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Abstract

A thin stream or rope of viscous fluid falling from a sufficient height onto
a surface forms a steadily rotating helical coil. Tabletop laboratory experi-
ments in combination with a numerical model for slender liquid ropes re-
veal that finite-amplitude coiling can occur in four distinct regimes (viscous,
gravitational, inertio-gravitational, and inertial) corresponding to different
balances among the three principal forces acting on the rope. The model
further shows that the onset of coiling has distinct viscous, gravitational,
and inertial modes that connect smoothly with the corresponding finite-
amplitude regimes. In addition to steady coiling, slender liquid ropes falling
onto surfaces can exhibit a remarkable variety of nonstationary behaviors,
including propagating spiral waves of air bubbles, supercoiling, the leaping-
shampoo (Kaye) effect for non-Newtonian fluids, and the fluid-mechanical
sewing machine in which the rope leaves complex stitch patterns on a moving
surface.
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Rope: in the context
of this review, a
slender body with
significant resistance
to deformation by
bending

Buckling instability:
the onset of
deformation by
bending in a slender
(or thin) object subject
to an axial (or lateral)
compressive stress

Slender body: a body
with two characteristic
dimensions (radius or
thickness) much
smaller than the third

1. INTRODUCTION

Perhaps the simplest experiment in all of fluid mechanics is to pour a very thin stream of viscous
fluid such as honey onto a surface from a height of approximately 10 cm. Rather than approaching
the surface vertically as one might expect, the fluid stream builds a beautiful helical structure
that resembles a pile of coiled rope (Figure 1a). This characteristic appearance led Barnes &
Woodcock (1958) to call the phenomenon the “liquid rope coil” effect.

The origin of liquid rope coiling is a buckling instability in which an initially vertical fluid stream
subject to an axial compressive stress becomes unstable to deformation by bending. As such, liquid
rope coiling belongs to a wider class of buckling instabilities of thin and/or slender objects that
include rods, filaments, ribbons, and sheets of material whose rheology may be anything from
purely viscous to purely elastic. A few particularly striking examples are shown in Figure 1b–e.

Yet among the countless examples of buckling instabilities in nature and technology, liquid rope
coiling holds a special place for several reasons. First, clean and accurate laboratory experiments
are easy to perform without complications from undesirable symmetry-breaking features of the
apparatus (e.g., the finite length of extrusion slots that prevents truly two-dimensional experiments
on the folding of viscous sheets). Second, coiling is a steady-state phenomenon when observed
from within the corotating reference frame that follows the steady circular motion of the contact
point of the liquid rope with the surface onto which it falls. This permits liquid rope coiling
to be investigated with the help of powerful analytical and numerical tools that are much more
difficult to apply to inherently time-dependent buckling instabilities such as the periodic folding
of sheets. Finally, and on a more personal note, we find that coiling possesses a particular beauty
and elegance that it shares with the many other spiral and helical forms found in the natural world.

2. MATHEMATICAL DESCRIPTION OF SLENDER LIQUID ROPES

Before setting out, we have to decide what to call the objects under study. In the theory of
elasticity, a distinction is commonly made between slender rods, which resist deformation by
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Figure 1
Examples of buckling instabilities. (a) Coiling of silicone oil with viscosity ν = 105 cSt. Photograph taken
from Mahadevan et al. (1998), reproduced with permission from Nature Publishing Group. (b) Folding of a
rope of silicone oil (ν = 104 cSt) in a microchannel filled with silicone oil with ν = 5 cSt. Photograph
courtesy of T. Cubaud. (c) Desiccation-induced coiling of the self-burying seed of Erodium cicutarium.
(d ) Periodic folding of a falling sheet of molten chocolate. Photograph courtesy of Mars Inc. (e) Periodic
folding of a falling lava stream (see the Related Resources section for a link to a video). Photograph from the
U.S. Geological Survey.
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Figure 2
Geometry of a slender viscous rope. Figure modified from Ribe (2004).

String: a slender body
with negligible
resistance to
deformation by
bending

bending, and strings, which do not (Landau & Lifshitz 1986). However, because the term rod
seems inappropriate for a fluid, we use the terms rope and string for slender fluid bodies with and
without resistance to bending, respectively.

A viscous rope is slender if its radius a is small relative to its length and to the local radius
of curvature of its axis. Such objects are amenable to a simplified description in which the full
three-dimensional Navier-Stokes equations are reduced to equivalent one-dimensional equations
that involve only variables defined along the rope’s central axis (Arne et al. 2010, Eggers & Dupont
1994, Entov & Yarin 1984, Ribe et al. 2006a, Yarin 1993). The description divides naturally into
geometrical, kinematical, and dynamical aspects. Because surface tension has a relatively minor
(1%–20%) effect on the coiling frequency for typical experimental fluids, we neglect it in the
following discussion, although it is easy to include in the equations if desired (Eggers & Dupont
1994, Ribe et al. 2006a).

Figure 2 shows a portion of a slender liquid rope. The rope’s geometry is described by the
Cartesian coordinates x(s, t) of its axis and its radius a(s, t), where s is the arc length along the axis
and t is time. Given x(s, t), the unit vector tangent to the axis is

d3(s , t) = x′, (1)

where the prime denotes ∂/∂s . At each point along the axis, we define orthogonal unit vectors
d1(s, t) and d2(s , t) ≡ d3 × d1 in the plane of the rope’s cross section. Although the orientation
of d1 and d2 at each point along the axis can be chosen arbitrarily, it is convenient in practice to
define them to be material unit vectors that follow the rotation of the fluid about the axis. The
rates of change of the basis vectors di along the axis are given by the generalized Frenet relations

d′
i = κ × di , (2)

where κ ≡ κi di is the curvature vector. The curvatures κ i can be expressed in terms of arcwise
derivatives of the three Eulerian angles [or, more conveniently for numerical purposes, the four
Euler parameters (Whittaker 1944)] that describe the orientation of the basis di relative to a fixed
external basis ei.

