), 2.0490, 2.1398, 2.1905 (innermost), (b) Rebound phase: 

2.2336 (innermost), 2.2857, 2.3493, 2.4207, 2.4978 (outermost). 



Note that these results are for 7 = 2. As indicated in previous sections the success 

of the spherical model improves with increasing 7. 

5.6. Concluding remarks to chapter 5 

We conclude this chapter by considering a number of other examples of bubble 

motion that are of interest and remark upon some of the implications of the results 

presented. It was postulated in chapter 3 that in the neighbourhood of the null 

impulse state, and for small strength parameters, non-spherical bubbles should 

rebound. The results presented in this chapter have demonstrated this. The 

specific examples shown have only considered a strength parameter of 100. The 

behaviour that occurs in the neighbourhood of the null impulse state for increased 

strength parameters is of interest. Thus we consider two further examples for a 

strength parameter of 1000. The example shown in figure 5.6.1 is of the growth 

and collapse of a bubble characterised by 7 = 2.0, S = 0.1948, with this value of 

6 determined so that according to the spherical model the bubble is at the null 

impulse state. The significant feature is that both upper and lower jets have 

formed in this case. Note that the lower jet is broader than the upper jet. In this 

case the fluid speed upon collapse is so high that both jets penetrate the bubble 

sufficiently that the bubble does not rebound in connected form. 

We consider the further example characterised by 7 = 1.0, S = 0.33, as shown 

in figure 5.6.2 with the value of 6 again determined from the spherical model 

such that the bubble is at the null impulse state. The behaviour in this case is 

very different. Due to the close proximity of the rigid boundary fluid cannot be 

easily drawn in from near to the rigid boundary and jet formation at the base 

of the bubble is thus resisted. As a consequence fluid is preferentially drawn in 

radially leading to the formation of upper and lower bubble lobes. Although the 

fluid is more mobile away from the rigid boundary, the formation of a jet here 

would lead to a significant value of the impulse but this cannot occur in this 

neighbourhood of the null impulse state. The formation of such a lobe structure 
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Figure 5.6.1. Successive bubble shapes for the growth and collapse of an explosion bubble char

acterised by 7 = 2.0, 6 = 0.1948, e = 1000. The times corresponding to successive profiles are: (a) 

Growth phase: 0.0000 (innermost), 0.0008, 0.0019, 0.0040, 0.0109, 0.0526, 0.3520, 1.0032 (outer

most), (b) Collapse phase: 1.6728 (outermost), 2.0371, 2.0446, 2.0461, 2.0472, 2.0479 (innermost). 

Figure 5.6.2. Successive bubble shapes for the growth and collapse of an explosion bubble 

characterised by y = 1.0, 6 = 0.33, e = 1000. The times corresponding to successive profiles 

are: (a) Growth phase: 0.0000 (innermost), 0.0008, 0.0019, 0.0040, 0.0107, 0.0501, 0.3218, 0.9107 

(outermost), (b) Collapse phase: 1.5548 (outermost), 2.0347, 2.1758, 2.1892 (innermost). 



has been experimentally observed for motion near a compliant surface (Gibson 

and Blake, 1982) and between parallel rigid boundaries (Chahine, 1982) in the 

case where the bubble is in the neighbourhood of the null impulse state. 

The results for rebounding bubbles, although computed using an incompress

ible model, have implications for the emission of pressure pulses upon rebound. 

We might propose that such emission will be enhanced in the case where the bub

ble can preserve much of its spherical character about the time of rebound. In the 

bulk of cases jet penetration occurs before the bubble rebounds, with kinetic en

ergy then becoming bound in the proposed vortex ring structure which must then 

surely evolve. In the case of motion in the neighbourhood of the null impulse state, 

however, for not too large values of the strength parameter, it is evident that the 

bubble rebounds before the jet has completely penetrated it. We might suppose 

that in this case the emission of acoustic energy at rebound will be enhanced, but 

such a speculation must be investigated either experimentally or computationally 

by a solution of the equations of compressible flow. Such an investigation has 

practical implications for underwater explosions occurring in the neighbourhood 

of the ocean floor. 

In the case of larger strength parameters we have examples where jet pene

tration has occurred despite being in the close neighbourhood of the null impulse 

state. This observation and the general behaviour away from this state, where the 

jet completely penetrates the bubble upon collapse, indicate that in order to make 

further progress in understanding the full range of bubble phenomena we must 

develop techniques for computing the motion beyond the time that jet impact 

occurs. 

We finally remark on questions of stability. I* was found to be generally 

necessary to implement smoothing in order to capture rebound. Analyses of the 

stability of spherical bubbles include those of Penney and Price (1942) and Plesset 

and Mitchell (1956), both of which showed the stability of the growth phase and 

instability of the collapse phase, this instability ultimately manifesting itself in the 
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formation of the jet. Both analyses are linear and the one of particular relevance to 

this work is that of Penney and Price, as Plesset and Mitchell assumed a constant 

pressure exerted by the bubble contents. This study demontrated that the rate 

of growth of initial shape perturbations increases as the bubble collapses, with 

significant departures occurring near rebound. In this regime, however, the linear 

analysis is no longer valid due to the significant departure from spherical shape. 

Thus we appeal to experimental results which give some indication of the gen

eral stability of the rebound phase. The recent investigation of Vogel et al. (1989) 

has included the compilation of high speed photographic records of the multiple 

oscillations of laser generated bubbles in the neighbourhood of a rigid boundary. 

Several oscillations of bubbles are observed, the later oscillations evidently of a 

vortex ring bubble. Although the internal structure of the jet travelling through 

the bubble cannot be observed in these photos, the rebound is not characterised 

by any instability of the nature of the saw-tooth behaviour that was removed by 

application of smoothing techniques. We are led to believe that this instability is 

numerical in its origin. 
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6 

THE TOROIDAL BUBBLE 

While the boundary integral method has proved to be particularly successful 

in the computation of the motion of bubbles, to date these calculations may only 

proceed up until the time that the jet impinges upon the far side of the bubble. 

We remark in this context, however, that the computation of the motion of con

stant volume vortex ring bubbles using this method has recently been undertaken 

(Lundgren and Mansour, 1991). The fluid dynamics of the impact is complex, 

with compressibility, viscosity and surface tension expected to play a role. The 

magnitude of their contributions is expected to vary in different physical regimes, 

and we discuss this matter later in this chapter in view of both our numerical 

results and recent experimental observations. The aim of this study is to neglect 

such complicating factors and seek a solution of Laplace's equation in the doubly 

connected geometry that evolves from the solution in the singly connected domain 

that describes the flow field just before impact. Thus we are seeking to determine 

the motion in the regime where the fluid inertia is the dominant feature. In this 

context the moment of impact poses several difficulties. In the first instance there 

is a jump in the potential across the impact site. Secondly, there is a jump in 

the normal derivative of the potential, -£-, across the impact site, but this discon

tinuity cannot persist after the impact. Thus we give some consideration to the 

moment of impact. 

6.1. Evolution into a toroidal geometry 

Consider the schematic representation of jet impact in figure 6.1.1. The ge

ometry depicted is axisymmetric, but we need not constrain ourselves to the con

sideration of such a simplified geometry. We suppose that the flow domain fi 

collapses from a singly connected to a doubly connected topology via an impact 

over a surface T, with the remainder of the bubble surface denoted by S. We shall 
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Figure 6.1.1. Schematic representation of the transition to the toroidal bubble geometry. The 

conditions at the surface T are shown (a) before impact and (b) after impact. 



denote the upper part of this surface by T+ and the lower part by T_. In what 

follows the subscript ± shall denote quantities evaluated on T±. In particular, the 

unit normals to T±, exterior to the flow domain, will be denoted by n± and we 

note that these vectors are oppositely directed. We denote by superscripts t and / 

values immediately prior to and immediately after the impact. If we let t be the 

position vector of an arbitrary point on T(= T+ UT_) then just prior to the impact 

6 and — are, in general, discontinuous across T. We shall write 
on 

6\(t) - 6t(t) = A6(t), (6.1.1) 

which is generally a non zero function. 

In considering the evolution into a toroidal geometry we must address the 

physical significance of these discontinuities and determine whether they can per

sist after impact. Let us first address the discontinuity in 6. As postulated by 

Benjamin and Ellis (1966), and others, the collapse of the flow domain into a 

doubly connected geometry will give rise to a flow with circulation, the existence 

of which is necessary to conserve the Kelvin impulse. If the flow in the doubly 

connected domain possesses a circulation we obtain the value of the circulation, 

r, by integrating the velocity around some closed curve that threads the torus; 

T = f uds = fa-fa,, (6.1.2) 

where fa and fa are respectively the final and initial values of the potential on 

the curve C, provided Laplace's equation is satisfied at all points on C. Let us 

suppose, for convenience, that the initial point of C is somewhere on T and that 

the curve C proceeds from T_ to T+. In order to perform this computation we 

require some information regarding the value of the potential on T± immediately 

after the impact has occurred. 

The action of the impact is to deliver an impulse to the fluid as discussed in 

chapter 3. Applying (3.2.5) at T+ and T_ we have 

6'+(t)-6\(t) = -n+/p, 
(6.1.3) 

6l(t)-6Ut) = -n-/p, 
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where n is the pressure impulse. Since both surfaces experience a common pressure 

for the duration of the impact we have that n+ = n_, so 

A^(t) = ^(t) - *>(t) = **.(t) - 6t(t) = A^(t). (6.1.4) 

Hence we see that the value of r will, in general, depend upon the point on T that 

we choose to begin and end our curve, C, of integration. If A6(t) is not uniform 

then the flow field that exists after the impact will be rotational. It is only in 

the case where A6 is uniform that the flow field after impact is irrotational and 

possesses a circulation of A6. 

The consideration of the pressure impulse allows us to make further pertinent 

comments. On that part of the bubble surface denoted by S the pressure for the 

duration of the impact is equal to p&, the pressure inside the bubble that remains 

constant for the duration of the impact. This is so because 5 is a free surface. 

Hence at some point on 5 the pressure impulse is 

Es= Ipdt = Pb6t, (6.1.5) 

where St is the duration of the impact. In modelling the impact as an impulse we 

take the limit St -* 0 so that II5 is equal to zero. Thus we deduce from (3.2.5) that 

for points on 5 the potential does not change due to the occurrence of the impact, 

a property that is exploited shortly. 

The fluid velocity at T immediately after the impact is of interest noting that 

the values of the normal velocity at T+ and T- must then be equal in magnitude. It 

is not possible to obtain a simple expression for this velocity, but we may derive an 

equation the solution of which allows the computation of this speed. We consider 

first the tangential component of the fluid velocity at T. Since the upper and lower 

surfaces of T experience a common pressure impulse at each point we have 

vn+(t)-r(t) = vn_(t)-T(t), (6.1.6) 

where r(t) is the tangent vector to T at t. Hence we have from (3.2.3) that 

(u'+(t) - u*+(t)) • r(t) = (u'_(t) - U'_(t)) • r(t). (6.1.7) 
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Thus at any point on T the tangential components of the fluid velocity at T+ and 

T_ change by the same amount due to the impact. If they are unequal before 

impact then this inequality will persist after impact and a vortex sheet will be 

created. This fact relates to the previous considerations regarding the line integral 

of the fluid velocity around some curve enclosing the torus. In the case where 

A^(t) is not uniform across T we deduced that the flow would be rotational. Such 

an example gives rise to a vortex sheet by the mechanism discussed above, this 

sheet being the source of the rotation in the flow field. 

We have been able to show that the potential on S does not change as a result 

of the impact. We may exploit this knowledge to determine an equation which 

gives the normal derivative of the potential on S just after the impact. Making 

use of (4.1) we may write the potential at p € S immediately prior to impact as 

(6.1.8) 

Now -— = —-— so we have (see figure 6.1.1(a)) 
8n+ 8n-

Immediately after the impact we may write the potential at p as 

^'<p>=/, {tG - '£)ds -1 A*'£is- <"•"" 
We have shown that A6 = A6* and exploiting the fact that <^(p) = 6*(p) for p e S 

we obtain from (6.1.9) and (6.1.10) the relation 

... 86? 
which is satisfied at all points p € 5. This is an integral equation from which — 

may be determined. In the toroidal geometry the expression for the potential is 

***> = /. {£G - <£) iS ~ Ir »£« <61I2) 
with c(p) given as in (4.2) provided p £ T. For t e T (g T n 5) we have 

4x*(t) = / (°+G - 6^-) dS- f A6^-dS + 2*A6(t). (6.1.13) 
Js \8n 8n) JT °n+ 
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Having obtained from (6.1.11) the value of ^ on S after the impact we may 

use (6.1.13) to evaluate the potential at points on T and (6.1.12) to evaluate the 

potential in the neighbourhood of T and hence determine the component of the 

fluid velocity normal to T. 

We now turn our attention to the impact of the jet in the collapse of bubbles. 

In the idealised model impact occurs at one point. Across this point the potential 

is discontinuous by an amount A^, which corresponds to the circulation in the 

flow. Since the surface over which the impact occurs is a point and A6 is uniform 

over this surface there is no vortex sheet created by the impact. In order to 

describe such a flow using a boundary integral method we introduce a cut, T, in 

the domain fi which allows us to once again consider it as singly connected. The 

initial cut consists of the point of impact, but as the flow develops the geometry 

of the cut changes. At any point on the cut, however, the jump in potential across 

it is A6 with the geometry as in figure 6.1.1(b) and the velocity potential is given 

by (6.1.12) and (6.1.13). In the limit of contact at a point the integral over T 
OJL/ a±i 

appearing in (6.1.11) vanishes so that over the surface S we have that — = — , 

except perhaps at points in TnS where the normal is undefined. From our integral 

formulation the initial velocity of the impact point is indeterminate, as the surface 

T has been reduced to a set of measure zero. For the development of a numerical 

algorithm, however, this value is not necessary. Thus we have the theoretical basis 

for the transition to a doubly connected flow geometry in the collapse of a bubble. 

We develop in the next section a boundary integral technique for the solution of 

(6.1.12) for ^ at the bubble surface. The algorithm must be modified to include 
v ' 8n 

the term in this equation that involves integration over the cut T. This evaluation 

requires that the geometry of T is known. Thus we follow the cut as a material 

surface in the fluid. The details are discussed in the next section. 

Before closing this discussion we make some remarks regarding the Kelvin 

impulse and kinetic energy of the fluid. The Kelvin impulse of the bubble is 
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defined as 

I = pf 6ndS. (6.1.14) 
JSUT 

We may write the impulse before impact as 

f = PJ findS + pj A6n+dS, (6.1.15) 

having exploited n+ = -n_ in evaluating the integral over T. The impulse imme

diately after impact is 

I* =pJ6fndS + pf A6fn+ dS. (6.1.16) 

Since 6* = 6* on S and A^ = A6* on T we see that 

r = i', (6.i.i7) 

and the impulse is conserved on impact. Note that this result is independent of 

whether the impact occurs at a point or over some surface, and is also independent 

of whether or not a vortex sheet is created by the impact. The kinetic energy of 

the flow is 

E = z:P<f 6V6-ndS, (6.1.18) 

where E represents the boundaries of the flow domain. In general, since V^-n = — 

changes over SuTuE due to the impact, as does 6 change over the impact site and 

boundary E, we would expect a loss in the kinetic energy of the flow due to the 

impact. In the case of impact at a point, though, all quantities in the integrand 

of (6.1.18) are unchanged, except perhaps at the point of impact, which is a set of 

measure zero. In that case energy is conserved on impact. For impact over some 

surface, the energy loss may manifest itself in the form of heat or acoustic energy. 

6.2. The algorithm for computing the motion of a toroidal bubble 

The motion of the bubble up until the time of impact may be computed using 

the boundary integral method described in chapters 4 and 5. This computation 

yields the geometry of the bubble surface, the potential on it and the normal fluid 
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velocity at this surface just prior to impact. The geometry just prior to impact is 

shown in figure 6.2.1(a). The number of nodes representing the bubble surface is 

n +1, with the initial node labelled as 0. The impact occurs at the nodes 0 and n, 

so that the circulation of the flow that evolves is 

A6 = 6n- fa, (6.2.1) 

with the subscript denoting evaluation at the node. 

Over S the potential is unchanged by the impact and due to its occurrence at 

a point the normal derivative of the potential is unchanged over S. Thus we may 

evaluate the fluid velocity at the node points i = l,2,...,n - 1 in the usual manner 

and determine their positions a short time, Stit later via the Euler time stepping 

scheme of chapter 4. 

Similarly, the potential may be evaluated at these nodes at time t + Sti using 

the Euler scheme, where t here denotes the time of impact. The node 0 (= n) is the 

initial cut, T, and the initial speed of this point of unknown. Regardless of what 

this initial speed is, it is finite, and in determining the position of this point at 

some later time by an Euler time stepping scheme we can make its displacement 

arbitrarily small by letting our initial time step, Sti} tend to zero. As SU -+ 0 the 

displacement of the bubble surface and change in potential on it also tend to zero. 

The value of St for later iterations is given following the criterion discussed in 

chapter 5. After this initial time step, however, we have no knowledge of where the 

cut, T, meets the bubble surface. Although no analytic solution has been found 

for the early motion of the free surface about the impact point we might suppose 

that the very high surface curvature here gives rise to very high fluid velocities, 

the action of which is to immediately smooth the free surface. We perform this 

smoothing numerically by deleting the nodes 0,1, n - 1 and n and fitting a smooth 

closed surface to the remaining nodes. Thus our bubble at time t+6U is represented 

by n-2 nodes, including as a node the point where the cut meets the bubble. This 

point where the cut meets the bubble surface is taken to be half-way (with respect 
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to arc-length) between nodes 2 and n - 2. This is the second node representing 

the cut, the first being that point at which impact occurs. If we denote the two 

nodes representing the cut as (re0,zc0) and (rel,zcl) then at (rel,zel) the cut meets 

the bubble surface at right angles. This geometry is shown in figure 6.2.1(b). 

We are now in a position to implement the boundary integral method to solve 

(6.1.12) for — on S. The technique is unchanged from that discussed in chapters 4 

t 8G 
and 5 apart from the appearance of the term A^ / -—dS. The cut is represented 

JT dn+ 
by a cubic spline parametrised with respect to the arclength, £c, along the cut and 

knowledge of its geometry in this form allows evaluation of this term. 

At this point we shall define N = n — 2 and the number of nodes representing 

the bubble surface is then N +1, noting that by this choice of N nodes 0 and N are 

co-incident. Since the potential is discontinuous at node 0/N we have that 

6N = 6Q + A6 (6.2.2) 

for the duration of the motion. In the boundary integral expression for the po

tential (equation (6.1.12)) the normal that appears is that normal to the surface 

S u T. Despite the existence of a normal to S at node 0/N, the normal to S u T 

is undefined there, and so then is 86/dn. Hence we choose to collocate at nodes 

i = 1,2, ...,N— 1. Despite choosing not to collocate at node 0/N knowledge of the 

whereabouts of this node is essential to the computation as it defines that point 

on the bubble surface at which 6 is discontinuous. 

Although 86/8n is undefined at node 0/N we may assign it a value here, and 

the appropriate value is the limit of d6/dn as we approach the node along S. This 

value is then the component of the fluid velocity normal to S, noting that despite 

the discontinuity in 6 here, the fluid velocity is everywhere continuous so that the 

limit we choose is independent of the direction of approach along S. As noted 

above, knowledge of the fluid velocity here is crucial as the motion of node 0/N 

must be followed in order that the bubble motion can be computed. W e evaluate 

the appropriate limiting value by utilising the linear representation that we have 
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chosen for 86/dn as discussed in chapter 4. If we consider the interval between node 

N - 1 and node 1 as a single segment upon which we define a linear expression for 

d6/dn then evaluation of this function at node 0/N yields 

*°'H ~ 6£1 + 6iN ' (
6-2-3) 

the notation as defined in chapter 4. Collocation at nodes i = 1,2, ...,N - 1 then 

yields the N — 1 linear equations 

AT N-l 

£*» = E 
j=l j=2 

where 

2x& + A ^ A + J2 Atj = ^ (s0Vi-i + C ^ ) , (6.2.4) 

ft = / 75— <*S, 

». ,<.. , , » . - . (6-2-6) 

is the contribution to the potential that arises from integration over the cut T. 

In this expression the notation is exactly analogous to that used for the bubble 

surface. The number of nodes representing the cut is Nc + 1. The arclength along 

the cut to the k'th node is £Ch, re is the radial co-ordinate of points on the cut and 

the Green's function is as defined in chapter 4 and parametrised with respect to 

azimuthal angle, 0, and arclength, £e, along the spline. The coefficients B^ and C„ 

are defined as 

Bij = B^, j = 3,4,...,N-l, 
(6.2.6) 

= B^ + Ca + StjtiBn + <**)/(*& + *t*)* J = 2> 

Cij = Cijt j = 2,3 N-2, 
(6.2.7) 

= Cij + BiN + Six{BiX + CiN)/(6£x + S£N), j = N - 1, 

with Aij,Bij and C4j as defined in chapter 4. We obtain the expressions of (6.2.4), 

(6.2.6) and (6.2.7) from (4.14) and (4.15) by adding the contribution A6D{ that 

arises from integration over the cut and substituting for V^/AT using (6.2.3). Equa

tion (6.2.4) may then be solved for the unknown Y>i, y>2,...,Y>Ar-i. The positions 

of, and potential at each node are then updated using the Euler time stepping 

formulae of chapter 4. 
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In order that we may evaluate the coefficients D< via (6.2.5) we must know the 

whereabouts of the cut, T, so we follow its motion throughout the computation 

and this necessitates a knowledge of the fluid velocity normal to this surface. We 

obtain this velocity as follows. Let n denote the normal to T at some point t, with 

n directed interior to the fluid on T+. If we further let ST be some small distance 

then we can obtain a second order finite difference approximation to the normal 

fluid velocity at T via 

-Mt) + M t ) -_i(t -nSr) 1 [>(t + nSr) 
V6 • n « - -^ ^ , 
^ 2 I ST ST 

but noting that 

(6.2.8) 

6+(t) = 6_(t) + A6, (6-2-9) 

this becomes 

v*.n**(t + n*T)-*(t-n'T)-A*. (6.2.10) 
26T 

Note that we have avoided the need to calculate the potential on the surface T 

itself. With this expression for the normal velocity we may propagate nodes on 

T along their normals, using the Euler scheme, to determine the position of this 

surface a small interval of time, St, later. We have chosen to use an Euler time in

tegration scheme as the accuracy of the method is now limited by the second order 

accurate estimate of the fluid velocity at the cut. To use a higher order method as 

discussed in chapter 5 would be inappropriate. Note that we are not following the 

motion of fluid particles at T. To do so would require knowledge of the tangential 

component of the fluid velocity, which could be obtained, but at the expense of 

significant computation. Since only the geometry of this surface is required the 

extra computational effort needed to follow points on T in a Lagrangian fashion is 

seen to be superflous. In any case, we are following the motion of T as a material 

surface in the fluid and as we shall see shortly this provides considerable assistance 

in visualisation of the flow. 

Every 5-15 iterations it is necessary to smooth the bubble surface, the cut 

surface and the potential on S according to the 5-point formula discussed in chapter 
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5. The surface S and the potential on it are smoothed first. In order to apply the 

smoothing formula to the potential at nodes N-1,0/N and 1, where application of 

the 5 point formula includes points on the other side of the discontinuity in 6, those 

points on the other side are artificially redefined by the addition (or subtraction) 

of A6 for use in the formula. When smoothing the cut, node Ne is considered 

as fixed, having already experienced smoothing as part of S. In order to apply 

the formula at node Ne - 1 an artificial node Ne + 1 is defined as the reflection 

of node Nc — 1 about the plane tangent to the bubble surface at node Ne. This 

choice is made to preserve the orthogonality of the cut and bubble surface at this 

point, noting that these surfaces are initially orthogonal and this orthogonality 

is preserved throughout the motion by virtue of the fact that 5 is a free surface 

and T a material surface in the fluid. In a similar manner, artificial cut nodes -2 

and — 1, consisting of cut nodes 2 and 1 respectively reflected about the axis of 

symmetry, are used to facilitate smoothing of cut nodes 0 and 1. In the case where 

less than three nodes represent the cut no smoothing is performed. As discussed 

in chapter 5, the results of the computation were found to be slightly improved 

by a redefinition of the mesh after every time step so that the nodes representing 

the bubble surface and those representing the cut are evenly spaced, noting that 

the spacing on the cut is not necessarily the same as the spacing on the bubble. 

As the computation proceeds in time the length of the cut increases. Thus nodes 

are added in order that this surface remains adequately resolved. An appropriate 

strategy in the addition of nodes is to endeavour to keep the spacing on the bubble 

and the cut approximately equal. 

The spline representing the bubble surface is made continuous at node 0/iV by 

specifying a common value of the derivatives dr/d£ and dz/d£ at the respective end-

points. In order to gain an appropriate estimate of these derivatives an auxiliary 

cubic spline is fitted to the nodes N-n,,N-n, + l,..., N,l,2, ...,n,, with the not-a-knot 

condition (de Boor, 1978) applied at the free ends. The value n, must be chosen as 

greater than or equal to 1 but is typically chosen to be 8. Having fitted a spline to 
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these points the derivatives at node N are evaluated and used to clamp the ends 

of the spline representing the bubble surface. A similar procedure is used to fit 

a spline to the potential on S. In determining the derivative d6/d£ at node 0/N 

a method similar to the above is used, but values fa + A6,63 + A6,...,6ni + A6 are 

used in fitting the auxiliary spline, in order to account for the discontinuity in 6 

at node 0/N. 

6.3. Example computations of the motion of toroidal bubbles 

The first example of toroidal bubble motion that we shall consider is for a 

bubble characterised by y = -2.0, 6 = 0.0, c = 100. This example was considered in 

section 5.2 and the motion up until the time of impact is shown in figure 5.2.1. 

The time of impact is taken as 2.1265 and the circulation is A6 = 4.155. The 

computed motion is shown in figure 6.3.1. The jet tip velocity is shown in figure 

6.3.2, with the velocity of the uppermost point of the cut shown as this velocity for 

times after the impact. The centroid position as a function of time is illustrated 

in figure 6.3.3, the small discontinuity in this curve at the time of impact purely a 

feature of the numerical transition to a toroidal geometry. 

After the impact has occurred the fluid flows through the torus at a reduced 

speed. The initial speed of the cut is approximately equal to the average of the fluid 

velocities at the upper and lower impact surfaces just prior to impact. The bubble 

continues to collapse after impact and the speed of the tip of the cut increases 

as fluid is drawn in by this collapse. The rebound of the bubble then slows this 

motion. We further note that the collapse is characterised by the fast migration of 

the bubble centroid towards the rigid boundary. After impact migration continues 

towards the boundary but slows as the bubble re-expands. The circulation in the 

velocity field manifests itself in a flow of fluid around the torus that is the bubble. 

This initial flow around impinges upon the bubble surface forming a depression 

that travels around the side of the bubble. As the bubble re-expands, however, 

this depression vanishes. 
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Figure 6.3.2. The jet tip velocity as a function of time for bubble motion characterised by 

7 = —2.0, S = 0.0, e = 100. The curve is discontinuous at the time that the transition to the 

toroidal geometry occurs. After this time the velocity plotted is that of the point on the cut on 

the axis of symmetry. 
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Figure 6.3.3. The centroid position as a function of time for bubble motion characterised by 

y = —2.0, 6 = 0.0, e = 100. The curve is discontinuous at the time that the transition to the 

toroidal geometry occurs. 



The pressure field in the fluid at t = 2.1345 is shown in figure 6.3.4. This figure 

reveals a transition in the point of peak pressure from behind the bubble to ahead, 

noting that the pressure field just prior to impact is shown in figure 5.2.3. The 

action of this peak is to decelerate the rush of the fluid through the torus towards 

the wall and drive the motion of the fluid around the bubble. This finding is 

significant in assessing possible mechanisms for the damage to boundaries due to 

cavitation or underwater explosion bubble collapse. It is apparent that even if 

the collapse is not so close to the boundary that we have water hammer impact 

pressures, the transition to the toroidal geometry creates a region of very high 

pressure in the fluid between the bubble and the boundary leading to a loading of 

the boundary. For this example we have further computed the pressure at the rigid 

boundary just prior to, and just after impact, and this is shown in figure 6.3.5. 

Even though the bubble collapse is somewhat remote from the rigid boundary the 

pressure experienced at the boundary is increased by about 50% due to the impact 

and the pressure distribution shows larger radial gradients. 

We compare this result with the motion of a toroidal bubble characterised by 

y = -1.5, 6 = 0.0, e = 100, as shown in figure 6.3.6. Due to the closer proximity of 

the boundary in this case the jet formed is broader but moving with lower speed 

at impact. The circulation in this example is A6 = 4.617. The motion shares many 

features with the previous example and we are able to here follow the motion up 

until the time that the fluid initially in the jet has flowed completely around the 

bubble. A difference of some significance is that in the first example the central 

region through the torus thins and we propose that the fluid here disconnects and 

the flow domain resumes a simply connected topology, whereas in this case the 

initial breadth of the jet creates a broader central region through the torus and no 

mechanism for reconnection in this case is apparent. In the first example neglected 

physical effects such as surface tension and pressure fluctuations within the bubble 

will accelerate the disconnection of fluid flowing through the torus. 

In both of these examples the bubble continues to collapse after jet penetration, 

105 



-1.0-

-1.25 

-1.5-

N 

-1.75-

-2.0-

-2.25-

Figure 6.3.4. The pressure field in the fluid computed for the motion depicted in figure 6.3.1 at 

time t = 2.1345. 
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Figure 6.3.5. The pressure at the rigid boundary just prior to (dashed curve, t = 2.1230) and 

just after (solid curve, t = 2.1300 ) the transition to the toroidal geometry that occurs during 

motion characterised by y = —2.0, S = 0.0, e = 100. 
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until the pressure inside is sufficiently high that further collapse is arrested and 

rebound occurs. In view of this it is interesting to consider an example in which 

jet impact occurs after rebound. The example we consider is characterised by 

y = -2.0, 6 = 0.0, e = 10 and the collapse and rebound of the connected bubble is 

shown in figure 6.3.7. The jet at impact is slowing and the circulation in this case is 

given by A6 = 2.710. The motion of the toroidal bubble is shown in figure 6.3.8 and 

since the circulation is low in this case the fluid flowing through the torus tends to 

continue flowing forward in preference to flowing around the bubble. Thus the cut 

develops quite a sharp structure. It again appears that the fluid flowing through 

the bubble will disconnect. 

We consider this example in the context of the recent experimental results of 

Vogel et al. (1989). In that work bubbles were generated by a laser in a fluid 

possessing a temperature gradient so that the fluid in the jet is at a different tem

perature to the fluid into which the jet impacts. The fluid at different temperature 

has a different refractive index and is thus visible by a schlieren technique. Some 

of these results indicate profiles similar to those computed here, noting that such 

a visualisation technique would give rise to an image of a bubble with a cap cor

responding to the cut computed here. Other results show what appear to be very 

sharp jets penetrating a large distance beyond the bubble. In such examples this 

structure does not usually become evident until after the bubble has rebounded. 

The computational results just presented indicate a sharpness in the geometry of 

the cut in such cases but this is not as pronounced as that evident in the exper

imental results. It is of interest the behaviour that will occur if the fluid flowing 

through the torus disconnects. We give brief consideration to this in the next 

section. 

6.4. Reconnection of the toroidal bubble 

From the computational results presented in the previous section it is apparent 

that the possibility exists that the fluid flowing through the torus thins sufficiently 
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Figure 6.3.7. The collapse and rebound of an explosion bubble characterised by y = -2.0, S = 

0.0, c = 10. The times corresponding to successive profiles are: (a) Collapse phase: 1.8314 (outer

most), 2.1814, 2.3084, 2.3605, 2.3917 (innermost), (b) Rebound phase: 2.4212 (innermost), 2.4533, 

2.4886, 2.5264 (outermost). 
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as the bubble re-expands that the fluid here disconnects and the flow domain is 

once again simply connected. In such cases the algorithm of chapters 4 and 5 may 

be used to compute the motion of the bubble. We will perform this calculation 

for the bubble illustrated in figure 6.3.8. At the point of disconnection we have 

an initial curvature of the bubble surface that is infinite, but as we have done in 

considering the transition to a toroidal geometry we will suppose that this high 

curvature generates a high local acceleration of the fluid whose action is to smooth 

the surface here. We take the geometry at the time of disconnection to be that 

computed using the algorithm presented here. At the point of reconnection we 

introduce two nodes representing the upper and lower points of the now singly 

connected bubble, each of these being respectively vertically displaced by ±6 from 

the point of reconnection in order to numerically smooth the surface here. This 

is illustrated in figure 6.4.1 where the reconnection point is denoted by c and c± 

denotes this point displaced by ±S, where 6 is small. The smooth surface of the 

now singly connected bubble is indicated by the solid line with the initially doubly 

connected bubble shown as a dashed line. Since the flow domain is now singly 

connected the cut, T, is superfluous from a computational viewpoint, however, 

since it is this surface that is visible in the recent experimental results we continue 

to follow its motion with the fluid. 

In order to employ the algorithm of chapters 4 and 5 it is necessary that the 

potential is continuous on S. Hence we redefine the potential and we shall denote 

by 6' the new potential function which is defined as 

6'(p) = 6e_+l Uds, (6.4.1) 

where fa_ is the original potential at the point c_ and the line integral is over any 

curve in the fluid connecting c_ with p. If p is a point on S that lies between c_ 

and t, the point where the cut T meets the surface 5, then the potential at p is 

^(P) = 4>c. + (Xp) -*.-)= *(P). (6-4-2) 

which we see is unchanged from its original value. If p lies on S between t and c+ 

107 



\c+ 

C-\ 

Figure 6.4.1. Schematic representation of the reconnection of the toroidal bubble. 



we have 

*'(P) = fa. + (6(p) - fa_ + A6) = 6(p) + Afa (6.4.3) 

since the path of integration in (6.4.1) crosses the cut T. At these points on S the 

potential is redefined by the addition of Afa With this definition, the potential 6' 

is continuous on S. 

The motion computed is shown in figure 6.4.2. The fluid element that pene

trates the bubble from the top is rapidly ejected as the bubble re-expands, however, 

this effect is insufficient to cause a sharp spike to be evident in the geometry of 

the cut. 

6.5. Concluding remarks to chapter 6 

In this chapter we have considered an algorithm for the computation of the 

motion of toroidal bubbles. The results have demonstrated the oscillatory nature 

of these bubbles with rebound observed. The results have further demonstrated 

that in some cases the fluid flowing through the torus thins upon re-expansion and 

presumably then disconnects resulting in a flow domain that is singly connected. 

This result is of interest in view of recently reported experimental results (Vogel 

et al., 1989) in which it appears that in some cases a vortex ring bubble is formed 

on the second collapse, despite jet penetration occurring on the first collapse. The 

results presented here have indicated a mechanism by which this may occur. 

This process by which the toroidal bubble resumes a connected topology may 

provide a mechanism for the formation of what appear to be very sharp jets pen

etrating a large distance beyond the main part of the bubble surface (Vogel et al., 

1989). We have numerically reconnected the surface of the bubble and continued 

the computation of the bubble motion. This has not revealed these characteristic 

sharp jets. We may postulate that the ejection of the element of fluid that remains 

penetrating the bubble after reconnection is the source of this sharp jet but that 

the current model does not predict this suggests that other physical phenomena 

must be considered in order to provide an adequate description of this behaviour. 
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W e remark in this context that the surface about the reconnection point is charac

terised by very high curvatures. Hence we might suppose that the surface tension 

forces acting on the elements of the fluid about this point are significant and the 

action of this force will be to eject these elements of fluid from the bubble. This 

is perhaps a mechanism for the creation of what appear to be sharp jets. We 

further note that this behaviour is evident in experiments involving bubbles whose 

maximum radii are of the order of 10_8m, so that the radii of curvature associated 

with jet formation may be several orders of magnitude less than these maximum 

values. 

An initial investigation of this question may be pursued by including surface 

tension in the model, this being a fairly routine task as indicated in chapter 2. 

However, to do so would necessitate an understanding of the role that surface 

tension plays in the initial impact of the jet upon the far side of the bubble, 

noting that the jet tip is characterised by a very high curvature. This aspect is 

an open question and a very difficult one as the mechanism by which the two 

contacting surfaces break down and become one is not well understood. Oguz and 

Prosperetti (1989) have recently considered this question, but perform calculations 

of the motion of two surfaces after such a contact by assuming that they are 

initially connected by an element of fluid. It has been put forward by Vogel et 

al. (1989) that in some cases the surfaces at contact do not break down and 

form one but remain separated by a thin layer of gas, with the impact of the jet 

pushing the surface of the bubble ahead, the behaviour much as if a jet impacted 

upon a membrane. Surface tension must play a significant role in preventing the 

breakdown of the surfaces if this is a feasible behaviour. 

On the scale of the explosion bubble phenomenon, however, surface tension is 

not expected to play a major role at any stage of the motion, although in the con

text of reconnection, if the fluid flowing through the torus becomes sufficiently thin 

the high temperature of the detonation products or fluctuations in the pressure 

field may be sufficient to cause this fluid to break up, yielding a singly connected 
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flow domain. W e further remark that the evidence of experiment is that the pul

sating toroidal bubble is a stable phenomenon, the results of Vogel et al. (1989) 

showing multiple oscillations of such bubbles. It is only after several oscillations 

that a wave-like disturbance, travelling around the torus, appears and ultimately 

leads to the break up of the bubble. 