Turning now to kinematics, we introduce the velocity V ≡ Vi di of the fluid on the axis.
Because the rope is slender, points that are located instantaneously on the (geometrically defined)
axis are material points to an excellent approximation. The velocity V is therefore related to the
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Bending/twisting
moment vector: the
first moment of the
vector force acting on
a cross section of a
slender body
(Equation 7)

coordinates x by
Dx
Dt

= V, (3)

where D/Dt is a material derivative that follows the stretching of the rope (Buckmaster et al.
1975).

Given the velocity field V(s, t) on the axis, the next step is to write down expressions for the
rates of strain and rotation that are required to describe the deformation of the rope by stretching,
bending, and twisting. The rate of stretching of the rope’s axis is

� = V′ · d3. (4)

Moreover, because the rate of thinning of the rope is directly proportional to the rate at which its
axis is stretched, conservation of mass requires

DA
Dt

= −A�, (5)

where A ≡ πa2 is the area of a cross section. Next, the rates of rotation of the axis about the
directions d1 and d2, respectively, are

ω1 = −V′ · d2, ω2 = V′ · d1. (6)

Finally, the spin ω3 of the fluid about the direction d3 is a primitive variable with no intrinsic
relation to the components of V.

The fundamental quantities required to describe the rope’s dynamics are the force N(s, t) acting
on a cross section and the vector M(s, t) of bending and twisting moments, defined as

N ≡ N i di =
∫

σ · d3 d A, M ≡ M i di =
∫

y × (σ · d3)d A, (7)

where σ is the stress tensor and the integrals are taken over the cross section. N1 and N2 are the
shear forces acting on the section in the d1 and d2 directions, respectively, and N3 is the normal
force. M1 and M2 are the moments associated with bending around the d1 and d2 directions,
respectively, and M3 is the moment associated with twisting. Conservation of linear momentum
in the rope requires

ρ A
DV
Dt

= N′ + ρ Ag, (8)

where g is the gravitational acceleration. Conservation of angular momentum requires

0 = M′ + d3 × N. (9)

In writing Equation 9, we omit the terms arising from angular acceleration and gravity, which are
negligible when the rope is slender (Blount 2010, Ribe et al. 2006a).

The conservation equations (Equations 8 and 9) are valid for a rope with any rheology. To
specialize them for the case of a Newtonian fluid with constant viscosity η, we require constitutive
relations that link the dynamical variables N3, M1, M2, and M3 to the kinematical variables �,
ω1, ω2, and ω3. These can be derived rigorously using asymptotic expansions in powers of a small
slenderness parameter ε � 1 (Ribe et al. 2006a) and are

N 3 = 3ηA�, (10a)

M 1 = 3ηIω′ · d1, M 2 = 3ηIω′ · d2, M 3 = 2ηIω′ · d3, (10b)

where ω = ωi di , η is the dynamic viscosity, and I ≡ πa4/4 is the moment of inertia of the cross
section. For a given rope geometry, Equations 1, 8, 9, and 10 are 12 coupled scalar equations for
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the 12 variables Vi, ωi, Ni, and Mi, of order 12 with respect to the spatial (arcwise) derivatives. Four
of those orders are associated with bending around the d1 direction, four with bending around the
d2 direction, two with stretching, and two with twisting. The spatial order of the system increases
to 21 for general time-dependent problems in which the rope’s geometry is unknown (Ribe et al.
2006a). The temporal evolution of the geometry is then governed by Equations 3 and 5.

3. STEADY COILING: THEORY VERSUS EXPERIMENT

The theory of Section 2 can be used in conjunction with simple tabletop laboratory experiments
to understand the phenomenon of steady coiling. Figure 3 shows a typical experimental setup in
which fluid with density ρ, kinematic viscosity ν ≡ η/ρ, and surface tension coefficient γ is ejected
downward through a hole of diameter d ≡ 2a0 at a constant volumetric rate Q ≡ πa2

0U 0, where
U0 is the ejection speed. The working fluid either is ejected forcibly from a syringe pump as in
Figure 3 (Cruickshank 1980; Cruickshank & Munson 1981; Habibi et al. 2006, 2010; Maleki
et al. 2004; Ribe et al. 2006b) or falls freely from a hole at the bottom of a reservoir (Barnes
& MacKenzie 1959, Barnes & Woodcock 1958, Griffiths & Turner 1988, Habibi et al. 2006,
Mahadevan et al. 1998, Maleki et al. 2004, Ribe et al. 2006b). The fluid falls onto a plate on which
it forms a helical coil of radius R that rotates with angular frequency � about a vertical axis. The
effective fall height is the distance H from the hole down to the first point of contact of the free
portion of the rope with the pile of fluid accumulated on the plate. The radius of the trailing
portion of the rope (tail) decreases downward in general under the pull of gravity, and its (nearly