We close by making a comment of a mathematical nature. In order to perform 

the reconnection of the bubble after it has evolved into toroidal form it is necessary 

to redefine the potential throughout the fluid. If we follow such a redefinition 

procedure for the toroidal geometry we may deform the cut, T, into any geometry 

that we choose. In order to interpret our results in view of recent experimental 

results we have followed T as a material surface but we could equivalently proceed 

by redefining the potential throughout the fluid in order that the geometry of T is 

particularly simple. 
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PART II - SHOCK DYNAMICS 



7 

THE PROPAGATION OF UNDERWATER BLAST 

7.1. The character of underwater blast 

A particularly well documented characteristic of the blast wave generated by 

a conventional underwater explosion is the time history of the pressure pulse ex

perienced at some target point. The initial decay upon passage of the shock is 

approximately exponential, so that we may write 

p(t) = Pme-t/T, (7.1.1) 

where t = 0 is the time of arrival of the shock, pm is the peak pressure and T 

the time constant of the decay. The variation of pm and T with distance, r, from 

the detonation has been the subject of extensive experimental investigation and 

it has been found (Arons, 1954) that for the explosive TNT the variation is well 

described by the relations 

Pm = «„(wrl/3A)1'18, (7.1.2) 

T = KTW
1'3 (w1/3/r)~ ' , (7.1.3) 

where Kj, and «,. are constants and W is the charge mass. If W is measured in 

kilograms and r in metres then the values of Kj, and KT are 

«p = 5.19 x 104, 

(7.1.4) 

KT = 9.25 x 10
1. 

The functional dependence of pm and r upon W1/a and r may be deduced from 

similarity arguments and for a fuller discussion the reader is referred to Cole (1948). 

The classic theoretical treatment of underwater blast is that of Kirkwood and 

Bethe (1942). The Kirkwood-Bethe theory is significant from a number of view

points. In the first instance it was the first general theory of the propagation of 

shock waves underwater and secondly it remains the only theoretical treatment 

that attempts to relate the character of the blast wave to the detonation process 

and early motion of the bubble surface. 
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At this point we shall introduce U as the speed of propagation of the shock 

and define the Mach number, Af, of the shock as 

M = U/a0, (7.1.5) 

where oo is the speed of propagation of small amplitude acoustic disturbances in 

the undisturbed fluid ahead of the shock. The Mach number is always greater 

than or equal to one, noting that the speed of finite amplitude disturbances, of 

which the shock is a manifestation, is greater than OQ. The theory of Kirkwood 

and Bethe assumes that the shock is weak so that the Mach number is close to one 

and entropy changes may be neglected. Although the shock is weak in the sense 

that the Mach number is small, very high pressures may be associated with the 

shock due to the small compressibility of water. The specific enthalpy (enthalpy 

per unit mass of fluid) is 

h = e+p/p, (7.1.6) 

with e the specific internal energy, p the pressure and p the density, and Kirkwood 

and Bethe define 

w = h-h0 (7.1.7) 

as the enthalpy increment anywhere in the fluid, where h0 is the specific enthalpy 

of the undisturbed fluid. Thermodynamic considerations establish that 

du = TdS + dp/p (7.1.8) 

for small increments, where T is the temperature and 5 the entropy. Since entropy 

changes are neglected this becomes 

dw = dp/p, (7.1.9) 

an expression that assumes particular significance shortly. The Tait equation of 

state is employed in the description of the thermodynamic properties of water and 

this takes the form 

T = -I±21r, (7.1.10) 
Cv(y-l)p 
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e = C.T, (7.1.11) 

where Cv is the specific heat and y and T are constants empirically determined 

so that this relation adequately fits experimental data for pressures up to about 

10,000 atmospheres. In this expression y is analagous to the ratio of specific heats 

of an ideal gas and a value of 7.15 is chosen (as used by Cole, 1948, although in 

their original paper Kirkwood and Bethe utilise y = 7). T h e constant * is taken as 

3.047 x 10s atmospheres. T h e local sound speed, o, is defined as 

M©/ (7.1.12) 

where the subscript S denotes that the pressure is considered as a function of the 

density and entropy alone. It m a y be deduced from (7.1.10) and (7.1.11) that 

a3 = y(p + x)/p, (7.1-13) 

and neglecting entropy changes at the shock allows us to write 

(p+x)p~y = constant (7.1.14) 

everywhere, so that we may consider a to be a function of density alone. Kirkwood 

and Bethe then define 

<r= f\a/p)dp, (7.1.15) 

with po the density of the undisturbed fluid and further introduce Riemann func

tions f and a as 

r = (<7 + «)/2, (7.1-16) 

, = (<r-u)/2, (7.1-17) 

with tt the fluid velocity. For propagation of weak shocks it is a good approximation 

that either f or « is zero, depending upon the of direction of propagation. In the 

case of propagation of simple waves this approximation is exact. These facts are 

exploited both in the theory of the propagation and in determining conditions at 

the bubble/water interface at the time that the detonation is completed and the 

shock is propagated into the water. T h e introduction of these variables allows the 
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equations of motion to be cast into characteristic form in a particularly convenient 

manner, a form which will later be exploited in the current investigation. A further 

quantity known as the kinetic enthalpy is introduced and it is defined as 

0 = w + ua/2. (7.1.18) 

A solution is obtained for this quantity and an expression for the pressure as a 

function of time at some target point is subsequently deduced. 

The behaviour of fi at any point in the flow field is mathematically related to 

its value on the surface of the bubble at some retarded time so that the problem 

is then reduced to that of determining fi on the surface of the bubble during the 

early phases of the bubble motion. It is in this determination that the so called 

peak approximation is employed. It may be readily deduced from the equations 

describing the early motion of the bubble that dp/dt evaluated at the bubble surface 

is negative and initially very large in absolute value. From the relation of (7.1.9) 

this behaviour is also exhibited by the enthalpy increment, w. Thus Kirkwood 

and Bethe suppose that the early behaviour of u at the bubble surface can be 

approximated by 

u>(t)=a>1e-
t/01, (7.1.19) 

where a>i is the initial value and 0\ is given by 

01 = -—liru^. (7.1.20) 

This is the peak approximation and we note from (7.1.9) that it may be equiva

lent^ applied to the pressure. The value of 0i may be determined from the equa

tions describing the early motion of the bubble surface and is dependent upon the 

material properties of water and the detonation products within the bubble. It is 

in this way that the motion of the shock is related to the character of the detona

tion. Use of (7.1.19) allows computation of the early motion of the bubble surface 

and a solution is obtained for fi throughout the fluid. The motion of the shock is 

determined by application of the Rankine-Hugoniot shock jump conditions which 
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give the discontinuities in the flow quantities at the shock. These expressions are 

[pv] = 0, (7.1.21) 

[p + pv3]=0, (7.1.22) 

[^(fc+^f2)] =0, (7.1.23) 

where [ ] denotes the difference in the value of the quantity across the shock and 

v is the fluid velocity relative to the shock. Since the conditions ahead of the shock 

are known, as are the conditions behind known from the solution for fi, (7.1.21) -

(7.1.23) give the speed of the shock in terms of these quantities and the motion of 

the shock may thus be determined. 

The time behaviour deduced for the pressure at some distance r from the 

charge is 

p{r,t') = ^e-^, (7.1.24) 

Po = PoOu 0 = yi0x. (7.1.25) 

In these expressions Ro is the radius of the charge, fii is the initial value of the 

kinetic enthalpy of the water at the bubble surface, t' is the time measured from 

the instant of arrival of the shock and the exponential form of the decay is a direct 

consequence of the peak approximation. The variables x and and 71 are functions 

of r and are respectively known as the dissipation and time spread parameters and 

they must, in general, be evaluated numerically. 

This theory stands as a landmark as the character of the blast may be deter

mined given the physical properties of the explosive. However, the formulation 

in terms of the variables of kinetic enthalpy and Riemann function necessitates 

a somewhat extensive series of substitutions in order to obtain from a given so

lution readily interpretable physical quantities such as the pressure and particle 

velocity. For this reason the majority of studies requiring information regarding 

the pressure-time history of the blast wave produced by an underwater explosion 

appeal to empirical relations such as those of (7.1.2) and (7.1.3). 
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Before departing our discussion of the Kirkwood-Bethe theory we should per

haps comment that the early motion of the bubble surface determined in this 

theory bears little relationship to that determined by the theory of part I. The 

model of part I is applied at those times after the shock wave has propagated 

sufficiently far that the motion of the bubble has little influence upon its propa

gation. The time taken for this to occur is of the order of the timescale of the 

shock wave phenomenon discussed in the introduction, which is about two orders 

smaller than the timescale of the bubble motion, and is thus insignificant in the 

context of determining the inertia dominated features of the bubble motion, that 

being the aim of the modelling undertaken in part I. The motion of the bubble 

surface determined in the Kirkwood-Bethe theory is valid only during the earliest 

stages of the motion, shortly after the impact of the detonation wave upon the 

explosive/water interface, when the peak is approximation is valid and the initial 

bubble surface acts as a piston, driving the motion of the shock. The incompress

ible model of part I and peak approximation applied here impose that the physical 

regimes described by each are disjoint. 

The not inconsiderable effort required to obtain expressions for physical quan

tities of interest from the Kirkwood-Bethe theory motivated the more recent study 

of Rogers (1977). In this work the concern is with the propagation of an initially 

exponential waveform. No attempt is made to relate the character of the shock 

wave to the detonation. The pressure experienced at some reference distance Ri 

is assumed to be exponential and thus characterised by the peak pressure, p,, and 

time constant, T<, there. As Kirkwood and Bethe have done, Rogers exploits the 

fact that a short distance away from the charge the shock is weak, and in this 

regime the local speed of sound is well approximated by 

a = ao + 8u, (7.1.26) 

where 8 is constant. The speed of propagation of the shock front is given by 

U = a0 + iBu. (7.1.27) 
It 
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Note that the speed of propagation of the disturbance behind the shock is greater 

than the speed of the shock, so that disturbances behind catch up with the shock 

and modify its motion. It is precisely this interaction that causes the peak pressure 

to decay faster than the 1/r characteristic of small amplitude spherical waves. 

Rogers further assumes that the pressure disturbance in the wave is everywhere 

related linearly to the fluid velocity via 

p = p0oo«. (7.1.28) 

In the spirit of the technique first proposed by Landau (1945) the solution for 

the fluid velocity in that part of the wave where the flow is continuous is assumed 

to be of the form 

u = ±f (t - (1 - 8utn(r/Ri)/ao)r/ao), (7.1.29) 

with the motion of the shock determined by (7.1.27) and the function / determined 

from the assumption of an exponential time decay of u at the reference distance 

R,. Rogers is able to carry through the solution to obtain analytical expressions 

for the pressure, p m, at the shock and time constant, T, of the decay as functions 

of the range, r, where the time constant is defined as 

evaluated at the shock. These expressions are 

Pi{[l + 2(Ri/ti)ln(r/Ri)}lf3-l} 

-M—*—\jm+m—£- (7-131) 

and 

r(r) = r0 {1 + 2(Ri/ti)tn(r/Ri)}
1/2 , (7.1.32) 

with 

4 = £°f°Zi. (7.1.33) 
ppi 

Since this theory assumes a linear relationship between the pressure and the fluid 

velocity the expression for T given by (7.1.32) is equivalent to the more usual 

expression in terms of the pressure; 

T = (7.1.34) 
dp/dt 
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evaluated at the shock. 

Rogers compares his solution with both the results of the Kirkwood-Bethe 

theory and the experimental data of Arons and that presented in Cole's book. 

The expression for the peak pressure is in excellent agreement with the Kirkwood-

Bethe theory and the experimentally determined relation of (7.1.2). The expression 

for the time constant compares well with that predicted by the Kirkwood-Bethe 

theory, but the agreement with (7.1.3) is not so good. As noted by Rogers, however, 

the available data for the time constant exhibits a considerable amount of scatter 

and the agreement between various experiments is not good. In particular, data 

from experiments for small charge weights, and consequently very weak shocks, 

is not even in approximate agreement with the empirical relation (Osborne and 

Taylor, 1946; Poche, 1972). This is no doubt partly due to the considerable 

experimental difficulty in obtaining accurate measurements of the time constant. 

Both of the theoretical treatments discussed are valuable contributions to the 

study of underwater blast. A particular restriction that is a feature of both is the 

limitation to propagation of spherical waves. Neither offers a description of the 

interaction of an underwater blast wave with any structure, and it is this question 

we wish to address here. A method particularly suited to the study of problems 

of shock interaction with structures of quite general geometry is the theory of 

geometrical shock dynamics developed by Whitham (1957). Thus in the next 

section we review the elements of this theory, as formulated for the propagation 

of shocks in gases, and give consideration to its applicability to propagation of 

the shock produced by an underwater explosion. The theories discussed above 

must form the basis for the validation of any theory of propagation that we might 

develop. 

7.2. Geometrical shock dynamics 

Geometrical shock dynamics is the name given to the theory, due to Whitham 

(1957, 1959), for determining the motion of a shock wave, independently of deter-
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mining the flow field behind the shock. Development of the theory proceeds by 

considering the motion of a shock wave down a tube of slowly varying cross section 

A(x). Linearisation of the equations of motion about the assumed uniform initial 

state behind the shock allows their immediate integration. By substituting for the 

flow quantities in the equation for the forward propagating (C+) characteristic in 

terms of their values at the shock (written as functions of the Mach number via 

the shock jump conditions), an expression is obtained relating the Mach number, 

M, to the local cross sectional area, A, of the tube. This is the so called A-M 

relation. 

It is this A-M relation that is the basis for the theory of geometrical shock 

dynamics. If a shock is propagating into a uniform gas at rest then we may in

troduce rays normal to the shock front and suppose that each small element of 

the shock is propagated down a tube whose boundaries are denned by the rays. 

Application of the A-M relation to this elementary tube allows determination of 

the changes in M as the shock propagates. The details of the development of this 

theory may be found in the above references or in Whitham (1974). Geometrical 

shock dynamics has proved to give excellent results in a wide variety of examples. 

Comparisons with known solutions show remarkable accuracy and when imple

mented numerically (Henshaw et al., 1986) is a very versatile tool indeed. That 

the theory should achieve such success is not clear, for the A-M relation is not 

deduced as a formal approximation to the equations of motion. This aspect is 

worthy of further discussion but it is helpful to first review the derivation of the 

A-M relation, following Whitham (1957, 1974). 

Suppose that a shock propagates down a tube of slowly varying cross section, 

with the cross sectional area, A(x), being given as a function of x, the distance 

propagated down the tube. For x < 0 the tube is supposed to be uniform and we 

write 

A(x) = A0 for *<0, (7-2.1) 

with AQ constant. That the tube is slowly varying in the neighbourhood of x = 0 
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is expressed by the relation 

\A(x) - A0\ /Ao « 1. (7.2.2) 

Averaging the equations of inviscid compressible flow across the tube we obtain a 

set of equations dependent only upon the one spatial variable x, 

8tp + udxp + pdmu + puA'(x)/A(x) = 0, (7.2.3) 

8tu + udxu + 8xp/p = 0, (7.2.4) 

dtp + udxp - a
3 (dtp + udxp) = 0. (7.2.5) 

The time variable is denoted by t and dt and dx denote respectively partial time 

and space derivatives. We shall suppose that the shock propagates into a uniform 

medium at rest, characterised by a density and sound speed of po and o0 respec

tively. We shall furthermore suppose that the fluid is polytropic and thus the 

sound speed is given everywhere as 

a2 = yp/p, (7.2.6) 

where for an ideal gas y is the ratio of specific heats. 

With the Mach number defined by (7.1.5) the Rankine-Hugoniot relations for 

the jumps in the flow quantities at the shock (equations (7.1.21) - (7.1.23)) may 

be written as 

2a0 
u = T + 

,2 

i (*-£). c") 
r = :^?Tj(2^'-(7-i)), (7.2.8) 

Po(y + l)M
3 

p~ (y-l)M3 + 2f 

and although a is given by (7.2.6) it is convenient to introduce 

2_ (T-l)M
2 + 2 

** ~ 2yM*-{y-l)' 

(7.2.9) 

(7.2.10) 

in which case we write 

aou(2yM3-(y-l)) 
(y-rl)M V ^ 
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In the above, values of «, p, p and a are those immediately behind the shock. 

In the problem at hand, it is assumed that the physical conditions a large 

distance behind x = 0 are such as to maintain an initially uniform flow in the 

region * < 0, characterised by a sound speed, density and particle velocity of au px 

and ux respectively. In order to obtain a solution of (7.2.3) - (7.2.5) for x > 0 we 

linearise the equations of motion about the initially uniform state in x < 0, as the 

tube is slowly varying. The linearised equations are 

dtp + uxdxp + pxdxu + pxUxA\x)/A0 = 0, (7.2.12) 

dtu + uxdxu + dxp/px = 0, (7.2.13) 

8tp + uxdxp - a\ (8tp + uxdxp) = 0. (7.2.14) 

In the above p, p, u and A'(x) respectively represent p-pi, p-pi, «-«i, and (A(x) - A0)'. 

These equations may be routinely cast into characteristic form, whence they be

come 

C+ : {dt + («! + ax) dx} (p + pl0lu) + pxa
3uxA'(x)/A0 = 0, (7.2.15) 

C_ :{dt + (ux-a1)dx}(p-pxaxu) + pia
3uxA'(x)/Ao = 0, (7.2.16) 

P : {dt + Uldx} (p - a\p) = 0, (7.2.17) 

with C+, C_ and P denoting the characteristic trajectories. Immediate integration 

yields 

(p - Pl) + Plax (u - ux) = -Pi°l*iM*)-Ao + F{x_{ui+ 0i)<) f (7218) 
ux + ax Ao 

(p-px)-Pxax(u-ux)=~Pia2lUlA{x)~A°+G(x-(ux-ax)t), (7.2.19) 
Ux — Ol Ao 

(p - Pi) - a3 (p - pi) = H(x - Ult), (7.2.20) 

with F, G and H arbitrary functions that must be determined from the initial 

conditions of the problem and the boundary conditions at the shock. A crucial 

point in the derivation is that F must be identically zero. That this is so we 

deduce from the fact that the C+ characteristics, approximated by the straight 

fines x-(ux+ ax)t = constant < 0, originate in the uniform region. 
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W e proceed from (7.2.18) to the A-M relation. If we denote by M0 the Mach 

number of the shock upon entering the non-uniform part of the tube, and by M 

the Mach number after the shock has travelled some small distance x into the 

non-uniform part, then we may write the change in pressure and particle velocity 

at the shock as 

dp 
p-pi=dM 

(M - M0), w - «i = -j— 
Mo dM 

(M - M 0 ) , (7.2.21) 
Wo 

with equations (7.2.7) and (7.2.8) giving u(M) and p(M) at the shock front. Substi

tuting (7.2.21) into (7.2.18), writing i»!, px, ax and px in terms of Af0 via the shock 

jump conditions, and some algebraic manipulation yields 

MX\~ A° = -9(M0)(M - M0), (7.2.22) 
Ao 

with 

Supposing that propagation over large distances accumulates finite changes in A, 

we divide the tube into small elements in order that (7.2.22) may be applied to 

each of these. Although propagation over a finite distance will render the assumed 

conditions upon entry to an element (uniform state behind the shock) as incorrect, 

neglect of this and application of (7.2.22) in the limit of infinite subdivision yields 

the differential equation 

l dA 
' 1A = -g(M). (7.2.24) AdM 

Integrating we obtain the A-M relation. 

It is this relation that is the basis for the theory of geometrical shock dy

namics. For details of the mathematical formalism of geometrical shock dynamics 

the reader is referred to Whitham (1974). This formalism is advantageous from a 

number of viewpoints. The A-M relation allows the motion of the shock to be com

puted independently of a determination of the whole of the flow field, a fact which 

significantly reduces the computational effort over more usual approaches. Fur

thermore, the dependence of the Mach number upon the area, A, emphasises the 
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effect of the geometry in which the shock propagates and thus the method is ideal 

for computing the diffraction of shocks by rigid structures. Analytical solutions 

for some problems of shock diffraction have been presented by Whitham (1957, 

1959) and more general examples have been numerically treated by Henshaw et 

al. (1986). 

The only point in the derivation of the A-M relation that the physical prop

erties of the material in which the shock propagates enter into the development is 

via the equation of state. The crucial role of the equation of state is in determining 

the physical quantities immediately behind the shock in terms of the Mach number 

via the shock jump conditions. In order then to apply the theory, as formulated, to 

propagation in water it is simply a matter of choosing an appropriate equation of 

state. The Tait equation of state, discussed in section 7.1, is appropriate for water 

in the regime of the pressures induced by the passage of an explosively generated 

shock and using this in the Rankine-Hugoniot jump conditions we find that the 

expressions of (7.2.7) - (7.2.11) are unchanged, except for the expression for the 

pressure which becomes 

P+* = ^^(27M'-(7-l)), (7-2-25) 

and the relationship between the sound speed, pressure and density has been noted 

in (7.1.13). The remainder of the analysis carries through exactly and the A-M 

relation is given by (7.2.24) with g as given by (7.2.23) and the change of material 

is embodied in the change in the value of y. 

The motion of shocks in water may then be computed according to the theory 

of geometrical shock dynamics, but we make the following point. The derivation of 

the A-M relation proceeds from an assumed initial state behind the shock that is 

uniform. In the case of the propagation of an underwater blast wave it is clear that 

this is not so, as evidenced by the exponential character of the pressure decay upon 

passage of the shock. Due to this non-uniformity in the flow conditions behind 

the shock we might suppose that the effect of disturbances behind the shock, that 
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catch up with and modify its motion, is significant. This effect is unaccounted for 

in the theory of Whitham. 

In any case, for propagation in gases the accuracy of the A-M relation has been 

verified by comparison with a variety of known solutions and, in many cases, the 

agreement is remarkable. That the accuracy should be so good is not clear. For 

a full discussion of these comparisons and accuracy related matters the work of 

Whitham (1958,1974) should be consulted but the crucial point is as follows. The 

technique for determining the A-M relation has been neatly described by Whitham 

as the characteristic rule. This involves substituting for the flow quantities in the 

equation for the C+ characteristic in terms of their values at the shock, given as a 

function of M. The resultant equation gives the variation of M with x (and hence 

A, as A is a function of x). This is exactly what was done to proceed from equation 

(7.2.18) to the A-M relation. For the case of propagation down a tube of slowly 

varying cross section the C+ characteristic equation is 

J<!L+dxp + pa (4r- + dxu) + £?L1A'(Z)/A(Z) = 0, (7.2.26) 

and the success of the characteristic rule involves this being a good approximation 

when applied at the shock, that is 

*-£ + dxp + pa (^ + 0,«) + ^A'(x)/A(x) = 0 (7.2.27) 

is well satisfied at the shock. Combining results Whitham deduces that the accu

racy of the approximation is based upon the smallness of 

I _ -J-) (dtp + padtu) (7.2.28) 
U a + uj 

at the shock. Although (u + a- U)/U is zero for M = 1, it tends to 0.274 as the 

Mach number increases to oo. The characteristic rule thus works well because the 

second term in (7.2.28) is small at the shock, that is 

dtp + padtu <<: 1 (7.2.29) 

dtp 

at the shock. Whitham notes that in the small perturbation solution used to derive 

the A-M relation this is indeed the case. 
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Although the small perturbation solution provides some justification, no really 

satisfactory explanation has been found for the success of the method. In fact, 

application of the C+ characteristic equation at the shock is seen to be somewhat 

ad-hoc. This consideration and the concern with the influence of non-uniform flow 

conditions behind the shock provide the motivation for a reconsideration of the 

propagation of a shock down a tube of slowly varying cross section, the problem 

that is at the heart of the theory of geometrical shock dynamics. 
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8 

RECONSIDERATION OF 
GEOMETRICAL SHOCK DYNAMICS 

In this chapter we reconsider the propagation of a shock down a tube of slowly 

varying cross section, the problem that is at the heart of the theory of geometrical 

shock dynamics. We shall establish that the motion can be described by an infinite 

sequence of equations and shall furthermore demonstrate that by a process of 

truncation this sequence can be closed, so that with initial conditions prescribed 

we can proceed to a solution of the equations. Criteri a for the convergence of the 

closure scheme may be established and in later parts we will truncate at the first, 

second and third equations in order to perform calculations for physical problems, 

the results of which validate the approach. 

8.1. Shock propagation down a tube of slowly varying cross section 

We begin by writing the equations of gas dynamics (equations (7.2.3) - (7.2.5)) 

in characteristic form. They become 

C+ : dtp+(u + a)dxp + pa(dtu + (u + a)dxu) = -pa
3uA'/A, (8.1.1) 

C_ : dtP + (u - a) dxp - pa (8tu + (u- a)dxu) = -pa
3uA'/A, (8.1.2) 

P: dtp + udxp-a
3(dtp + udxp) = 0. (8.1.3) 

We let S denote the trajectory of the shock, and it is given by 

5: x = ooM. (8.1.4) 

In what follows all total time derivatives, denoted by dt, will be considered as along 

the shock so that 

dt = dt + aoMdx. (8.1.5) 

In the case of the ratio A'/A, which is only a function of x, we have 

dt (<TX(A'/A)) = aoM<
+1(A7A), (8-1.6) 
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with d« denoting the derivative with respect to x. 

We require a number of relations, the crucial ones being that, for p,p,u and a 

having continuous derivatives of all orders, we have on S 

dtp + padtu = -\aoM^-A'/A+(^--l)(dtp + padtu) , (8.1.7) 
a + u \a + u J 

and 

* (8?(8tp + padtu)) = - [ooM9r
+1 (*££) A'IA 

+aoMj2(n+i
1\di (-LSjd^-^dtP + padtu) (8.1.8) 

+ooMar (8t(pa)8xu - 8x(pa)dtu) + (^- - 1) 8?
+1(8tp + padtu) , n > 0. 

To estabhsh (8.1.7) we note that 

dtp + pad\u = dtp + padtu + OQM (8xp + padxu). (8.1.9) 

From (8.1.1) we have 

8xp + pa8xu= ?— (dtp + padtu + pa
3uA'/A), (8.1.10) 

a -\- u 

and substitution into (8.1.9) yields the result. We proceed rapidly to (8.1.8) as 

follows. Since p,p,u and a have continuous derivatives of all orders we have 

dxd?(dtP + padtu) = dxd?dtp + d?(pa8tdxu) + d? (dx(pa)dtu). (8.1.11) 

Noting that 

3«n+1 (B.p + padxu) = d?
+1dxP + 8?(pa8xdtu) + d?(dt(pa)dxu), (8.1.12) 

(8.1.11) becomes 

dxd?(dtp + padtu) = d?
+1(dxp + padxu) + d?(dx(pa)dtu-dt(pa)dxu). (8.1.13) 

Now 

dt(d?(dtP + padtu)) = d?
+1(dtP + padtu) + aoMdxd?(dtp + padtu), (8.1.14) 

which, upon use of (8.1.13), becomes 

dt(d?(dtP-r padtu)) = d?
+1(dtp + padt*) + a0M8?

+1(8xp + padxu) 

+a0Md?(dx(pa)dtu - dt(pa)dxu). 
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With the help of (8.1.10) the result follows. W e will also need a set of results that 

relate partial time and space derivatives of the physical quantities p, u, p and a at 

the shock to partial time and space derivatives of lower order and to total time 

derivatives of partial derivatives of one lower order at the shock. Presentation of 

the results at this stage will render later results transparent. 

W e begin by taking 0£dt
m of each of the equations (8.1.1) - (8.1.3). Noting that 

d:d?(AB) = EE(") (7) didiAdr'dr^ (8.1.16) 
«=0 j=0 \ / v J / 

for continuously differentiable functions A and B, (8.1.1) - (8.1.3) yield respectively 

5?at
m+1p + (u + a)d:+1d?p + padld^u + pa(u + a)c£+1dt

mu - -/i™". (8-1-17) 

9»5t
ra+1p + (u - a)d:+xd?p - padld?+xu - pa(u - a)0?+10t

ro«,= -ft'n, (8.1.18) 

d2d?+1P + ud^dfp - a3d^d^+1P - a
3ud^+1d^P = -/3

n-m, (8.1.19) 

where 

tf.™ = Y f ^ o ° ( l ) ( 7 ) {d*d'<(u + a)d*l-i+ld?~jr 
+ did}(Pa)d:-

idr-i+1u + did{ (pa(u + *)) d:-i+1d?-ju) + d2d?(pa3uA'/A), 

(8.1.20) 

1,3*0,0 \tj y3j \ ( 8 1 2 1 ) 

- dxd
i
t(pa)dr

idT-i+1u- didi (pa(u- a))d^d^u) + d2dm(pa3uA'/A), 

fn.m E,n=oEr=o (n\ (m\ (didiud^+'dr^p 

- a^(a3)3r^ri+v - did{ (a
3u) <£-<+iar v) • 

The crucial point to note is that the functions ft'm(l = 1,2,3) depend upon deriva

tives of p, u, p and o of order <n + m. 

Along the trajectory of the shock we have 

dt (dZd?p) = 828?+lp + aoM8^+ldmp, (8.1.23) 

d\ (8»8mu) = d28?+lu + a0M82
+ldmu, (8.1.24) 
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dt (8^8mp) = d:d?+1p + aoMd2+ldmp. (8.1.25) 

Using equations (8.1.17) - (8.1.19) and (8.1.23) - (8.1.25) we can obtain expressions 

for 

W + 1 P . d:+1dmP, d2d?+
lu, d:+ldmu, a»at

m+1p, s*+larP (s.i.26) 

at the shock. Routine algebraic manipulation yields 

dx
id?+lp = (a3 + u(a0M - u)) dt (d^d

mp) + aoMpa3dt (d^d^u) 

/(a3-(a0M-u)
3), +-aoM(o + o 0M - u)f?

m - ̂ ooM(o - OQM + u)/2
n 

d2+1d?p = - (aoM - u) dt (d:d?p) - pa
3dt ( W ) 

/(a3-(aoM-u)3), -i(a + ooM - «)/r,m + |(a - O Q M + «)/J 

9"ar+1« = o0M 
L P 

dt (d^dmp) + (a3 + tt(aoM - u))dt (d^d^u) 

+^(a + aoM - u)frm + ̂ ( a - OoM + «)/,"•" 
p̂a ipa 

/(a3-(aoM-u)3), 

d2+1d?u = —dt (d2d?p) - (a0M - u)dt (d^d^u) 

" 2 ^ ( a + aoM " U)f?'m ~ i ( a _ aoM + U)f3'° /(a3-(a0M-u)
3), 

xdt P = aoMa3dt (d^d
mp) + a0Mpa

3(a0M - u)dt (d^d
mu) 

-a3u(a2 - (ooM - u)2)dt (d^dfp) + -a0M(a0M - u)(a + a0M - u)f"'
r 

-iaoM(ooM - u)(a - OQM + u)fi'm + o0M(o
2 - (a0M - u)

3)fl 2wn,m 

l(a3(aoM - u)(a3 - (OQM - u)3)), 

d^d^p = -a3dt (dld
mp) - pa3(aoM - u)dt ( W ) 

+a3(a3 - (ooM - u)3)dt ( W V ) - -(OQM - u)(a + aoM - u)f[ n,m 

3\fn,m +-(aoM - u)(a - o0M + «)/,
n,m - (a3 - (OQM - u)3)ft 

/(a3(aoM - u)(a3 - (a0M - u)
3)). 

(8.1.27) 

(8.1.28) 

(8.1.29) 

(8.1.30) 

(8.1.31) 

(8.1.32) 
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W e can deduce expressions for fl^flj-a and 8^d^+1a by noting that a3 = yP/P. At 

this point, note that the expressions for the quantities of (8.1.26) involve derivatives 

of p, u, p and a of order < n + m as well as the rate of change of d£dmp, d^d^u and 

dSdfp following the shock. 

To proceed we require some further notation. Let us set 

Qo = M, 

(8.1.33) 
Qn = d?-1 (dtp + padtu), n=l,2,..., 

evaluated at the shock, and write the functions djd/p, dj5?u and dxd[p as Pij, utj and 

Pij when evaluated at the shock front. We will establish by induction that on 5, 

the shock trajectory 

dtQk = dtQk (Q0,..., Qk+1, A'/A,..., d*-
l(A'/A)) , (8.1.34) 

and 
dxd{p = Pij (Q0,...,Qk, A'/A,.... dx-\A'/A)) , 

dxdiu = Uij (Q0 Qk, A'/A,..., d
k
x-\A'/A)) , (8.1.35) 

#AP = PH (Qo, ••-,<?*, A! IA dx-\A'/A)) , i + j = k, 

for i, j > 0, 4 = 1,2,..., and that for k = 0 we have 

dtQo = dtQQ(Qo, Qi, A'/A), (8.1.36) 

and 

dxd{p = Pij(Qo), dxd\u = Uij(Q0), dxd\p = Pij(Q0), i = j = 0. (8.1.37) 

For all Jfc the dependence upon Qt (t = 0,1,2,...) as reflected by (8.1.34) and (8.1.35) 

is correct. The dependence upon A'/A and its derivatives is secondary since we 

assume this function to be known. We make the distinction of the case ife = 0 for 

completeness. 

Let us suppose that jfc = o. Then the shock jump conditions (equations (7.2.7) 

- (7.2.9)) give p, u and p at the shock as functions of M(= Q0). Hence we write 

P = Poo(Qo), u = ttoo(Qo), P = Poo(Qo), (8.1-38) 
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at the shock. Noting that 

dt = dtQ0dQo, (8.1.39) 

(dQo denotes a derivative with respect to Q0) equation (8.1.7) gives 

(dQoP+ PodQau)dtQo = -
pa3u , . (a0Qo aoQo^—A'/A-^ aoQo _ A 

a + u J 
(8.1.40) 

a + u \t 

Evaluation of dQop and dQou via (8.1.38) and substitution in (8.1.40) for p,u,p and 

a as functions of QQ allows us to write 

dtQo = dtQ0(Qo, Qu A'/A). (8.1.41) 

Thus (8.1.36) and (8.1.37) are established. Now let us suppose that (8.1.34) and 

(8.1.35) are true for some fc > 0. Slight modification is needed if we begin with 

(8.1.36) and (8.1.37) as being true and this will be indicated as the proof proceeds. 

Consider some set i,j such that i + j = k and consider dxd(
+1p, an expression for 

which is given by (8.1.27). We have already noted that all partial derivatives in 

this expression are of order < i + j = Jfc. Hence by our induction hypothesis we 

can write them as functions of Qo,---, Qk,A'/A,..., d*_1(A'/A). If fc = 0 then the 

expression of (8.1.26) involves only the physical quantities p, u, p and o themselves 

which can be written as functions of Q0 alone. We must consider the expressions 

dt (didip) and dt (dxd(u). Consider dt (sjdfp). By the induction hypothesis we have 

at the shock 

dl^p = Pij (Q0, - - -, Qk, A'/A d\-
x(A'/A)) . (8.1.42) 

Now at S 
dt (di#p) = dQoPijdtQo + •.. + dQhpijdtQk + 

(8.1.43) 

a0Md(AI/A)pijdx(A'/A) + ... + a0Md(d*-i(A,/A))pijdx(A' /A), 

having made use of (8.1.6). Noting that the induction hypothesis gives dtQk = 

dtQk(Qo, • • •, Qk+x, A'/A,.... d\-
x(A'/A)), we see that dt (didip) is a function of Q0,..., 

Qk+1,A'/A,..., dx(A'/A). The consideration of dt (a'^u) follows exactly as above. 

Thus we can write 

didi+1p = pij+x (Q0 Qhn, A!/A,.... d
k
x(A'/A)). (8.1.44) 
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Repetition of this argument establishes (8.1.35) for fc + 1. If fc = 0 then, for example, 

we have at the shock dtp = dQopoo<Wo> which is, using (8.1.36), a function of Q0, Qx, 

and A'/A. Substitution into the expression of (8.1.27) for dtp then allows us to 

write dtp = pox (Qo, Qu A'/A) which is of the form expressed in (8.1.35) for fc = 1. 

To establish the final part of the result we rewrite (8.1.8) using the notation of 

(8.1.33), whence it becomes 

««- h»a-'+l (£&) ^+**E(*t ')*' fcb) Q'-i+s 
L V ' i=l (8.1.45) 

+aoQodk (dt(pa)dxu - dx(pa)dtu) + (^£ _ i^ Qfc+aJ f 

an expression in which we note that there is dependence upon derivatives of p, u, p 

and a of order < fc +1. These derivatives in turn depend upon Qo,..., Qk+i, A'/A,..., 

d\(A'/A), so we write 

dtQk+x = dtQk+x (Qo,••-, Qu+7, A'/A,.... d
h
x(A'/A)) , (8.1.46) 

and the result is established. If fc = 0 then we have noted above that the first order 

derivatives of p, u, p and o depend upon Q0, Qx, and A'/A and so the expression of 

(8.1.34) is deduced to be true for fc = 1. 

Having established the validity of (8.1.34) and (8.1.36) we make the following 

observation. The expression for dtQk depends upon Qk+1, so that each differen

tial equation in the sequence described by (8.1.34) and (8.1.36) is coupled to its 

successor. Noting the definition of Qk it is clear that the coupling is via a term 

containing derivatives of one order higher than all other terms in that equation. 

By truncation of the term involving QN+x, for some N > 0, we obtain N + 1 non

linear coupled differential equations in the N +1 variables QO,.-,QN and provision 

of initial conditions renders the problem of their solution as well posed. All the 

coefficient functions in the resultant equations are expected to be differentiable so 

that the existence of unique solutions is expected. The question of the existence 

and uniqueness of solutions is, however, beyond the scope of this work, but exami

nation in the next sections of the systems obtained from choosing N = 0 and N = 1 

132 



reveals soluble equations. Once the function Q0 (= M) is known, the motion of the 

shock is determined. 