ba Stepper
motor

Syringe
pump

CCD
camera

Q

Ω

ρ, ν, γH

d = 2a0

2a1

2R

Tail

Coil

Figure 3
(a) Experimental setup for liquid rope coiling (IASBS, Zanjan). Figure taken from Ribe et al. (2008).
(b) Parameters of liquid rope coiling. Figure modified from Ribe (2004).
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Figure 4
Comparison of experimental measurements (red circles) and numerical predictions (blue lines) of the angular
frequency � of steady coiling as a function of the fall height H. The working fluid in the experiments is
silicone oil with ρ = 0.97 g cm−3 and γ = 21.5 dyne cm−1. (a) d = 0.068 cm, Q = 0.0038 ml s−1, and
ν = 105 cSt. (b) d = 0.5 cm, Q = 0.094 ml s−1, and ν = 3 × 104 cSt. The inset in panel b shows the coiling
frequency as a function of time at H = 7 cm. (c) Same as in panel a, but with Q = 0.00215 ml s−1. Steady
coiling solutions along the dashed portions of the blue curve are unstable to small perturbations. Panels a
and b taken from Maleki et al. (2004), and panel c taken from Ribe et al. (2006b).

constant) value in the coil is a1. Finally, we note that U 1 ≡ Q/πa2
1 is the axial velocity of the fluid

at the contact point if the rope is in a steady-state configuration. Conservation of the mass flux
through the moving contact point then requires U 1 = R�.

Figure 4 shows experimental measurements of the coiling frequency � as a function of the fall
height H for three different sets of values of d, ν, and Q (Maleki et al. 2004, Ribe et al. 2006b).
The observed behavior is remarkably diverse. When H is small, � decreases as a function of H
(H < 1 cm in Figure 4a). If, however, H is a few tens of centimeters, � increases rapidly with H
(Figure 4b). For intermediate values of H, the curve �(H) has a gap for which a range of values of
� is missing (� = 15–30 s−1 in Figure 4b). Closer examination shows that the gap corresponds to
an oscillation between two coexisting coiling states with different frequencies (Figure 4b, inset).
The number of gaps is larger for larger values of ν and smaller values of Q. Figure 4c shows a case
with three gaps, and up to four have been observed (Habibi et al. 2006).
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Coriolis acceleration:
the apparent
acceleration 2� × V of
a body moving with
velocity V in a
noninertial reference
frame rotating with
angular velocity �

Centrifugal
acceleration: the
apparent acceleration
� × (� × x) of a body
at a position x relative
to the rotation axis in a
noninertial reference
frame rotating with
angular velocity �

Continuation
method: in the
context of this review,
a method for solving
nonlinear boundary-
value problems in
which a simple
analytical solution that
satisfies modified
forms of the equations
and/or boundary
conditions is gradually
adjusted until it
satisfies the true
equations and
boundary conditions

The diversity of behavior in Figure 4 can be understood with the help of a numerical model
based on the theory of Section 2 (Ribe 2004). The model exploits the stationarity of coiling
when observed from within the corotating reference frame. The dependent variables defined in
Section 2 are then functions of the arc length s only and do not depend on time. Moreover, the
acceleration term in the global force balance (Equation 8) becomes

DV
Dt

= U (Ud3)′ + 2�Ue3 × d3 + �2e3 × (e3 × x), (11)

where U (s ) ≡ V 3(s ) is the axial velocity of the fluid. The first term on the right-hand side of
Equation 11 is the acceleration measured within the corotating frame, and the second and third
terms are the Coriolis and centrifugal accelerations, respectively. The full system of equations
reduces to a seventeenth-order geometrically nonlinear two-point boundary-value problem for
a liquid rope of unknown shape, subject to appropriate boundary conditions at the ejection hole
(s = 0) and at the rope’s contact point with the fluid pile beneath the coil (s = ). Because both
the frequency � and the rope length  are unknown, 19 boundary conditions are required to
close the problem. Solutions can be obtained numerically using a continuation method, whereby
a simple analytical solution of the governing equations is gradually adjusted until it satisfies all the
required boundary conditions (Ribe 2004).

The numerical predictions in Figure 4 show the coiling frequency �(H) predicted by the nu-
merical model for the same values of d, Q, and ν as in the corresponding laboratory experiment,
and with the effect of surface tension included. The numerical predictions agree well with the ob-
servations without any adjustable parameters and successfully reproduce the diversity of behavior
seen in the experiments. The comparison can be refined further by analyzing the stability of the
numerical solutions to infinitesimal perturbations having the form of global modes (Ribe et al.
2006a). The unstable solutions are found at values of H for which the curve �(H) is multivalued
and correspond closely to the gaps observed in the experiments (Figure 4c).

4. REGIMES OF STEADY COILING

The next issue is how to understand the physical mechanisms underlying the diversity of behavior
in Figure 4. As a first step, we recalculate numerically the coiling frequency �(H) for the values
of ν, d, and Q in Figure 4c, but now over a much larger range of fall heights. The resulting curve
(Figure 5) reveals that the different behaviors seen in Figure 4 correspond to four distinct regimes
of steady coiling, which appear in succession as the fall height increases. Each regime corresponds
to a different balance among the viscous, gravitational, and inertial forces that control the motion
of the rope.

The first regime, which we call viscous, corresponds to the decrease of the coiling frequency as a
function of height for 0.03 < Ĥ < 0.08, where Ĥ ≡ H (g/ν2)1/3 is a dimensionless fall height. In
this regime, the fall height is so small and coiling so slow that both gravity and inertia are negligible
relative to viscous forces, which counterbalance each other in such a way that the net viscous force
on each fluid element is zero. The viscous forces are primarily those that resist bending, which
is the dominant mode of deformation everywhere. The rope in this regime therefore behaves
like toothpaste squeezed from a tube onto a nearby surface, and its radius ≈a0 is nearly constant
(leftmost image in Figure 5).