8.2. Truncation at the first and second equation 

Consider truncation at the first equation, given by (8.1.36). The explicit form 

of this expression is given by (8.1.40) and rewriting QQ as M and Qx as dtp + padtu 

we have 

(dMp + paduu)dtM = - aoM^-^-A'/A + (^- - l) (dtp + padtu (8.2.1) 

Truncation of the term involving 8tp + pa8tu and use of (7.2.7) - (7.2.11) in deter

mination of the coefficients of a\M and A'/A yields 

dtM = :
9TMJ

A'/A> <8-2-2) 

with g(M) given by (7.2.23). Noting that 

dtM = dxMdxAdtx = aoMA'dAM, (8.2.3) 

we see that (8.2.2) becomes equation (7.2.24); the A-M relation. 

We are now in a position to make a number of comments about the deriva

tion of the A-M relation in the manner presented in section 7.2. The appli

cation of the characteristic rule corresponds simply to truncation of the term 

(i+^ - 1) (dtp-r padtu). The rule is thus seen to provide an indication of the correct 

term to truncate in order to close the equations of propagation. We further note 

that the exact criterion that the A-M relation is a good approximation is that 

a 0 M ^ \A'/A\ » 
a + u 

OQM _ 
\dtp + padtu\. (8.2.4) 

a + u 

The left hand side of this inequality gives a representative measure of the effect 

that the changing area has upon the propagation of the shock. The terms on the 

right hand side characterise the flow behind the shock. The expression *$ - 1 

is a measure of the coincidence of the C+ characteristic and the shock. For M -• 1 

this term tends to zero, expressing the result that in the sonic limit the leading C+ 

133 



characteristic and the shock are coincident. In such a case modifying disturbances 

propagating along the characteristics do not meet the shock and hence have no 

influence upon its motion. As M -> oo this term tends to 0.215 (for y = 1.4) indi

cating the differing trajectories of C+ and S. In this limit disturbances on the C+ 

characteristic overtake the shock and modify its motion. The term dtp+padtu gives 

a measure of the non-uniformity of the flow behind the shock. If the state behind 

the shock is uniform, it has value zero. Hence we can say that the approximation 

is good when the effect of the geometry upon the shock is much more significant 

than that of the interaction with and non-uniformity of, the flow behind. We 

shall consider this quantitatively in later parts. The considerations of Whitham 

regarding the accuracy of the method have indicated the significance of the term 

%££ - 1 \dtp + padtu\ (see equation (7.2.28)), however, by the process of truncation 

we have deduced a formal criterion, expressed in (8.2.4), that the theory is good. 

Since we now have the facility to truncate at any equation we will truncate at 

the second equation in order to investigate the degree of improvement attainable. 

This will also give some indication if any value is to be obtained by truncating at 

higher equations in the sequence. We will now write dtp + padtu as Qi, in which 

case we have, from (8.1.8), for n = 0 

dtQx = - aoMdt (£?-!L) A'/A + aoMdt (—^— ) Qx +a0M(dt(pa)dxu-
\a + uj \a + uj 
V ' (8.2.5) 

dx(pa)dtu)+(^^-l^dtQx • 

Truncating the term involving dtQx (= QT) gives the closed system of coupled non

linear differential equations 

4* = -r^- ff^i) A'/A+(4—U *', 
ditP + padttu [ \a + u) \a + u a0M J 

= dtM(M, Qx, A'/A), 
(8.2.6) 

dtQx = -aoM \dt (|^) A'/A + dt(pa)dxu - dx(pa)dtu + dt (~jA Qi , 

= dtQx(M, Qx, A'/A). 

Expressions for the first order partial derivatives of p, «, p and a, evaluated at the 
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shock, are obtained from the results of section 8.1. Explicit formulae are shown in 

appendix 1 and these allow the functions dtM and dtQx to be evaluated. 

Upon provision of the form of the function A(x) and values M0 and Qlo of M 

and Qx at t = 0, the problem of solution of the system of (8.2.6) is well posed. The 

differentiability of the functions dtM and dtQx guarantees the existence and unique

ness of solutions. Note at this point, that although we could formally write down 

the criterion that the approximation obtained by truncation at the second equa

tion is good, the dependence of this criterion upon second order partial derivatives 

of flow quantities renders its interpretation as difficult. Due to the complexity of 

the system (8.2.6), we proceed to investigate shock propagation in a number of 

simple geometries before implementing the numerical scheme of geometrical shock 

dynamics. Comparison with observed phenomena and known solutions indicates 

the validity of the approach as well as allowing a quantitative determination of the 

inequality (8.2.4) to be made. Before this, however, we consider the convergence 

of the closure scheme. 

8.3. Convergence of the closure scheme 

The question of the convergence of the closure scheme presented in section 

8.1 is significant and worthy of consideration. In this context we may prove the 

following result. Let us denote by Q0
N^ the approximation to Q0 obtained by closing 

the system of (8.1.34) and (8.1.36) at the N+l'th equation. Supposing that Qk is 

continuous for fc = 0,1,2,... then if 

sup \Qk+11 < (* + 1) sup \Qk |, fc = 0,1,2,..., (8.3.1) 
[0,T] [0,T] 

we have that 

Jim Q0
N) = Qo, (8-3-2) 

N—»oo 

for times, t, such that 

t<T<e-\ e<l. (8.3.3) 

We proceed to this result as follows. 
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W e may write the system of (8.1.34) and (8.1.36) as 

dtQo = (dtQo - ahQx) + ahQx, (8.3.4 - 1) 

dtQx = (dtQi - aQi) + aQa, (8.3.4 - 2) 

dtQt = (dtQi ~ *Qa) + "Qs, (8.3.4 - 3) 

dtQN-x = (dtQ*-x - <*QN) + *QN, (8.3.4 - N) 

dtQN = (dtQN ~ <*QN+I) + CCQN+U (8.3.4 - N + 1) 

where a and h axe functions of M (= QQ) and are given by 

a = 1 - a0M/(o + u), (8.3.5) 

h = 1/{w+^)' <8'3-6> 
with a, u,p and pin these expressions given by (7.2.7) - (7.2.11). The closure scheme 

arises from the fact demonstrated in section 8.1 that the expression dtQN - aQN+1 

(or dtQo - ahQi in the case N = 0) depends only upon QO,...,QN and the known 

function A and its derivatives, so that truncation of the term <*QN+I (or ahQx) 

yields a closed system of equations. It is significant at this point to note that the 

functions a and h are bounded over the range of Mach numbers [l,oo) by 

0 < a < lim (1 - o0M/(a + u)) = e, (8.3.7) 
Af-»oo 

and 

111 
6poOo 

0<h<12-j. (8.3.8) 

The bound of (8.3.8) is crude, but it is only the boundedness property that we 

require. The constant e is a function of y but for all physically meaningful values 

of 7 is less than 1. 

Suppose now that we truncate at equation N+l and solve the resultant system. 

Then from (8.3.4 - N+l) we obtain an approximation Q^ to QN by solution of 

dtQ^^dtQH-aQw (8-3.9) 

136 



Rearranging, this becomes 

dt (ffi - QN) =-*QN+X, (8.3.10) 

and integration yields 

Q{N)(t)-QN(t) = - faQN+xdt\ 
Jo 

where we have chosen Q^ = QN at t = 0. W e then obtain the bound 

QlJP(*) ~ QNW < ci sup \Q„+11 
[0,T] 

<et(N + l)sup\QN\, 
[0,T] 

(8.3.11) 

(8.3.12) 

having made use of (8.3.1) and provided t < T. The function Q^ may now be 

used to obtain an approximation to the term aQN appearing at the extreme right 

of equation (8.3.4-N) so that an approximation QJ£2X to QN-\ may be obtained as 

a solution of 

*$iff i = (dtQN-i - <*QN) + aQ^K (8.3.13) 

Rearranging and integrating we obtain the bound 

QlN-l(*)-QN-l(t) < (€«)»(JV + 1)JV >Op IQJLT.! | /2!. 
[0,T] 

Repeating this argument yields 

QoN\i) ~ Qo(i) < £ r 4 W + 1 ( t f + 1)! sup |Qo| l(N + 1)!-

(8.3.14) 

(8.3.15) 

Since Q0 is continuous on the closed interval [0,T], sup \Q0\ exists and provided 
[0,T] 

cT<l, (8.3.16) 

the result follows and on the interval [0,T] the closure scheme converges to the 

true solution. Note that the scheme converges despite the growth of the terms Qk 

as fc increases. If we were to impose the stronger condition that all the Qk were 

bounded, by Q say, then we would obtain 

Qo"\t)-Qo(t) 
^.(y + l)(et)N+1 

- 6pQa
3 (N + l)^ 

(8.3.17) 
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In this case as N -> oo, Q0
N) -* Q0 for all values of t. 

We may make a few comments regarding the rate of convergence that we 

might expect for given physical problems. From (8.3.15) and (8.3.17) if we require 

a solution of a given accuracy 6 such that Q0
N)(t) - Q0(t) < 6 for t e [0,T\ then the 

value of N required to achieve this (not assuming any other knowledge about the 

Qk than assumed above) reduces with T. Similarly, the value of e, the bound upon 

the function a, governs the rate of convergence. In the example of an expanding 

shock front, such as a spherical wave, the Mach number and hence a will decrease 

as the shock propagates. The appropriate value of e to be used in the above results 

would then be a evaluated at the initial Mach number. For weak shocks the value 

would be significantly less than e so that a solution of desired accuracy can be 

guaranteed with a smaller value of N. In the limit M -> l,a(M) -> 0 giving rise to 

rapid convergence over large time intervals. 

At this point the area function A has not appeared in the consideration. Its 

role may be inferred from equations (8.1.7) and (8.1.8). The growth of the terms 

Qk depends not only upon the Qk themselves but upon the ratio A'/A and its 

derivatives. In the above derived bounds upon Q0
N^ - Q0 a bound upon all of the 

Qk, or upon Q0, appears. This bound will be dependent upon the magnitude of 

A'/A although the above considerations have not quantified this dependence. We 

might suppose, however, that larger values of the ratio A'/A would give rise to 

larger bounds upon the Qk and thus require truncation at larger N in order that 

a solution of a required accuracy is guaranteed. This aspect is worthy of further 

investigation. 

We conclude this section with a number of remarks regarding the mathematical 

structure noted in section 8.1. We have been able to show that the motion of 

the shock is described by an infinite sequence of differential equations and that 

by a process of truncation we may close and subsequently solve the system to 

determine, in an approximate manner, the motion of the shock. The terms we 
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have chosen to truncate are given as Qi = d\~l (dtp + padtu). W e remark that an 

alternative procedure of approximation may have been followed by noting that 

the same structure as that discussed here may be established where we choose 

Q% = d\p + pad\u. Truncation at the first equation in the sequence so obtained 

yields the Whitham A-M relation. The second equation in this sequence differs 

from that presented in section 8.2. In this case it is not so obvious as to which 

is the appropriate description, but the scheme followed here has been chosen for 

a number of reasons. Firstly, in the formulation here, the coefficient of the term 

dl'1 (dtp + padtu), that we choose to truncate, is (a0M/(o + u) - 1), which is very small 

in the case of weak shocks. In this regime, we may justify truncation on grounds of 

this smallness. We suppose that the mathematical structure should be independent 

of the Mach number, so we choose Qi = d|-1 (dtp + pa8tu). If we choose to truncate 

terms of the form d\p + pad\u, then in the weak shock limit terms remain whose 

coefficients are (aoM/(a + «) - 1). 

By choosing Qi = d\~l (dtp + padtu), we obtain a generalisation of the "char

acteristic rule". The second equation of (8.2.6) is, in fact, the equation for the 

rate of change of dtp + padtu along the C+ characteristic, applied at the shock in a 

manner analogous to that in which the A-M relation is deduced by applying the 

C+ characteristic equation at the shock. Thus to close the sequence of equations 

at the (N-(-l)'th equation, we transfer the equation for dtQN along the C+ char

acteristic to the shock. Thus we are, in a sense, exploiting the closeness of the 

C+ characteristics and the shock, even though the measure of this co-incidence, 

(aoM/(a + u) - 1), is not so small for strong shocks. 

That this quantity is not so small in the strong shock limit has led Whitham 

to propose that it is the smallness of dtp + padtu that leads to the success of the 

method, noting the most spectacular success of the approach in the consideration of 

converging spherical and cylindrical shocks in the strong shock limit. This quantity 

is equal to zero in the linearised solution for the flow field behind the shock that 

Whitham uses to deduce the A-M relation. If dtp+padtu remains small at the shock 
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then it is not unreasonable to suppose that higher partial time derivatives of this 

quantity, the Q< of the closure scheme presented here, will remain small at the 

shock. In the linearised solution all the Qi are zero at the shock. The convergence 

results presented here have exploited the feature that (ooM/(o + u) - 1) is less than 

one. Since this term appears as the coefficient of the Qi that are truncated to 

achieve closure, if the Qi themselves are small the term truncated is a product of 

small terms and we might expect more rapid convergence of the scheme. 

We also comment that we may have chosen Qi = 8tx~
1(8xp+ pa8xu), * = 1,2,..., 

and a similar closure scheme deduced. We reject this approach on a number of 

grounds. In the first instance the first equation in the resultant sequence, when 

closed, yields an A-M relation that differs significantly from that of Whitham, 

which is known to be a good approximation. Secondly, in the linearised solution 

mentioned above the Qi so defined are non-zero, unless all derivatives of the area 

function, A(x), vanish; a case that would be most uninteresting. 

Particularly significant in this regard is the recent work of Prasad and Srini-

vasan (1987, and see also Srinivasan and Prasad, 1985), following that of Maslov 

(1980). They establish that along the shock trajectory 

,,r.dM 1 dA „,„r*8M ^ ,„„,., 

where gx(M) and F(M) are given functions and M is the Mach number. In shock 

dynamics M is usually defined only at the shock, but Prasad and Srinivasan de

fine it throughout the fluid so that the expression 8M/8x is meaningful. This 

is achieved by supposing that the relationship between the Mach number of the 

shock and the density just behind the shock defines a Mach number in terms of 

the density throughout the fluid. Thus the term 8M/8x in (8.3.18) may be written 

as dM/dpdp/dx, where dM/dp is a function of M and in (8.3.18) these terms are 

evaluated at the shock. The definition of M used by Prasad and Srinivasan differs 

slightly from that used here, but this is not important. In any case, it is a routine 

matter to show that (8.3.18) and (8.1.7) are equivalent. 
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Prasad and Srinivasan claim that truncation of the term F(M)8M/8x yields 

the appropriate relationship between M and A for a shock propagating down a 

tube of slowly varying cross section, and make much of the difference between 

their function gx(M) and the function g(M) appearing in the A-M relation used 

by Whitham (equation (7.2.24)). As pointed out by Whitham (1987), the closure 

carried out by Prasad and Srinivasan is not equivalent to that used to derive 

(7.2.24). In view of (8.1.7) and its equivalence to (8.3.18), this is obvious. 

Consideration of the linearised solution, used to derive the A-M relation, indi

cates why the closure advocated by Prasad and Srinivasan is inappropriate. Unless 

A'/A is equal to zero, the term 8M/8x is non-zero, whereas noted above, dtp+padtu 

is zero as are all its higher partial time derivatives. This is a further example 

indicating that many possible closure schemes are available, even though Prasad 

and Srinivasan have not demonstrated an infinite equation structure as shown 

here. Consideration of the linearised solution gives strong indication of which is 

the appropriate closure strategy to adopt. 

Further justification of the closure scheme employed here may be obtained by 

performing computations using the equations of section 8.1 and comparing with 

known solutions and experimental results. Thus we consider shock propagation 

first in simple geometries and then general geometries using the numerical scheme 

to be developed in chapter 9. 

8.4. The propagation of strong cylindrical and spherical shock waves 

The propagation of cyUndrical and spherical shock waves is of interest for two 

reasons. The function A(x) is known in these cases and furthermore, the equations 

of one-dimensional flow are exact. In the limit of strong shocks we can obtain 

analytic solutions to the equations of section 8.2. The mathematical criterion that 

the Whitham A-M relation is a good approximation may be evaluated, providing 

some insight into the success of the method. 
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In appendix 2 equations (8.2.6) are evaluated in the strong shock limit. In the 

geometries of interest we may write 

A = 2n*xn, A'/A = n/x, (8.4.1) 

with n = 1,2 respectively for cyUndrical and spherical shocks. Writing Q = Qx/(poa%), 

the equations describing the propagation are 

M' = -nCxM/x + dQ/M3, (8.4.2) 

Q' = TXM(M')3 + nT3M
3M'/x + n3TZM*/x

3 + (KXW + nK2M/x)Q/M, (8.4.3) 

where M' and Q' denote derivatives with respect to x. Expressions for the constants 

Ci.Ci. Tx,T2,Ta,Kx and K2 may be found in appendix 2, but for common values of y 

they are shown in table 8.4.1. It is easiest to proceed by writing (8.4.2) and (8.4.3) 

as a single second order equation for M. Differentiating (8.4.2) and substituting 

into (8.4.3) gives 

M" + Xx(M')
3/M + XiM'/x + XaM/x3 = 0, (8.4.4) 

with 
Xi = 2 - TxCi - Kx, 

X2 = n(3<x - Ci«i - <JT3 - K3), (8.4.5) 

Xs = -n(Cx + nfoCa + Ci«a)), 

and values for these constants may be found in table 8.4.2. If we put z = Inx then 

(8.4.4) becomes 

M" + Xi(M')
3/M + (X2 - 1)M' + XsM = 0, (8.4.6) 

with derivatives now with respect to z. Making the further substitution / = M'/M 

we obtain 

/' + (Xi + l)(/-/i)(/-/2) = 0, (8-4.7) 

with fx and /3 satisfying 

(Xi + l)/3 + (x2-l)/ + X3 = 0, (8.4.8) 
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G 
C2 
Tl 

r2 
r3 

«i 

7 
6/5 

0.1631 
0.0368 

-59.8345 
-14.9705 
-1.0924 
0.9558 
0.6811 

7/5 
0.1971 
0.0556 

-19.8431 
-9.6091 
-1.1541 
1.5097 
0.6440 

5/3 
0.2254 
0.0743 
-8.3852 
-7.2498 
-1.2011 
1.7508 
0.6287 

Table 8.4.1. 

Xi 

X2 

X3 

/l 

/l 
Gestp 

t 
e 
xf 

7 
6/5 

n = 1 

3.2487 
0.2039 
-0.2340 
0.3464 

-0.1590 
-0.1612 
4.4272 
0.1120 
9.4227 

n = 2 

3.2487 
0.4079 
-0.6096 
0.4548 
-0.3155 
-0.3208 
8.8544 
0.2922 
3.7029 

7/5 
n = l 

1.5936 
0.1840 
-0.2598 
0.5108 
-0.1961 
-0.1973 
3.5445 
0.0169 
37.0372 

n = 2 
1.5936 
0.3680 
-0.6451 
0.6352 
-0.3916 
-0.3944 
7.0890 
0.0466 
9.4621 

5/3 
n = 1 

0.8723 
0.1916 
-0.2779 
0.6575 
-0.2257 
-0.2261 
3.0338 
0.0043 

n = 2 

0.8723 
0.3832 
-0.6607 
0.7812 

-0.4518 
-0.4527 
6.0676 
0.0123 

Table 8.4.2. 



C2X 

and we m a y suppose that fx > h and their values are shown in table 8.4.2. Inte

grating twice we obtain 

M = *!»>» (l + *a«-(x.+D(/i-/.))
1/(X1+1), (8-4<9) 

with kr and k3 as yet undetermined constants. We shall scale our initial distance, 

xi, to 1 and here specify initial values M< and Qi of M and Q. From (8.4.2) we 

determine the initial value of M' and so obtain 

M = Mi(fx - /a)-
l/fei+i> [(/t + n^i - Cj<fc/JK?)*

(xx+1)/' 
(8.4.10) 

-(/> + < i - C I Q I / « ? ) - ( X I + 1 ) / I ] X / ( X I + X ) • 

It is also useful to obtain from (8.4.2) an expression for Q and it is 

' f h(h + <x - C2Qi/M?)x(*'+1)'' - /t(/a + nCi - 6Q.7*f )*
(x,+1)* 1 

I (A + nCi-C2Qi/M?)x(x.+i)/,-(/2+nC1-C2Qi/M?)x(x.+i)/. J 

(8.4.11) 

In view of this solution we can make a few comments regarding the propagation 

of converging and diverging shocks. Consider first converging shocks. In this case 

x G [1,0) with x —• 0 as the shock propagates. Near in to the origin we see that 

\ 7i - 72 / 

It is interesting to note from this that the variation with x, as characterised by 

the exponent f3, is independent of the initial waveform shape described by Qt, 

even though this value appears in the coefficient function. If we choose the special 

initial condition 

Qi = {fi + *Ci)M?/b, (8.4.13) 

then we obtain the solution 

M = Mixfl. (8.4.14) 

Whitham notes that the A-M relation admits a solution of this form, with the 

exponent given by -n&, and that such a solution appears to correspond to the 

similarity solution for converging shock waves due to Guderley (1942). In that 

solution the Mach number varies as in (8.4.14) with the exponents shown as Gexp 
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in table 8.4.2. The close agreement of these values with - n ^ is seen as confirmation 

that in this converging geometry the A-M relation is a good approximation. In 

this context the solution of (8.4.14) is that which corresponds to the similarity 

solution when we truncate at the second equation and the exponent is given by 

f3. The agreement with the Guderley exponents is good, the values sometimes 

sUghtly better, sometimes sUghtly worse than those given by the A-M relation. 

It is worthwhile to evaluate the terms appearing in the inequality of (8.2.4) as 

this expression gives the criterion that the A-M relation is a good approximation, 

and for converging shocks this appears to be the case. This inequality becomes 

£M8/x»|Q|, (8.4.15) 

with 

£ = nnxa3/(l - l/(ttl + a3)), (8.4.16) 

and nx,ax,aa are as defined in appendix 2. Values of £ are shown in table 8.4.2. At 

x = 1 the condition that the A-M relation provides a good approximation yields 

£»\Qi\/Mt
3, (8.4.17) 

and we see that for large non-uniformities in the flow conditions behind the shock, 

as characterised by |Q<|, the A-M relation is not an appropriate solution. For the 

initial conditions assumed in the derivation of the A-M relation Q< = 0 and so 

(8.4.17) is satisfied. Using the expression of (8.4.11) and evaluating the Umit x —> 0 

(8.4.15) yields 

£»Ki + /2|/C2 = e (8A.18) 

as the criterion that the A-M relation is a good approximation and values of e 

are shown in table 8.4.2. This inequaUty is independent of the initial value of Q. 

For aU y considered here, inspection of table 8.4.2. indicates that this inequality 

is weU satisfied so that provided (8.4.17) is initially satisfied the A-M relation is 

a good approximation as the shock converges to the origin. We should perhaps 

mention at this point that the close agreement with Guderley's solution obtained 
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from both the A - M relation and truncation at the second equation indicates that 

the closure scheme converges in this case. Even so, the convergence results of the 

previous section do not appear to be appUcable to the Guderley solution, although 

given that the form of the solution is known progress in proving convergence in 

this specific case can possibly be made. 

Consider now diverging shocks. In this case x e [l,oo) with x -+ oo as the shock 

propagates. If we consider the particular case Qi = 0 then for y = 6/5, 7/5 we see 

from (8.4.10) that at 

M = 0. Values of xf for y = 6/5, 7/5 are shown in table 8.4.2 and the values are 

comparitively smaU. Since M > 1 this observation indicates that truncation at 

the second equation does not provide an adequate description of outgoing shocks 

in the strong shock Unfit, which is in confirmation of the comments of Whitham 

(1974) that the A-M relation is not appropriate for such problems. Although the 

case y = 5/3 does not suffer from the defect of predicting M = 0, the value given 

by (8.4.10) rapidly diverges from that given by the A-M relation again confirming 

that these descriptions are inappropriate in this case. It is significant, though, 

that as such a shock propagates the Mach number decreases and the strong shock 

limit of the equations is itself no longer appropriate. 

These features are shown graphically in figure 8.4.1 where the variation of M 

with x, as predicted by the A-M relation and by truncation at the second equation, 

has been plotted for the case y = 7/5. The initial value of Q was chosen to be zero. 

We note the close agreement between the two results in the case of the converging 

geometry and the rapid divergence in the case of an expanding geometry. In the 

next section, however, consideration of the blast wave produced by an underwater 

explosion demonstrates an example of propagation into an expanding geometry in 

which the description afforded by the truncation method developed here provides a 

very accurate description of the propagation. This case, however, is characterised 

by a Mach number near to one. Later implementation of a numerical method for 
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geometrical shock dynamics wiU demonstrate that even for stronger shocks in an 

expanding geometry the method developed here provides an exceUent description, 

despite the failure in the strong shock Umit. 

8.5. The propagation of a spherical underwater blast wave 

The practical problem of the propagation of a spherical underwater blast wave 

provides an ideal test for the ideas presented in this chapter. The area function 

is known expUcitfy , the initial flow conditions behind the shock are non-uniform 

and there are analytical and experimental results, as discussed in chapter 7, with 

which we may make comparisons. In order to apply the theory of geometrical 

shock dynamics using the ideas of this chapter we must make use of the shock 

jump conditions that result from a description of water using the Tait equation 

of state. We have already noted that the only expression that differs from those 

for an ideal gas is that for the pressure (equation (7.2.25)), but despite this the 

expressions of (8.1.27) - (8.1.32) for partial derivatives of flow quantities evaluated 

at the shock are unchanged. Consequently, the results of (8.1.34) - (8.1.37) foUow 

and the closure scheme may be appUed to propagation in water upon provision of 

an appropriate value of 7, the quantity analagous to the ratio of specific heats and 

here chosen as 7.15. 

Since the shock is weak we may simpUfy the analysis by reformulating the 

results of section 8.1 exploiting this fact. Neglect of entropy changes at the shock 

allows us to write 

(p + *)p~7 = constant, (8.5.1) 

and as done by Kirkwood and Bethe (1942) we may introduce Riemann functions. 

Changing notation sUghtly from that used by those workers we define them as 

„ = _!_« + », (8.5.2) 
7-1 

v = o - «, (8.5.3) 
7 - 1 

and note that they differ from those of (7.1.16) and (7.1.17) by a constant factor. 
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The equations describing propagation down a tube of slowly varying cross section 

then become 

cV +(u + a)dxa = -ou A'/A, (8.5.4) 

dtv +(u- a)dxu = -au A'/A. (8.5.5) 

The mathematical structure shown in section 8.1 may then be deduced but the 

analysis is simpler. In particular we may estabUsh that on the shock trajectory S 

W,) = - *JT [* (-=-) A'/A + ± (») < (_i_) ,r-H <+1<r 

(8.5.6) 

'"+x«r , n = 0,l,2,. + (_J M a* 
\a + u aoM J ' 

and 

9r+1" =-[(«- «H (df") + «oM [3t
n(oti)^'M 

-10 «~•>{*" (^) *M+g ("J') * (^)*-'«»}]] («•») 
/[ooM - (« - a)], n = 0,l,2,..., 

with aU notation as previously defined. If we define 

Qi = d\<r, i = 0,l,2,... (8.5.8) 

evaluated at the shock then we may estabUsh by induction that 

dtQk = dtQk(Qo, -.., Qk+i, A'/A, ck (A'/A),...), (8.5.9) 

and 

^ = MQo Qk, A'/A, dx (A'/A),...), (8.5.10) 

where vk denotes d
kv evaluated at the shock. The proof foUows that of section 8.1. 

The expression of (8.5.9) is as that of (8.1.34) and (8.1.36) and a similar scheme 

of closure by truncation results. The simpUfying feature induced by neglect of 

entropy changes is a reduction in the number of dependent flow variables from 

three (p,a and u) to two (o and u). 

Since A is known for a spherical geometry we may truncate at any equation 

and numerically integrate the resultant system of ordinary differential equations. 

147 



The first three equations are 

^ = -[^^+(^-^)gi], (8.5.11) 

** = -[* (=T=) ^ + * (^) * + (^ - JL) Q,] , (8.5.12) 

(8.5.13) 

where w e have introduced r as the distance variable and converted to derivatives 

in r noting that a\ = aoMd,. Evaluation of the necessary derivatives dta, d
3a, dtu, d

3u 

at the shock is faciUtated by (8.5.7), the appropriate equations being 

vx = (u - a) \dtu0 + aoM-^-A'/A] /(u-a- o0M), (8.5.14) 

dtux + OQM | dt (-^-jA'/A + dt (—I-)"!} /(u-a-OQM). (8.5.15) V2 = (u — a) 

In order to make comparisons with the results of the Kirkwood-Bethe theory, 

the weak shock solution of Rogers and the empirical relationships describing the 

pressure field we assume that at some initial range Rt the pressure is given by 

p(Ri)=pie-
tlTi, (8.5.16) 

with t = 0 denoting the time of arrival of the shock, pi the peak pressure and n the 

time constant of the assumed exponential decay. We may evaluate initial values 

of dtp and dfp at the shock as 

(dtP)i = -Pi/n, (d
3p)i = pitf, (8.5.17) 

and knowledge of these quantities faciUtates evaluation of initial values of Qx and 

Q3. Denoting the ambient flow quantities by a subscript 0, and assuming that 

the ambient pressure po is much less than the constant *• appearing in the Tait 

equation of state we obtain from (7.1.13) that 

«o w 1*1 Po, (8.5.18) 
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and substitution into (7.2.25) gives the pressure at the shock as 

p=(7n)(M2"1)- <8-5-19) 

Given the initial pressure pi we may calculate from this expression the initial Mach 

number Mi. 

To obtain the initial value Qi< of Qx we first note from (7.1.13) and (8.5.1) that 

8ta = ^dtp, (8.5.20) 
Zpa 

so that evaluated at the shock the initial value is 

(8ta)i = -fr-1)* (8.5.21) 
2piOiTi 

having made use of (8.5.17). Now (8.5.2) and (8.5.3) give 

8ta = ^^(dta- + 8ti>), (8.5.22) 
4 

and at the shock 

4 
vx 7-1 

Substituting into (8.5.14) we have 

8ta-Qx. (8.5.23) 

— — 8 t a -Qx = (u-a) \dtvo + aoM^-^A'/A\ /(« - o - a0M). (8.5.24) 

Now 

u0(M) = -=-ra(M) - u(M), 
7 — 1 

(8.5.25) 

so that 

dtvo = aoMdMvoa\M. (8.5.26) 

Furthermore 

Q0 = -J-a(M) + «(M), (8-5.27) 
7 — 1 

so that 

drM = drQo/dMQo (
8-5-28) 

and drQo is given by (8.5.11). Substituting these into (8.5.24) we obtain 

Qi=<•—°°
M> (»)+rgaar $ - ^^ (8.5.29) 

(u-a-aoM) + aoM(u-a)(^-7^)diivo 
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and substitution of initial values yields the initial value of Qx. In a similar manner 

we may obtain the initial value of Q3. This evaluation requires knowledge of the 

initial value of 83a and this is obtained using (8.5.17) in the expression 

In his paper Rogers (1977) compares his weak shock solution with the results 

of the Kirkwood-Bethe theory and the experimental relationships that characterise 

an underwater blast wave. We now include the results computed using the theory 

developed here in the comparison. In the Kirkwood-Bethe theory the expression for 

the pressure depends only upon the scaled range r/re, where rc is the radius of the 

charge, and the time constant also scales with rc. In the example of TNT presented 

by Rogers the initial range is Ri = 10rc, the initial peak pressure is pt = 1.396 x 10
8pa 

and the initial time constant is 13.9 x 10~3repsec, for rc measured in metres. The 

ambient sound speed and density are taken as 1476 ms'1 and 10akgm~3 respectively, 

and (8.5.19) then yields an initial Mach number of M< = 1.11. To proceed with the 

computation all distances are scaled with respect to Ri, all velocities with respect 

to oo and density with respect to p0. In this way the time scale becomes Ri/a0 so 

that the scaled initial time constant is 0.21267. The parameter 4 that appears in 

Rogers' expressions for peak pressure and time constant (equation (7.1.33)) may 

be written as 

ti = TiOi/(M} - 1), (8.5.31) 

if the peak pressure is eUminated in favour of the Mach number, and it is noted 

that using the Tait equation of state the value 3 appearing in (7.1.26) and (7.1.27) 

is equal to (7 + l)/2. 

To perform the comparison we close the system of (8.5.9) and numerically 

integrate the resultant equations making use of the above initial data. In this way 

we may determine the variation of M and T with the distance of propagation. The 

expressions for the peak pressure given by Rogers and experiment may be used 

in (8.5.19) to evaluate the variation of the Mach number with distance. We have 
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chosen to truncate at the first, second and third equations ((8.5.11) - (8.5.13)). 

Truncation of (8.5.11) yields the A-M relation of Whitham and we shall refer to 

this as the zeroth order solution. Truncation of (8.5.12) wiU be said to yield the 

first order solution with the second order solution given by truncation of (8.5.13). 

The variation of the Mach number is shown in figure 8.5.1 and the time constant 

in figure 8.5.2. The numerical integration was performed using a fourth order 

Runge-Kutta method. In order to evaluate the time constant via the definition 

of (7.1.34) we evaluate 8ta at the shock via (8.5.24) and then obtain 8tp from 

(8.5.20). Note that a value of Qx is required in this determination, so in order 

to obtain an estimate of this quantity we must compute at least the first order 

solution. If, however, we set Qx = 0 in this expression and use the value of M 

obtained from the Whitham theory then we would obtain a value for 8ta, and 

hence T, but the value would be meaningless. The value so obtained would be 

dependent only upon the Mach number and thus give in no way an indication of 

the flow conditions in the near neighbourhood of the shock front which such a 

quantity by definition must. Indeed, if such a computation were performed in this 

case at t = 0 the value so obtained for the time constant would not even agree with 

that value input as the initial condition. Expanding on this point, the derivation 

of the A-M relation assumes an initial flow field behind the shock that is uniform, 

and expficitly neglects the changing flow field behind the shock as it propagates 

down a slowly varying tube. Thus appUcation of the A-M relation can give no 

consistent information regarding the nature of this flow field. 

Consider now the variation of Mach number shown in figure 8.5.1. We note the 

exceUent agreement between the first order solution and that of Rogers. The ex

perimental result Ues between the zeroth and first order solutions. This is perhaps 

an indication that the assumption of an initiaUy exponentially decaying pressure 

field is not an exact representation of the true behaviour, however, the closeness 

of the results suggests that this assumption is not bad. The exceUent agreement 

over two orders of magnitude of distance with the analytic expression of Rogers 
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Figure 8.5.1. The Mach number as a function of range for the spherical blast wave produced by 

an underwater explosion. 



provides vaUdation of the approach of this chapter as the initial conditions used 

for the computation of the first order solution are obtained from the assumption 

of an initiaUy exponentiaUy decaying wave form. We further note that at large 

distances the zeroth and first order solutions tend towards each other after first 

diverging. This is due to the decay of the shock to an acoustic wave, which is the 

Umiting case of both solutions. The results of the Kirkwood-Bethe theory for this 

example are not expUcitly shown as they are almost indistinguishable from those 

of Rogers' solution. 

The time constant data is shown in figure 8.5.2. Shown are the results of 

computation to first and second order, the experimental relationship, the weak 

shock result of Rogers and data from the Kirkwood-Bethe theory presented in 

Rogers' paper. We note that we must compute to second order to obtain an 

accurate expression for the time constant. This is no surprise. In order to obtain 

a very good approximation to the Mach number we must compute to first order, 

one order higher than the quantity (M) we wish to determine. The time constant 

is a first order quantity and in order to compute it accurately we expect that it is 

necessary to calculate a solution to one higher order. We also note the excellent 

agreement with the Kirkwood-Bethe theory. It is significant that for aU results 

the rate of increase of T decreases as the shock propagates. This is expected 

on the grounds that the pulse decays to an acoustic wave and in this limit the 

rate of increase of r is equal to zero. As noted in chapter 7, Rogers has pointed 

out some of the deficiencies of the experimental expression for the time constant. 

The rate of growth of r that it predicts differs significantly from that predicted 

by theoretical methods having a sound basis and this further demonstrates the 

limited applicability of this empirical relationship. 

The theory of geometrical shock dynamics is based upon the consideration of 

a shock propagating down a tube of slowly varying cross section. We may consider 

the shock as having been generated by the motion of a piston in this tube. This 

example indicates how we may determine the motion of the shock given the motion 
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of the piston. Suppose we denote by X(t) the position of the piston as a function 

of time, then since the piston moves with the fluid we have 

dtX(t) = u, (8.5.32 - 1) 

d3X(t) = dtu + udxu, (8.5.32 - 2) 

ifX(t) = dt(dtu + udxu) + udx(dtu + udxu), (8.5.32 - 3) 

For shock dynamics to be appUcable we must suppose that a shock is immediately 

formed and in this case dtX(0) wiU give the speed of the fluid just behind the shock 

at t = 0. From the shock jump conditions we obtain the initial value of the Mach 

number (= Q0). We have estabhshed that at the shock dtu and dxu are functions of 

M, Qx and A'/A which is assumed known. Evaluation of (8.5.32-2) at t = 0 using 

these functions gives the initial value of Qx. This is analagous to the way in which 

we have proceeded here to the initial value of Qx given the initial value of dtp at 

the shock. Successive evaluation of higher initial time derivatives of X(t) yields 

successive initial values of the Qi. With initial conditions specified the system of 

ordinary differential equations describing the propagation of the shock may be 

solved. The motion of the shock is thus determined given the motion of the piston 

generating it. 

In concluding this section we emphasise the exceUent agreement obtained with 

the analytical solution of Rogers for an explosively generated shock propagating 

underwater. This consideration has been Umited to the simpUfying geometry of 

a spherical wave. In the next chapter a numerical method of geometrical shock 

dynamics wiU be developed incorporating the ideas formulated in this chapter. 