In the viscous regime, the dynamical equations (Equations 8 and 9) reduce to N′ = 0 and
M′ + d3 × N = 0. Because all the components of N and M are proportional to the viscosity η,
the latter cancels out of the equations, so neither the radius R nor the frequency � of the coiling
can depend on it. Furthermore, the rope radius a0 ceases to be a relevant length scale in the limit
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Figure 5
Four regimes of steady coiling, illustrated for the parameters of an experiment with silicone oil
(ρ = 0.97 g cm−3, ν = 105 cSt, and γ = 21.5 dyne cm−1) with d = 0.068 cm and Q = 0.00215 ml s−1 (Ribe
et al. 2006b). The red curve shows the numerically predicted coiling frequency for these parameters, with its
unstable portions dotted. The blue dashed lines indicate the first three eigenfrequencies (Equation 16) of a
whirling viscous string that is strongly stretched by gravity. The parts of the curve corresponding to the
viscous (V), gravitational (G), inertio-gravitational (IG), and inertial (I) regimes are labeled, and the typical
appearance of the rope in each regime is shown. The transitional values of H (g/ν2)1/3 separating the G, IG,
and I regimes in the limit of a slender (ε ≡ a1/H � 1) rope strongly stretched by gravity are indicated at the
bottom (Blount 2010, Ribe et al. 2006b). Figure modified from Ribe et al. (2008).

a0/H � 1 corresponding to a very slender rope. The only parameters left are H and the injection
speed U0, and dimensional considerations then require (Ribe 2004)

R ∼ H , � ∼ U 0

H
(viscous regime). (12)

The above expression for � explains why the coiling frequency decreases with the fall height in
the viscous regime. Even though R and � are independent of η and a0, the force required to eject
the fluid at the given speed U0 will of course depend on both η and a0.

The next regime in Figure 5 is the gravitational regime, which occurs for 0.2 ≤ Ĥ ≤ 0.6.
The coiling frequency now increases as a function of height, and the rope exhibits a clear bipartite
(coil/tail) structure. Gravity balances viscous forces in both the coil (in which the deformation
is dominated by bending) and the tail (dominated by stretching). In the coil, the viscous-gravity
balance requires M ′′ ∼ ρ Ag, where M denotes either of the bending moments M1 or M2. Now
M ′′ ∼ M /δ2, where δ is the arcwise extent of the portion of the rope in which bending stresses are
important. Moreover, Equation 10b implies M ∼ ηa4

1U 1/δ
2 ∼ ηa2

1 Q/δ2, so M ′′ ∼ ρ Ag yields
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Catenary: the shape
adopted by a string
hanging in a field of
gravity and supported
at its two ends

(Ribe et al. 2006b)

δ ∼
(

νQ
g

)1/4

. (13)

However, δ is not the same as the coil radius R, for subtle reasons involving the nature of the
interaction between the coil and the tail (Blount 2010). The tail behaves as a heavy catenary whose
deflection from the vertical is maintained by a horizontal force exerted at its base by the bending
stresses in the coil. Because inertia is negligible in the gravitational regime, that force is directed
radially inward toward the coiling center to leading order. Moreover, because the deflection of a
hanging catenary (solid or fluid) produced by a small horizontal force F is O(F | ln F |), a logarithmic
term should be present in the expressions for R and �. This expectation is confirmed by a careful
analysis using matched-asymptotic expansions (Blount 2010), which yields

R ∼ δ

(
ln

H
δ

)1/2

, � ∼ U 1

δ

(
ln

H
δ

)−1/2

(gravitational regime). (14)

Because H /δ ≈ 10–150 for typical experimental situations,
√

ln(H /δ) ≈ 1.52–2.24.
The third regime in Figure 5 is a multivalued inertio-gravitational regime in the range 0.7 <

Ĥ < 1.4, in which several different coiling frequencies are seen for a fixed value of the fall
height. The complexities of this regime result from the effects of inertia, which influences the
tail and the coil in different ways. Useful insight into the dynamics can be obtained by studying a
simplified whirling viscous string model for the tail, in which gravity and the viscous forces that
resist deformation by stretching are balanced by the centrifugal acceleration. The component of
this force balance in the direction normal to the tail is (Ribe et al. 2006b)

g H
k

sin
k(H − s )

H
r ′′ − gr ′ + �2r = 0, (15)

where r(s) is the horizontal radial deflection of the tail from the vertical, and k satisfies
2B cos2(k/2) = 3k2 with B = g H 2/(νU 0). The first term in Equation 15 is the normal com-
ponent of the axial viscous force (N 3d3)′/(ρ A) per unit length of the tail and is nonzero because
the tail’s axis is curved. Its form takes into account the variation of the cross-sectional area A(s) due
to gravitational stretching of the tail. The limit k = π (B → ∞) corresponds to strong gravitational
stretching, whereas k = 0 (B → 0) corresponds to an unstretched tail with constant section A.

Equation 15 together with the relevant boundary conditions r(0) = 0 and r(H) finite is a
singular boundary/eigenvalue problem that has nontrivial solutions only for particular values �n

(n = 1, 2, . . .) of the angular frequency �. Nondimensionalization of Equation 15 using the length
scale H shows that these eigenvalues have the form

�n = Cn(B)
( g

H

)1/2
, (16)

where (g/H )1/2 is the angular frequency of a simple pendulum. For B 
= 0, the coefficients
Cn(B) must be determined numerically (Ribe et al. 2006b). The first three eigenvalues in the
strong-stretching limit B → ∞ are shown in Figure 5. They correspond closely to the locations
of the downward-/rightward-facing peaks in the calculated coiling frequency curve �(H). This
suggests that inertio-gravitational coiling is a resonance phenomenon in which the tail behaves as
a weakly forced circular pendulum whose eigenmodes are excited when their frequencies are close
to the frequency (Equation 14) imposed by the coil. The shape of the gravest (n = 1) eigenmode
is shown by the image of inertio-gravitational coiling in Figure 5. Furthermore, the relations
� ∼ ( g/H )1/2, U 1 = R�, and U 1 ∼ g H 2/ν (valid in the strong-stretching limit B � 1) imply
that the amplitude of the tail’s motion (≈R) increases strongly (∼H5/2) as one approaches a peak in
the �(H) curve from the left. Those peaks are therefore classic resonance peaks, whose amplitudes
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are prevented from increasing without limit by the increasing importance of inertia in both the
tail and the coil as the system approaches resonance (Blount 2010, Ribe et al. 2006b).

The last regime in Figure 5 is an inertial regime that occurs for Ĥ > 1.8. The tail in this
regime is almost perfectly vertical (rightmost image in Figure 5). In the coil, the viscous forces
that resist bending are balanced by inertia, implying M ′′ ∼ ρa2

1�
2 R. The arcwise extent δ of the

bending region is proportional to the coil radius R in this regime, so M ′′ ∼ ηa4
1U 1/R4, from which

(Mahadevan et al. 2000)

R ∼
(

νa4
1

Q

)1/3

, � ∼
(

Q4

νa10
1

) 1
3

(inertial regime). (17)

Finally, the relation between a1 and H in the limit B � 1 depends on the value of Ĥ . For Ĥ < 2,
the weight of the fluid in the tail is balanced primarily by the viscous resistance to stretching, and
a1 ∼ (νQ/g H 2)1/2. For Ĥ > 10, the weight is balanced primarily by the vertical momentum flux,
and a1 ∼ (Q2/g H )1/4.

5. ONSET AND CESSATION OF COILING

Most of the coiling experiments described in Sections 3 and 4 were performed using very viscous
silicone oil (ν = 3×104 or 105 cSt). Experiments with less viscous oils [ν = 330–2,220 cSt (Habibi
et al. 2010)] reveal striking new phenomena and help us better understand the conditions for the
onset and cessation of the coiling instability.

The experiments in question show that three distinct states of the rope can exist for a given
set of values of the experimental parameters ν, Q, and H. These are axisymmetric stagnation flow
(Figure 6h), steady coiling (Figure 6f ), and a novel rotatory folding state in which the rope folds
back upon itself periodically while rotating about a vertical axis with a frequency equal to 3%–4%
of the folding frequency (Figure 6a–d ). Figure 7 shows the phase diagram of these states in the

5,616
ms

e

6,370
ms

g

0 ms

a

1 mm

F

46 ms

b

F

92 ms

c

F

138 ms

d

F

5,808
ms

f

C

6,888
ms

h

S

Figure 6
Time sequence of photographs showing three possible states of a liquid rope with ν = 950 cSt, Q = 0.19 ml s−1, d = 2.6 mm, and
H = 14 cm: (a–d ) folding with rotation (F), ( f ) steady coiling (C), and (h) axisymmetric stagnation flow (S). Panels a–d are separated by
one-fourth of the rotation period of the folding plane. Panels e and g show the finite-amplitude perturbations that trigger the
transitions between states. See Supplemental Video 1, in which each frame is 1 cm wide, and the playback rate is 1/20 real time (follow
the Supplemental Material link from the Annual Reviews home page at http://www.annualreviews.org). Figure taken from Habibi
et al. (2010).
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Figure 7
Phase diagram for steady stagnation flow (S), steady coiling (C), and rotatory folding (F) as functions of
viscosity ν and fall height H for a fixed flow rate Q = 0.131 ± 0.006 cm3 s−1. The orange (B) portions of the
diagram correspond to episodic capillary breakup of the rope. The solid line (red ) is the numerically
calculated coiling cessation surface (including the effect of surface tension) separating regions in which
coiling solutions exist (above/to the right) and do not exist (below/to the left). The dashed line shows the
approximate location of the coiling cessation surface in the laboratory experiments. Figure taken from
Habibi et al. (2010).

ν-H plane for a fixed flow rate Q = 0.131 cm3 s−1. In the B portion of the diagram, the rope
breaks up episodically via capillary (Rayleigh-Plateau) instability. The S+C and S+C+F portions
are multistable regions in which different states are observed at different times during a single
experiment performed at fixed values of ν, Q, and H. The transitions between the states were
triggered by finite-amplitude perturbations propagating down the rope, which were generated by
tapping the experimental apparatus lightly (Figure 6e,g).