Once this scheme is developed we may compute the diffraction of underwater blast 

waves in general geometries, a feature not possible using the theories of Rogers or 

Kirkwood and Bethe. 
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9 

NUMERICAL IMPLEMENTATION OF GEOMETRICAL 
SHOCK DYNAMICS 

9.1. The numerical scheme 

The A-M relation of Whitham may be used to propagate a shock front by 

introducing rays, normal to the front, which define a local shock tube down which 

we consider that the element of the shock front propagates. The geometry of the 

rays yields the local tube area and the A-M relation the local speed of propagation. 

If we denote by x the position vector of some point on the shock front, then the 

motion of the shock is given by 

^- = ooMn, (9.1.1) 

with n the unit vector normal to the shock that defines the direction of propaga

tion. 

This is the spirit of the computational method of geometrical shock dynamics, 

as implemented by Henshaw et al. (1986) and it is this scheme which we shah use 

with some modification. As in that scheme, (9.1.1) wiU be solved at a set of N 

node points Xi(t) (i = 1, 2, ..., N) that we choose to represent the shock front. We 

wiU restrict our attention to two dimensional problems so the shock is represented 

as a one dimensional curve, and we write 

Xi(l) = (xi(<),jft{t)). (9.1.2) 

In the scheme of Henshaw et al., equation (9.1.1) is integrated in time at each 

node point using a second order accurate leap frog scheme. In this application we 

employ a fourth order Runge-Kutta method. 

In the original numerical scheme a simple finite difference approximation to 

the local tube area is used. This is a successful approach because the A-M relation 

gives the Mach number expUcitly as a function of the area. In attempting to solve 
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equations (8.2.6) we require an expression for A' as weU as A, and the complexity of 

these equations and lack of knowledge of an expression for A(x) prevents integration 

that would yield an exphcit relationship between A and M. Thus we seek to 

determine A'/A from the local geometry and then wiU integrate equations (8.2.6) 

in time in order to determine Qx and M at the shock front. 

Consider two adjacent points on the shock front as shown in figure 9.1.1. 

Suppose that the points on the shock are not only parameterised with respect to 

time, t, but also with respect to the instantaneous arclength along the shock. We 

denote the arclength at t by £(t). The adjacent points are separated by the length 

S£(t), so that the points under consideration are x(£(f), t) and x.(£(t) + S£(t), t). At 

this point on the shock the local tube area is 6£(t) and we consider how this varies 

in time. Using (9.1.1) we can determine the position of the two points at the short 

time, St, later. We have to first order in St 

X (£(t), t) - x (£(t), t) + aoM (*(*), t) n (£(t), t) St, (9.1.3) 

and 

X (£(t) + 6£(t), t) -» x (£(t) + 6£(t), t) + ooM (£(t) + 6£(t), t) n (£(t) + S£(t), t) St. (9.1.4) 

Expanding terms in (9.1.4) to first order in smaU 6£(t) we have 

x({(() +«((), *) - x(«(), l) + ̂ j')'''«(') 

+w (um „ + « 4 « «) (»«(«).«)+̂ Wi)«. 
(9.1.5) 

whence we obtain 

6£(t + St) = |x(£(t) + 6£(t), t + St)-x (£(t), t + 6t)\ 

Hs+«("»,,1rtT"«")" 8£(t). 
(9.1.6) 

Retaining terms to first order in small St we have 

m+H)m(\sm*t VI « W 
•+h.*jaM. 

.(.+^«M.o^a-5^.)«ew, 
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Figure 0.1.1. The geometry of a propagating shock front. 



since 

„«<„.<)• ̂ M = ». (,,8) 9«') 

Hence 

6t(t + 6t)-6t(t) „ „ „ x „3x(£(t),t) dn(£(i),<) , x 

Noting that ££(t) is the local area, A, we have in the Unfit St -* 0 that 

In the case of interest, the normal to the front is given by 

n««0,0=(M^, -M|2). 

Since at the shock front dtA = aoMdxA, we note that (9.1.10) allows determination 

of A'/A from the geometry of the shock front and the Mach number distribution on 

it. A U quantities in (8.2.6) are thus known and we can integrate these equations 

in time, simultaneously with the integration of (9.1.1), using the Runge-Kutta 

scheme. 

In order to evaluate the quantities required in equations (9.1.10) and (9.1.11) 

we fit a cubic spUne to the shock front with the parametrisation being with re

spect to the arclength along the shock. This is achieved numericaUy as discussed 

in chapter 4, with the notation for the spUne as described in that chapter. In 

order that the shock front is adequately resolved we are guided by the resolution 

condition of Henshaw et al. in selecting the appropriate number of node points. 

If we denote by S£av the average arclength between nodes then this criterion is 

6£av = £N/N = kx « 1, (9.1.12) 

where £y is the length of the shock front and fci is usually taken to be 0.01. This 

condition provides a lower bound on the number of node points, N, used to repre

sent the shock front. In order to maintain this resolution as the solution is iterated 

in time, the point insertion/deletion scheme of Henshaw et al. is implemented. In 

expansive regions of the flow extra points are added in order that the shock front 
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is adequately resolved. In compressive regions points are deleted which effectively 

fits a shock-shock, or discontinuity in the Mach number distribution on the shock. 

The shock-shock corresponds to the triple point in Mach reflection. The point 

spacing is tested after every time step and we demand that 

O-min < S£i/6£av < ffmax- (9.1.13) 

If S£i < a-minS£a,, the node x< is deleted. If S& > <raMXS£av a new point is inserted 

by evaluating the spUne functions at &_+ 6^/2. Typically we choose <7min and <rmax 

as 0.5 and 1.5 respectively. We should note at this point, that when considering 

propagation about convex corners it was found that to obtain an adequate solution 

of equations (8.2.6) the insertion of points should not occur while the shock is 

propagating around the corner. After the shock has propagated around the corner 

points may be inserted to maintain the resolution of the shock. Any addition of 

points prior to this corrupted the solution. When using this scheme to reproduce 

the Whitham theory (setting Qx = o), though, it was found that it was essential to 

add points during the propagation around the corner in order to obtain a solution 

of the highest accuracy. If points were only added after propagation around the 

corner then the solution, although acceptable, exhibited a small error. No adequate 

reason has been found for this behaviour. 

For compressive flows, such as propagation into concave corners, it was found 

necessary to employ the two step smoothing procedure of Henshaw et al. every 10 

to 50 iterations in order to dampen high frequency errors. If we denote by ±i(t) the 

smoothed position of the i'th node, and by Mi(t) and Qi<(i) the smoothed values of 

M and Qx at the i'th node, then this procedure is given by 

**(!) = \ (*_!(<) + Xi+i(t)), (9-1-14) 

Mi(t) = \ (Mi.x(t) + Mi+l(t)), (9.1-15) 

Qu(t) = \(QxUt) + Qu+M- (9116) 

Such smoothing is unnecessary in the case of expansive flows. 
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To account for boundaries Henshaw et al. propagate aU node points interior to 

the boundaries and then determine the points on the boundaries so that the shock 

meets them at right angles. This reflects the fact that the rigid boundary is indeed 

a ray and that propagation is along a ray, perpendicular to the shock front. In this 

work, however, we wish to investigate shock diffraction about convex corners of 

obtuse angle in which such a method would fail. Thus we propagate points on the 

boundaries such that their trajectory is always along the wall. This is achieved 

by clamping the spUne representing the shock front at the boundary. To deal 

with sharp corners we must compute a smoothed boundary, and the smoothing is 

performed by circular segments. In order to select an appropriate time step we 

are guided by the considerations of Henshaw et al. In that scheme the time step, 

Si, is chosen such that 

TT- = • %,« * —TT- < *» = °(1)' (iU-17) 

d£TOin min{,t 0£i[t) <rm*n°liav 

where the inequaUty foUows from (9.1.12) and Jfej is usuaUy chosen to be equal 

to 0.2. This relation is the Courant-Friedrichs-Lewy condition and in the work 

of Henshaw et al. gave stabiUty in aU cases run. In this appUcation (9.1.17) 

provides an upper bound on the selection of a time step, St. In order that the 

solution remains accurate in cases where sharp corners are smoothed by arcs of 

smaU radius we further reduce the length of the time step. 

To vaUdate the scheme developed the value of Qx was set identically equal 

to zero. Equations (8.2.6) then reduce to those of Whitham. Problems of shock 

diffraction by convex and concave corners where analytic solutions exist in the 

strong shock Unfit were then computed. These examples are as those used by 

Henshaw et al. to vaUdate their scheme. The results were found to be in exceUent 

agreement with the analytical solutions. 

9.2. Computational results 

AppUcation of the numerical scheme aUows us to investigate shock diffraction 

by concave and convex corners. In aU computations the ambient sound speed, 
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oo, was set equal to one. Figure 9.2.1 shows the successive shock profiles as an 

initiaUy plane shock of initial Mach number 10 is diffracted by a concave corner of 

30° deviation. We note the appearance of the Mach stem and the constant angle 

that the trajectory of the triple point makes with the wall. Both the theory of 

Whitham and three shock theory give expressions for the dependence of this angle 

upon the deviation of the corner and Whitham (1957) has shown good agreement 

between the two results in the Unfit of strong shocks. The dependence determined 

numericaUy here differs Uttle from that of Whitham. This is not unexpected as 

consideration of the propagation of cyUndrical and spherical waves in the strong 

shock Unfit has indicated an extraordinary range over which the Whitham theory 

should be vaUd in the case of a compressive geometry. 

RecalUng the results of that consideration we expect that the behaviour in an 

expanding geometry should differ. Thus we consider the diffraction of an initiaUy 

plane shock by convex corners and figure 9.2.2 shows successive shock profiles for 

the propagation around a corner of deviation 90° of a shock wave of initial Mach 

number 4. The significant feature that we observe is the appearance of an inflection 

point in the shock shape near the waU. The theory of Whitham does not predict 

such a feature of the shock shape, the curvature of the shock being of the one sign 

in that theory (Whitham 1957, 1974). 

We recaU the results of LighthiU (1949) in his analysis of the diffraction of 

a shock of any strength by sharp corners of smaU deviation. In that work, it is 

predicted that for shocks with an initial Mach number greater than 2.531 such 

an inflection point is indeed a feature of the diffracted shock's shape, in the case 

of a convex corner. We further note the experimental work of Skews (1967a,b) 

in which the shapes of shock waves diffracted by sharp convex corners of large 

angular deviation were photographicaUy captured. We iUustrate such a result in 

figure 9.2.3, for a corner of 90° deviation and initial Mach number of 4. The 

corner is at (0,0). The soUd Une represents the experimental shock shape. Since 

there are no time and length scales in such a geometry the solution for the shock 
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Figure 9.2.1. Diffraction of a plane shock wave by a concave corner of 30 ° deviation. 
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Figure 9.2.2. Diffraction of a plane shock wave by a convex corner of 90 ° deviation. 
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Figure 9.2.3. Comparison of shock shapes for diffraction by a convex corner of 90 ° deviation. 

Experiment (Skews 1967a). This work. Whitham. 



shape is self similar in time. The dashed shock shapes were computed using the 

numerical scheme described in the preceeding section. The shape computed using 

the results of this work provides a description of the inflection point. The solution 

as determined by the theory of Whitham is less accurate. At this point, we note 

that the computed shock shapes were determined by smoothing the corner using 

circular arcs. 

We can gain an indication of the success of the method of this work, inde

pendent of the manner in which we smooth the corner, by computing the Mach 

number at the waU as a function of the wall deviation. Since the solution is a 

similarity solution, this value remains constant after the shock has propagated 

around the corner. This is a feature of the solution of the equations of geometrical 

shock dynamics even when the corner is smoothed (see Whitham, 1974). The 

result for an initial Mach number of 4 is shown in figure 9.2.4. The solid Une 

denotes the variation predicted by the theory of Whitham. The squares denote 

the experimental values obtained by Skews (1967a), with the dashed Une fitted to 

this experimental data. The circles denote the values obtained from the numerical 

scheme implemented here. We note the exceUent agreement obtained between the 

results computed here and the experimental data. The numerical results are only 

shown up to an angle of 110°. Beyond this angle the numerical scheme did not 

yield a solution that exhibited a constant value of the Mach number at the wall. 

This is beUeved to be purely a feature of the numerical scheme. For smaller angles 

the Mach number at the wall osciUated slowly about a mean value (±.02), but 

for angles greater than 110° decayed away at a fairly constant rate. In any case, 

the agreement is exceUent with the prediction of the inflection point in the shock 

shape being a particularly spectacular feature. Despite the failure of the equations 

of propagation truncated at the second equation when appUed to propagation in 

the strong shock Unfit in an expanding geometry, for more moderate values of 

the Mach number, such as in this example, the truncated equations provide an 

exceUent description of propagation into an expanding geometry. 
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Figure 9.2.4. Comparison of experimental and theoretical results for the Mach number at the 

wall after diffraction by a convex corner, as a function of the corner angle. Whitham. a 

Experiment (Skews 1967a). o This work. The dashed line is a curve fitted to the experimental 

data. 



From the structure of the equations of propagation we can deduce that an 

inflection point must indeed be a feature of the shock shape. We may write the 

first equation in our infinite sequence as 

dM -aoMpa3uA'/A (x ~ ffi) 
dt ~ (a + u)(dMp + padMu)

 + (dMp + paduu)
Ql' f9-2-1) 

At the waU dM/dt = 0, so that here we have 

-XiA/A + X2Qi = 0, (9.2.2) 

where xi and *j are positive constants, since they are functions of M. Since the 

waU is a ray propagation is parallel to it and we have here that 

3x , . „ 
— = (sin0,cosfl), (9.2.3) 

where 0 is the deviation of the convex corner measured below the horizontal, £ is 

the arclength along the shock as described in the previous section and x is the 

position vector of a point on the shock front. From (9.1.10) we obtain 

A/A = ooM (sin 0^1 _ cos 6*JL\ . (9.2.4) 

It is a simple matter to show that 

d3y ( d3v d3x\ 

-d = (sin9JF-cosV)' e' (925) 
so that (9.2.2) yields 

at the waU. Now for 0 G [0, x] sinS > 0. Since the flow behind the shock is decaying 

we have Qx < 0 so that at the wall %g < o. On that part of the shock near to 

the undisturbed part we have Jj$ > 0 and since the shock shape is a continuous 

curve there must exist some point at which j$ = 0, namely the inflection point. 

Provided our assumption that Qx < 0 is valid, then the existence of an inflection 

point is independent of the Mach number in this theory. 

It is pertinent to make a few comments regarding the full range of experimental 

results presented by Skews (1967a). He notes that it is the inflection point that 
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gives rise to the smaUer Mach number at the waU than the value predicted by the 

theory of Whitham. In the theory presented here the existence of an inflection 

point for aU Mach numbers indicates a predicted Mach number less than that of 

the Whitham theory, although for smaU Mach numbers the difference is negUgible. 

The results of Skews indicate that for weaker shocks (initial Mach number < 3) 

the Mach number at the wall is greater than the value predicted by Whitham's 

theory. In this context we recall the result of LighthiU that in the case of small 

corner angles an inflection point is only evident for M > 2.531. We further recaU that 

the theory of geometrical shock dynamics, when appUed to diffraction by convex 

corners in the case of weak shocks, predicts that the speed of propagation of the 

first disturbance along the shock is half its correct value (Whitham 1957). These 

results suggest some deficiency in the approach of geometrical shock dynamics in 

considering the propagation of weak shocks, although in this last example it is 

found that the Mach number at the waU is predicted with good accuracy by the 

theory of geometrical shock dynamics. This result further suggests that perhaps 

it is the neglect of transverse flow behind the shock that causes disagreement. It 

might be supposed that in the case of weak shocks the influence of the transverse 

flow is of the same order as that of the varying area, or the longitudinal flow that 

has been accounted for in this work. Further investigation is required to clarify 

this point. 

We conclude with some example computations of the diffraction of an initially 

plane weak shock in water, in which the initial flow field behind the shock is not 

uniform as characterised by a non-zero initial value of Qx. The computations were 

performed using the equations of propagation truncated at the second equation. 

We have chosen the initial Mach number to be 1.11 and the initial value of Qx 

is -0.381. This value of the Mach number is a typical value for a shock wave 

produced by an underwater explosion and a non-zero value of Qx may be due to 

an exponential decay of the pressure. Successive shock profiles for propagation 

about convex and concave corners of 30° deviation are shown in figure 9.2.5. For 
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propagation about a convex corner the shock advances into an expanding geometry 

and the Mach number at the wall decreases. The variation of the Mach number 

with horizontal distance, x, for this example is shown in the first frame of figure 

9.2.6. Also shown is the variation computed using the A-M relation. In the initial 

stages of the propagation, when the wave is plane, the theory developed here 

predicts the slow decay of the Mach number due to the interaction of the shock 

with the non-uniform flow behind. This feature is not described by appUcation of 

the A-M relation. Geometrical shock dynamics utiUsing the A-M relation predicts 

that the Mach number at the waU after propagation about the corner should be 

constant and the numerical results confirm this. The departure from this for large 

x is due to the accumulation of numerical errors. The result computed using the 

theory of the previous chapter also yields an approximately constant value of the 

Mach number at the waU, this value being only sUghtly less than that obtained 

from the A-M relation. Due to the non-zero value of Qx the Mach number continues 

to decay, but at a very slow rate. 

The results for diffraction by a concave corner are most interesting. Once 

the shock strikes the corner Mach reflection occurs and the Mach number at the 

waU rises to a value of about 1.315, this value being approximately common to 

the results computed by both methods. As the shock propagates the triple point 

moves away from the wall, its trajectory denoted by the dashed Une in figure 

9.2.5. Whitham's theory of geometrical shock dynamics predicts that the Mach 

number at the waU should be constant and the graph of figure 9.2.6 reflects this, 

the osciUation about the true value being numerical in its origin. The equations 

of propagation, truncated at the second equation, predict that after propagation 

about the corner the Mach number decays away, at an approximately constant 

rate. This is due to the influence of the non-uniform flow conditions behind the 

shock. This rate of decay appears to be greater than that for the initially plane 

wave. The compressive geometry not only causes the Mach number to initiaUy 

increase, but also Qx and this manifests itself in the increased rate of decay of M. 
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CONCLUDING REMARKS AND FUTURE DIRECTIONS 

In this volume we have presented the results of mathematical modeUing under

taken of underwater explosion bubble motion and underwater blast wave propaga

tion. It is these phenomena that are expected to be the principal damage causing 

agents of an underwater explosion. It is worthwhile to briefly consider the signif

icant results of this investigation, an exercise that gives clear indication of future 

research directions. 

In the first instance we have considered global conservation of momentum 

via the Kelvin impulse, and exploited this concept in undertaking elementary 

modeUing of explosion bubble motion in which the bubble is constrained to remain 

spherical throughout its Ufetime. In this approach the velocity potential of the flow 

induced by bubble motion is represented by singularities and ordinary differential 

equations describing the bubble radius and centroid position as functions of time 

are deduced. These may be solved numericaUy with Uttle expense, a feature that 

is particularly advantageous in the consideration of motion in geometries in which 

there is no simpUfying symmetry and full numerical computation of the motion is 

expensive. The geometries that we can successfuUy treat are those whose boundary 

conditions can be satisfied by appropriate image sets. 