In Figure 7, the onset of coiling corresponds to the boundary between the S region and the
C or S+C region. For ν > 600 cSt, the boundary is nearly horizontal so that coiling occurs
when the fall height exceeds a critical value. For ν < 600 cSt, however, the boundary becomes
nearly vertical, and coiling occurs when the viscosity exceeds a critical value. More generally,
the coiling/no-coiling boundary is a critical hypersurface in the (H, ν, Q, d ) parameter space.
One way to determine its shape is to analyze the stability of a steady axisymmetric stagnation
flow to small perturbations (Tchavdarov et al. 1993), which yields the coiling onset surface in the
(H, ν, Q, d ) space. However, the only steady axisymmetric solution of the governing equations for
a liquid rope falling onto an impermeable plate is one with infinite radius at the plate (Tchavdarov
et al. 1993), which is not very realistic. An alternate procedure is to begin from a finite-amplitude
coiling solution and then use a continuation procedure to locate the coiling cessation surface in the
(H, ν, Q, d ) space on which the solution ceases to exist (Habibi et al. 2010). Owing to hysteresis,
the coiling cessation surface determined in this way need not coincide with the coiling onset
surface.
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Experiments
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Figure 8
(a) Critical heights for the onset and cessation of steady coiling in the inertia-free limit. The solid line is the coiling cessation surface
separating regions in which numerical steady coiling solutions without surface tension exist (above) and do not exist (below). The
portions corresponding to the viscous (V) and gravitational (G) limits are indicated. The dashed line is the coiling onset surface in the
absence of surface tension predicted by linear stability analysis (Tchavdarov et al. 1993). The colored symbols show experimentally
measured critical heights (Cruickshank 1980) for silicone oil with γ /ρgd2 = 0.0063 (blue circles) and 0.014 (red squares). The inset
images show the shapes of the uppermost part of the rope for H/d = 4 and for the values of (νQ/gd4)1/4 indicated by the arrows.
(b) Numerically determined shape of the lower part of a liquid rope coiling in the inertial limit with the critical viscosity ν = νI , for
(νQ/gd4)1/4 = 1.0 and H = 40(ν2/g)1/3 (Habibi et al. 2010). The width of each grid square on the bottom surface is 2(Q2/g H )1/4.
Figure taken from Habibi et al. (2010).

Neglecting surface tension for simplicity, one finds that the coiling cessation surface has three
asymptotic limits corresponding to three distinct force balances: viscous, gravitational, and inertial.
In both the viscous and gravitational limits, inertia is negligible. Coiling ceases when H < F (�)d ,
where � = (νQ/gd 4)1/4 and F (�) is shown in Figure 8a. In the viscous limit (� � 1), gravity is
negligible and the column diameter ≈d everywhere. Coiling ceases when

H < 3.49d ≡ HV . (18)

In the gravitational limit (� ≤ 0.5), gravity strongly stretches the rope, so d is no longer a relevant
length scale. Coiling ceases when

H < 5.4(νQ/g)1/4 ≡ HG. (19)

When H exceeds the critical values HV or HG, one recovers the viscous or gravitational regimes,
respectively, of finite-amplitude coiling described in Section 4.

In the inertial limit, coiling ceases when

ν < 0.665(g H Q2)1/4 ≡ νI . (20)

The physical meaning of Equation 20 is that coiling can no longer occur when the radius R of
the coil decreases so much that it becomes comparable with the radius a1 of the rope itself. Let
us consider a coiling rope with H sufficiently large that inertia is important in both the coil and
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the tail. In the coil, inertia is balanced by viscous forces (the inertial regime of Section 4) so that
R ∼ (νa4

1/Q)1/3 (Mahadevan et al. 2000). In the tail, by contrast, inertia is balanced by gravity
(free fall), implying a1 ∼ (Q2/g H )1/4. Therefore, R becomes comparable with a1 when ν drops
below a critical value νI ∼ (g H Q2)1/4, in agreement with Equation 20. This analysis is confirmed
visually by the fact that R ≈ a1 in numerical solutions of steady coiling with ν = νI (Figure 8b).

The theoretically predicted coiling cessation surface can be compared with laboratory ex-
periments in both the inertia-free (Cruickshank 1980) and inertial (Habibi et al. 2010) limits.
Figure 8a shows critical heights measured in the viscous and gravitational limits with small val-
ues of the dimensionless surface tension parameter γ /ρgd 2 (Cruickshank 1980). Also shown is
the coiling onset surface predicted by a linear stability analysis in the absence of surface tension
(Tchavdarov et al. 1993). The experimental measurements lie roughly midway between the coil-
ing cessation and onset surfaces. To make a similar comparison in the inertial limit, one must
first recalculate the coiling cessation surface including the effect of surface tension, which is not
negligible in the experiments of Habibi et al. (2010). The cross section Q = 0.131 cm3 s−1 of the
resulting surface is shown in Figure 7. Its nearly horizontal portion (ν > 500 cSt) corresponds
to the gravitational limit, and its nearly vertical portion (ν < 500 cSt) to the inertial limit. The
theoretical coiling cessation surface successfully reproduces the overall trend of the observations,
including the sharp transition between the critical-height (≈ horizontal) and critical-viscosity
(≈ vertical) portions of the observed boundary between stagnation flow (S in Figure 7) and coil-
ing (C and S+C in Figure 7). However, the theoretical coiling cessation surface is shifted too
far to the left by approximately 40%. This is probably because the equations of Section 2 are less
accurate when the slender-body assumption is violated locally, as it typically is for coiling near the
coiling cessation surface (see Figure 8b).

The results shown in Figure 8 suggest an illuminating comparison between the buckling of
viscous and elastic columns. Taylor (1969) noted that viscous and elastic buckling are analogous
in that both require a compressive axial stress. However, the criteria for the onset of buckling
in the two cases are quite different, a result that can be understood in terms of the following
simple derivation. Let us consider the buckling of a cylindrical column of length H and constant
diameter d in the limit of negligible gravity, inertia, and surface tension. We suppose further that
the buckling is confined to the d1-d3 plane so that κ1 = κ3 = M 1 = N 2 = 0 by symmetry. We
let ζ (s ) be the lateral deflection of the axis of the column and its characteristic amplitude be ζ 0.
In the absence of inertia and gravity, Equation 8 and 9 reduce to N ′

1 = −κ2 N 3 and M ′
2 = −N 1,

respectively. Combining these and noting that κ2 = ζ ′′ for small deflections, we obtain

M ′′
2 = ζ ′′ N 3, (21)

which is valid for both elastic and viscous columns. For an elastic column, M 2 = E Iκ2 (Love
1944), so the left-hand side of Equation 21 scales as M ′′

2 ∼ Ed 4ζ0/H 4. The right-hand side scales
as ζ ′′ N 3 ∼ ζ0d 2 P/H 2, where P is the axial compressive stress. Balancing these two terms at the
onset of buckling (H = H elastic

crit ), we obtain

H elastic
crit ∼ d

(
E
P

)1/2

, (22)

in agreement with the classic result of Euler (Landau & Lifshitz 1986, section 21). For a viscous
column, by contrast, M 2 = 3ηI (V ′

1 + κ2V 3)′ and N 3 = 3ηAV ′
3. Noting that V 1 = ∂tζ and

using the scalings V 3 ∼ V max
3 and ∂t ∼ V max

3 /H , we find M ′′
3 ∼ ηζ0d 4V max

3 /H 5 and ζ ′′ N 3 ∼
ηζ0d 2V max

3 /H 3. The balance of these two terms at the onset of buckling implies

H viscous
crit ∼ d , (23)
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in agreement with Equation 18. We note that the viscous buckling criterion (Equation 23), unlike
the elastic criterion (Equation 22), is a purely geometrical one that depends on neither the material
modulus (viscosity) nor the magnitude of the axial compressive stress. The reason is that both the
bending moment M2 and the force N3 in a viscous column are proportional to the viscosity and
to the applied stress. Both quantities therefore cancel out when the two terms in Equation 21 are
balanced. In an elastic column, by contrast, M2 does not depend on the applied stress while N3 is
independent of the material modulus, so both quantities appear in the torque balance (Equation
21). Yet despite its different onset criterion, finite-amplitude coiling of elastic ropes exhibits
regimes that are analogous to those of viscous coiling, involving different balances of the elastic,
gravitational, and inertial forces acting on the rope (Habibi et al. 2007).

6. NOVEL PHENOMENA AND NEW DIRECTIONS

In addition to steady coiling, liquid ropes falling onto surfaces can also exhibit a surprising range of
time-dependent behavior. The phenomena we now describe have been discovered mostly within
the past few years and are still imperfectly understood.

Figure 9a illustrates the generation of propagating spiral waves of air bubbles by liquid rope
coiling (Habibi et al. 2008). Within limited ranges of values of ν, Q, and H near the boundary
between the gravitational and inertio-gravitational regimes (Section 4), coiling is observed to be
inherently unsteady such that the coiling center executes a slow retrograde precession whose
frequency and radius are roughly 25% of those for the coiling itself. Consequently, each new
coil of the liquid rope that is laid down is slightly displaced from the previous one, facilitating
the trapping of small air bubbles between them. Moreover, because the precession and coiling

ba

1 cm

1 mm

c d

1 cm

1 cm

1 cm

e

f

g

h

Figure 9
Nonstationary behaviors of falling liquid ropes. (a) Spiral waves of air bubbles generated by coiling with d =
1.6 mm, ν = 3 × 104 cSt, Q = 0.137 ml s−1, and H = 3.9 cm. (b) Supercoiling of a liquid rope with
ν = 2,200 cSt, Q = 0.315 ml s−1, and H = 28 cm. (c) Structure produced by steady coiling of a yield-stress
fluid (shaving cream). (d ) Kaye effect for a falling rope of commercial shampoo. Photograph courtesy of T.
Majmudar. (e–h) Selected patterns formed by the fluid-mechanical sewing machine with the belt moving to
the left. Panels e–h taken from Chiu-Webster & Lister (2006), reproduced with permission from Cambridge
University Press.
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Supercoiling: the
secondary coiling of a
slender object that is
already coiled at a
smaller scale (e.g.,
DNA strands or
telephone cords)

Kaye effect: the
upward- and/or
sideways-directed
rebound (leaping) of a
falling rope of shear-
thinning fluid (e.g.,
shampoo) impinging
on a heap of the same
fluid previously
deposited on a surface

frequencies are (apparently) incommensurable, the discrete azimuthal position where bubbles are
trapped migrates continuously without ever returning to a previous value. Once trapped, a bubble
is advected downward in the collapsing pile of coils and then radially outward in the thin layer of
fluid spreading over the plate. The combination of the radial advection with the slow azimuthal
drift of the trapping point gives rise to spiral waves of bubbles in the thin fluid layer (Figure 9a).

A kinematic model for spiral bubble waves was proposed by Habibi et al. (2008) and predicts
reasonably well the observed patterns given the measured values of the frequencies and radii for
both the coiling and the precession. However, the underlying dynamical issues remain unsolved.
Why does precession occur in the first place and with the frequency and radius it is observed to
have? Why does it occur only near the limit between the gravitational and inertio-gravitational
coiling regimes? And what is the precise mechanism by which air bubbles are trapped between
successive coils?

A second surprising phenomenon is the supercoiling of a liquid rope (Figure 9b). This occurs
when the tall stack of coils formed by inertial coiling (Figure 1a) itself becomes unstable to a
secondary steady coiling instability with a frequency much lower than that of the primary one.
However, supercoiling is not the only possible behavior of stacked coils in the inertial regime,
which can also exhibit perfectly steady coiling (e.g., Figure 6f ) or periodic collapse (Habibi
et al. 2006, figure 10). The phase diagram for these different behaviors has not been determined
experimentally.