From the early motion of spherical bubbles we have attempted to infer aspects 

of the motion of real bubbles which, in the later stages of their fife, deform from 

spherical shape and develop high speed Uquid jets. The direction of migration at 

the end of the bubble Ufe or first pulsation, as predicted by the spherical model, 

has been identified as the direction in which the jet is formed in the case of non-

spherical coUapse. Determination of the nuU impulse state in the case of buoyant 

cavitation bubble motion above a rigid boundary in an axisymmetric geometry 

has confirmed the vafidity of this proposition, the results of numerical simulations 
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using the boundary integral method providing the necessary confirmatory data. 

It is at the nuU impulse state that the oppositely acting buoyancy and Bjerknes 

forces balance and the bubble centroid does not migrate upon coUapse. 

The study of explosion bubble motion using the spherical model has further 

provided indications of the criteria under which the bubble wiU rebound, despite 

significant deformation from spherical shape occurring during coUapse. These 

criteria are motion in the neighbourhood of the nuU impulse state and motion 

characterised by a small strength parameter. 

In order to confirm the correctness of these criteria the boundary integral 

method utiUsed to compute cavitation bubble motion has been modified in order 

to compute the motion of deforming explosion bubbles. This investigation has 

necessitated the implementation of a second order time integration scheme and 

smoothing of the bubble surface and potential function on this surface in order to 

numerically capture rebound. The results of these computations have confirmed 

the criteria proposed as necessary for the rebound of a non-spherical bubble, but 

the growth of jets upon rebound has been demonstrated and it appears that the 

high pressures that exist within the bubble upon coUapse will not suppress jetting 

motion, only delay it. 

The computation of the pressure field in the fluid during collapse has given 

insight into the mechanism of jet formation and the reasons for the apparent suc

cess of employing a spherical model to predict aspects of the motion of deforming 

bubbles. During coUapse the bubble undergoes a period of rapid acceleration. The 

significant feature of the pressure field of an accelerating bubble is a peak of pres

sure in the fluid, located behind the bubble, in a direction that closely correlates 

with the direction of the acceleration. It is this region of maximum pressure that 

drives the jet into the bubble. Since such a maximum of pressure is a feature 

of the flow field induced by an accelerating spherical bubble it becomes apparent 

that identifying the direction of migration (which is almost co-incident with the 

direction of the acceleration, due to the motion upon coUapse almost beginning 
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from rest) of a spherical bubble upon coUapse with the direction of the jet has a 

firm physical basis. The computation of the Kelvin impulse for coUapsing non-

spherical bubbles and comparison with the value computed using the spherical 

model provides further confirmation of the vaUdity of employing this model to 

provide information regarding the later motion of deforming bubbles, as weU as 

indicating Umitations of the approach. 

To date aU computations of bubble dynamics using the boundary integral 

method have only been able to proceed up until the time that the jet impacts 

upon the far side of the bubble. In this work we have considered the impact and 

determined the appropriate initial conditions that prevail in the doubly connected 

flow domain immediately foUowing the instant of impact. A boundary integral 

algorithm has been developed to compute the subsequent motion of the toroidal 

bubble, this algorithm exploiting a cut in the doubly connected geometry in order 

that the flow domain may be considered as simply connected. The computed mo

tion of the toroidal bubble has indicated the osciUatory motion of such a bubble, 

which is in quaUtative agreement with the results of recent experimental obser

vations. Of further significance is the demonstration that upon transition to the 

toroidal geometry the peak of pressure in the flow field, which prior to the transi

tion is located behind the jet and driving it inwards, is located ahead of the bubble. 

For coUapse in the neighbourhood of a rigid boundary the peak of pressure after 

the transition to the toroidal geometry wiU be located between the bubble and 

the boundary. This phenomenon wiU occur in aU cases where the jet is directed 

towards the boundary, except perhaps where only a thin film of fluid separates 

the bubble from the boundary, and this region of high pressure may produce a 

significant loading of the nearby boundary and may be the cause of damage to it. 

Much further work presents itself in view of the results presented here. The 

theory of spherical bubble dynamics exploits the Kelvin impulse in the derivation 

of equations of motion and by its definition we expect that the Kelvin impulse and 

jet direction wiU be similarly directed. The work of Blake and his co-workers 
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has expUcitly exploited this feature to determine the direction of the jet, the 

magnitude of the impulse not appearing in the consideration. Thus it remains as 

a task to attempt to determine further characteristics of the jet from a knowledge 

of the distance of inception (7), the strength of the buoyancy force (S) and the 

strength of the explosion (e); the physical parameters that govern the motion. We 

expect that the magnitude of the Kelvin impulse should enter the consideration. 

Particular features of the jet that we wish to determine include its breadth and 

speed, although to proceed in such an endeavour requires a precise mathematical 

definition of these quantities. It seems reasonable that some averaged quantity 

would be appropriate. 

In any case, the recent work of PauU and Blake (1990) has considered various 

quantities that are conserved throughout the motion of a bubble, foUowing the 

work of Benjamin (1987) and Longuet-Higgins (1989). The underlying theme of 

this investigation is the hope that these conservation principles may be exploited in 

the same way that the Kelvin impulse has been exploited to determine features of 

the bubble upon coUapse. We recall in this context that the Kelvin impulse arises 

naturally in consideration of momentum conservation. To proceed in such an in

vestigation would be considerably aided by attention to the physical interpretation 

of these conservation expressions. Some of the quantities, such as momentum and 

energy, are familiar, but others, such as the circulation based radial moment of 

momentum, are less so. 

An alternate approach may be empirical in nature. With the speed of modern 

computers it is possible to calculate the motion of bubbles over large regions of the 

physical parameter space and we could then compile data concerning the variation 

of quantities such as the jet speed and width with the physical parameters, and 

attempt to fit empirical relations describing the variation. For such relations to 

have any appUcabiUty beyond those regions of the parameter space over which 

data has been compiled they must have some basis in theory. The investigation of 

conservation quantities may provide such a basis so an investigation incorporating 
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both the compilation of empirical data and consideration of conservation quantities 

appears to be an appropriate course of action in this endeavour. 

The phenomenon of rebound demonstrated in the computations presented here 

must be interpreted in view of the experimental evidence compiled during, and 

since, WWII that the rebound is accompanied by the emission of an acoustic wave 

of finite ampUtude. Indeed, in the context of underwater explosion research, these 

secondary pressure waves have received much attention as possible secondary dam

age causing agents. Although the computations presented here give an indication 

of the physical circumstances under which such emissions should be enhanced by 

the suppression of jetting, the incompressible model utiUsed here can provide no 

description of this phenomenon. It would be of interest to investigate this matter 

further. Equations describing spherical osculations in a fluid of low compressibifity 

have been given (see Prosperefti, 1987, for a derivation as weU as reference to pre

vious works of significance in this field), but the general problem of the generation 

of waves of finite ampUtude upon the rebound of a non-spherical bubble requires 

numerical treatment. Indeed, the motion in an incompressible fluid is a much 

simpler problem yet it requires appUcation of the boundary integral method. A 

first approach may be to employ a boundary integral method to compute solutions 

of the wave equation but this would provide a solution consistent only to Ofc*1) 

where c is the speed of sound. It is thus apparent that a more elaborate numer

ical approach to the problem is necessary. Some interesting phenomena could be 

expected. For instance, we would suppose that upon the rebound of an element of 

the bubble surface the wave so emitted has a front with a shape similar to that of 

the surface from which it was emitted. Around the edges of the jet we might expect 

that the normal to the wavefront there is directed towards the axis of symmetry 

and so some focussing effect may be observed. Such speculation must be confirmed 

by theoretical and experimental investigation. We would further suppose that far 

enough away from the bubble the emitted wave would exhibit much similarity to 

a spherical wave. 
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Having developed an algorithm for the computation of the motion of toroidal 

bubbles many further phenomena are conceivably now accessible to numerical in

vestigation. A spectacular feature of the computation of cavitation bubble motion 

near a free surface is the generation of a sharp spike upon the free surface as 

demonstrated in the work of Blake et al. (1987). Accompanying the formation of 

this spike is a jet piercing the bubble, directed away from the free surface. The 

computation to date has only been completed up until the time that the jet pierces 

the bubble. Subsequent to this time the coUapse of the free surface spike wiU gen

erate an outgoing traveUing wave. In the case where the bubble is caused by an 

underwater explosion, its osciUatory motion wiU force this wave motion. In order 

to make an attempt at computing this free surface motion it is necessary to com

pute the motion of the bubble once it has evolved into toroidal form. This can now 

be achieved. Although not specificaUy related to bubble phenomena, the method 

developed here may also be appUed to the transition to a doubly connected flow 

domain that occurs upon the overturning of steep surface waves on water. 

The feature of this model that is perhaps most contentious is the lack of 

a detailed description of the mechanism by which the two contacting surfaces 

break down and become one as the jet impacts upon the far side of the bubble. 

This phenomenon is worthy of much further attention. Studies have addressed 

this matter with Oguz and Prosperetti (1989) considering the effect of surface 

tension in the contact of liquid surfaces. A related study is that of Chesters and 

Hofman (1982) in which the thin layer of fluid between two approaching bubbles 

is considered. Neither of these studies, however, consider in detail the process by 

which the initial breakup of the surface occurs. 

Such a study is essential in view of the experimental results of Vogel et al. 

(1989) in which several examples of motion in a doubly connected geometry exhibit 

behaviour different from that indicated by the computations presented here. Due 

to the small scale of the bubbles considered in that work surface tension is expected 

to be a dominant influence as the surfaces come together. Clarification of the role 
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of surface tension, viscosity and compressibiUty in the process of Uquid contact is 

a source of much further research and essential to a complete understanding of the 

evolution into, and subsequent motion of toroidal bubbles. 

The investigation of the motion of a shock wave down a tube of slowly varying 

cross section has yielded a technique whereby non-uniform flow conditions behind 

the shock may be accounted for in the theory of geometrical shock dynamics. It has 

been demonstrated that the equations of motion yield a mathematical structure 

in which the motion of the shock is described by an infinite sequence of ordinary 

differential equations. If we denote by Qi (i = 0,1,2,...) the dependent variables in 

this sequence then it has been found that the rate of change of Qi depends only 

upon Qo,..., Qi+x and so by truncation of the term involving Qi+l these equations 

are closed, and we may prove certain results pertaining to the convergence of the 

closure scheme. 

Of greater practical significance is the comparison of shock motion computed 

using these equations with known solutions and experimental results. Calculation 

of the propagation of a spherical underwater blast wave yields the Mach number 

and time constant as functions of distance and the agreement with analytic solu

tions is exceUent. Furthermore, computation of the diffraction of initially plane 

shock waves by convex corners predicts the observed inflection point in the shock 

shape near the wall, a feature not evident in the theory of geometrical shock dy

namics as developed by Whitham. 

The higher terms in the infinite sequence are, in fact, functions of higher deriva

tives of the flow quantities, evaluated at the shock. Closure of the infinite sequence 

at higher equations includes higher derivatives in the description of the motion of 

the shock and thus allows some account to be taken of non-uniform flow conditions 

behind the shock. When these equations of propagation are implemented in the 

numerical scheme of geometrical shock dynamics we have a powerful technique 

for the rapid and accurate computation of the motion of shock waves. Since only 

quantities evaluated at the shock are necessary for the description of the motion, 
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any numerical algorithm need only include a discrete representation of the shock 

front rather than the whole flow domain, a simpUfication that reduces considerably 

the computational effort. With account now able to be taken of non-uniform flow 

conditions behind the shock a much wider class of problems in shock propagation 

is amenable to solution by the method of geometrical shock dynamics. 

In order to apply geometrical shock dynamics to propagation in water it is nec

essary to employ an appropriate equation of state and utiUse the Rankine-Hugoniot 

shock jump conditions to write the flow quantities immediately behind the shock 

in terms of the Mach number. By foUowing this procedure we may formulate the 

theory of geometrical shock dynamics for other materials upon provision of an ap

propriate equation of state. In this way shock propagation in a variety of materials 

could be investigated exploiting the economy of computational effort required in 

the implementation of the method. 

The example of weak shock diffraction by convex corners of small angular de

viation suggests some deficiency in the approach of geometrical shock dynamics in 

this regime. Although the theory weU predicts the value of the Mach number at 

the wall after the shock has diffracted around the corner, the theory predicts that 

the speed of propagation of the first disturbance that originates from the corner 

is half its correct value. Although the work undertaken here aUows account to be 

made of longitudinal non-uniformities in the flow field behind the shock it is not 

unreasonable that in the case of weak shock waves the influence of tangential vari

ations of flow quantities behind the shock may contribute to the same order as the 

longitudinal variation and changing area of the tube. By averaging the equations 

of motion across the area of the shock tube these variations are excluded from the 

mathematical description. It is perhaps worthwhile, then, that future research ad

dress this question to determine if a mathematical structure as presented here may 

be demonstrated if tangential flow is aUowed for in the description. Such an inves

tigation must also address the question of the exact conditions under which the 

slowly varying equations in one space dimension provide an adequate description 
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of shock propagation down a tube of varying cross section. 

In conclusion, the modeUing undertaken here has provided considerable infor

mation regarding the principal physical phenomena associated with an underwater 

explosion. We have developed approximate techniques for predicting the direction 

of jet formation upon the coUapse of an underwater explosion bubble and have 

utiUsed the boundary integral method to provide a more complete description of 

the explosion bubble phenomenon, including the evolution into toroidal form. The 

generalisation of geometrical shock dynamics is particularly suited to computing 

the diffraction of an underwater blast wave by targets. With these techniques 

available, we have a sound theoretical base upon which to assess the potential for 

damage to structures by underwater explosions. 
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APPENDIX 1 

First order partial derivatives at the shock 

AppUcation of the results of section 8.1 (equations (8.1.27) - (8.1.32)) for the 

partial derivatives of the flow quantities at the shock in the case n = m = 0 yields 

dtp = ((a3 + U(OQM — u))dMP+ ooMpoadji/ii) dtM 

+ aoMpa3u(aoM — u)A'/A /(a3 - (a0M - u)
3), 

dxp= - ((OQM - u)dMp + pa
3dMv) dtM 

+ pa3u(aoM - u)A'/A /(a3 - (aoM - u)3), 

dtu = (^— dMp + (a
3 + u(aoM - u))duu j dtM 

/(a3 - (ooM - u)3), + aoMa3uA'/A 

(Al - 1) 

(Al-2) 

(Al - 3) 

dx1l = _ T (-dMp + (aoM - u)dMu) dtM + a
3uA'/A /(a3 - (OQM - u)3), (Al - 4) 

dtp = (aoMdMp + aoMp(aoM - u)dMu - u(a
3 - (OQM - u)3)dMp) dtM 

+ aoMpu(aoM - u)3A'/A / ((aoM - u)(a
3 - (OQM - u)3)) , 

(^1-5) 

dxp= - (dMP + p(a0M - u)duu - (a
3 - (a0M - u)

3)dup) dtM 

+ pu(aoM-u)3A'/A / ((aoM - u)(a
3 - (a0M - u)

3)) , 

and using a3 = yp/p we obtain 

dta = ~ \ f {—(^(^ + ^~ l)^) ~ Woo^ ~ u)2)dMp 

+(1 - 7)ooMo(ooM - u)dMu + —((OQM - u)
3 - a3)dMp\ dtM 

+ (1 - y)aoMau(aoM - u)3A'/A / ((ooM - u)(a
3 - (a0M - u)

3)) , 

(Al-6) 

(Al-7) 
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dxa = -
2 

( — (a3 - y(a0M - u)
3) dMp + (1 - y)a(aQM - u)dMu 

\pa 

- -(a3 - (ooM - u)3)dup\ dtM + (1 - y)au(a0M - u)
3A'/A 

/ ((ooM - u)(a3 - (a0M - u)
3)) . 

(Al 
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APPENDIX 2 

Equations of shock propagation in the strong shock limit 

From the shock jump conditions (equations (7.2.7) - (7.2.11)), we have as 

M —• oo 

u ~ a0aiM, p ~ poa^axM
3, p ~ Poa3, a ~ ooa3M, (A2 - 1) 

where 

2 7+1 V7 
"l = —TT' a2 = 7» "3 = —rrr, (42-2) 

7 + 1 7-1 7 + 1 
with /*' the Umiting value of p, given as 

Substituting into the expressions of appendix 1 and using dt = a0Mdx we find 

8tu~alM(vxM'+ v3MA'/A), (42-4) 

8xu ~ -ao(i/3M' + i^MA'/A), (A2 - 5) 

9«P ~ aoPofaM' + usMA'/A), (A2 - 6) 

8xp ~ -po(^M' + vsMA'/A)/M, (A2 - 7) 

dta ~ alM(uaM' + i^MA'/A), (A2 - 8) 

dxa ~ -oo(i/8M' + KrM4'/4), (42 - 9) 

where M' = dxM, and 

8 47 6 6(7 + 1) 

2 2^7(37 - 5) 2^7(7 ~ 1) 4M'7(7 ~ 2) 

^ = 7^' "6= (73~1) ' ^= (7 + 1)3 ' "8= 7J"1 ' 
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If we further note that 

,2, 
° u i xri pa . paula+ 2u) 
a~+-u'~a°rhM ' (7+-^~

a°P0ThM' (a + u)' aoPor»M> (42-11) 

with 

- 27(7 - 1) 7 V 27/i'(7M' + 2) 

* " (TTT^KTrTF' %-(l+7/i')2' %=(7-l)(7^ + l)2' {A2~U) 

then we may write 

dt C^rz) ~ °o^M2 (W + P*MA'/A), (42 - 13) 

where 

3\ = Vit/i + TftVx + Tfyl/Q, 33 = 77iI/5 + Ifcl/J + T73l>7. (A2 - 14) 

Furthermore, we have 

dx(pa)8tu - dt(pa)dxu ~ p0a^M(/38(M')
2 + p^MM'A'/A), (42 - 15) 

with 
& = vi(a3v* + a3i/4) - vx(a3v6 + a3i/t), 

Bi = v3a3(ve - Mg) + (KS - itHajxr + as^s), 

and 

(42 - 16) 

dt {-—) ~ - K M ' + /c2M4'/4)/M, (42 - 17) 

\a + u) 

with 

«i = (*"i + vt)/(<xi + as)2i *2 = ("2 + "7)/(ai + «3)2- (42-18) 

Substitution into (8.2.6) yields 

Qi = "oVo (n^(M')2 + r2M
3M'474 + rjM8(474)3) + (KXM' + K3MA'/A)QX/M, (42 - 19) 

where 

ri=0», r3 = BA-3x, rz = -33. (42-20) 

We also have from (8.2.6) that 

M' = -CiM4'/4 + (3Qx/(PoalM
3), (42 - 21) 

with 
Cx = a3a\/ ((ax + as)(2 + a3aa)), 

(42 - 22) 

C2 = (1 - l/(«i + o3)) /(2ax + axa3aa). 
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