Additional new phenomena appear when the falling liquid rope has a non-Newtonian rheology.
Figure 9c shows the slow coiling of a yield-stress fluid (shaving cream). Because no flow occurs
when the stress in the rope is below the yield stress, a tall stack of coils that is stable against
gravitational collapse can be generated even in the limit of negligible inertia. If, however, the rope
has a shear-thinning rheology, it can exhibit an effect first documented by Kaye (1963) in which
the falling stream occasionally leaps upward from the heap of fluid already deposited on the plate
(Figure 9d ). Detailed experimental studies of this leaping-shampoo effect have been conducted
by Collyer & Fischer (1976), Versluis et al. (2006), and Binder & Landig (2009). However, there
is still no consensus on the physical mechanism involved. Versluis et al. (2006) suggested that a
shear-thinning rheology alone is sufficient and that the fluid need not be elastic, whereas Binder
& Landig (2009) stated that elasticity is necessary and that an air layer between the rope and the
heap plays an important role. An air layer is present in the related phenomenon of a Newtonian
rope rebounding from the free surface of a moving bath of the same fluid (Thrasher et al. 2007),
which suggests that noncoalescence of the rope with its bulk liquid (Amarouchene et al. 2001)
may be a requirement for the Kaye effect.

Our final example is the fluid-mechanical sewing machine in which a slender liquid rope falls
onto a belt moving at constant velocity V in its own plane (Blount & Lister 2011, Chiu-Webster
& Lister 2006, Morris et al. 2008, Ribe et al. 2006c). When V is sufficiently large, the rope has the
form of a steady dragged catenary confined to a vertical plane. When V drops below a critical value,
however, the steady catenary state becomes unstable to a meandering instability in which the rope
leaves a sinusoidal trace on the belt. Further decrease of V causes additional bifurcations to more
complex patterns (Chiu-Webster & Lister 2006, Morris et al. 2008), some of which are shown
in Figure 9e–h. Numerical and theoretical analyses of the bifurcation to meandering (Blount &
Lister 2011, Ribe et al. 2006c) show that the onset frequency is nearly identical to the frequency
of steady (V = 0) coiling for the same experimental parameters and reveal that the structures of
the lowermost portion of the rope in the two cases are similar. However, the physical mechanisms
responsible for the more complex patterns remain to be elucidated. As this and the previous exam-
ples in this section show, the simple configuration of a liquid rope falling onto a surface continues
to reveal surprising new phenomena and to open up promising directions for future research.

www.annualreviews.org • Liquid Rope Coiling 263

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
2.

44
:2

49
-2

66
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

Pr
in

ce
to

n 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

04
/2

0/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



FL44CH11-Ribe ARI 18 November 2011 12:26

SUMMARY POINTS

1. The coiling of a liquid rope falling onto a surface is an example of a buckling instability,
in which a slender object subject to an axial compressive stress becomes unstable to
deformation by bending. In general, a coiling liquid rope comprises a long, quasi-vertical
tail that deforms mainly by gravity-induced stretching and a helical coil that deforms
primarily by bending. Because the differential equations governing bending are of higher
order than those describing stretching, the coil can be thought of as a boundary layer in
which the bending stresses permit the satisfaction of all the boundary conditions at the
surface onto which the rope falls.

2. The principal forces involved in coiling are gravity, inertia, and the viscous forces that
resist deformation of the rope by stretching, bending, and twisting. In a reference frame
that rotates with the coil, the total inertial force is the sum of (minus) the momentum
flux along the rope and the centrifugal and Coriolis forces associated with the rotating
reference frame. For typical experimental fluids, surface tension has a relatively minor
influence on coiling.

3. Finite-amplitude coiling can occur in four distinct regimes that succeed each other as the
fall height H increases. In the viscous regime (e.g., toothpaste squeezed from a tube onto
a nearby surface), both gravity and inertia are negligible everywhere in the rope. In the
gravitational regime (e.g., honey falling from a spoon over a distance H of approximately
a few centimeters), inertia is still negligible, and gravity balances the viscous forces asso-
ciated with stretching (in the tail) and bending (in the coil). In the inertio-gravitational
regime (e.g., honey with H ≈ 5–8 cm), the centrifugal force becomes important in the
tail, which behaves like a weakly forced distributed pendulum that resonates with the
coil. In the inertial regime (e.g., honey with H > 10 cm), the bending stresses in coil are
balanced primarily by inertia.

4. The initial coiling instability of a liquid rope subject to axial compression can occur
in three distinct limits (viscous, gravitational, inertial) that merge smoothly into the
corresponding finite-amplitude coiling regimes. The scaling law for the inertial limit
reveals that low-viscosity fluids such as water do not coil because the radius of the coil
would be smaller than that of the rope itself.

5. Coiling liquid ropes exhibit several types of multistable behavior. In the inertio-
gravitational regime, two or more distinct coiling states with different frequencies can be
observed at a single fall height, corresponding to the excitation of different eigenmodes
of the tail. Low-viscosity ropes falling from a given height in the inertial regime can ex-
hibit either steady stagnation flow, steady coiling, or periodic folding with rotation of the
folding plane. Finally, the stack of coils formed by inertial coiling can exhibit steady-state
behavior, periodic collapse, or supercoiling.

6. Whereas the steady coiling of Newtonian fluids is now reasonably well understood, the
exploration of more complicated situations such as the fluid-mechanical sewing machine
and ropes with non-Newtonian rheology has only begun.
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