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Using basic physical arguments, we derive by dimensional and physical analysis the characteristic masses and sizes of important objects in the
universe in terms of just a few fundamental constants. This exercise illustrates the unifying power of physics and the profound connections
between the small and the large in the cosmos we inhabit.We focus on the minimum and maximummasses of normal stars, the corresponding
quantities for neutron stars, the maximum mass of a rocky planet, the maximum mass of a white dwarf, and the mass of a typical galaxy. To
zeroth order, we show that all these masses can be expressed in terms of either the Planck mass or the Chandrasekar mass, in combination
with various dimensionless quantities. With these examples, we expose the deep interrelationships imposed by nature between disparate
realms of the universe and the amazing consequences of the unifying character of physical law.

Fundamental Physical Constants from
Which to Build the Universe
One of the profound insights of modern
science in general, and of physics in partic-
ular, is that not only is everything connected,
but that everything is connected quantita-
tively. Another is that there are physical
constants of nature that by their units, con-
stancy in space and time, and magnitude
encapsulate nature’s laws. The constant speed
of light delimits and defines the fundamental
character of kinematics and dynamics.
Planck’s constant tells us that there is some-
thing special about angular momentum and
the products of length and momentum and
of energy and time. What is more, in com-
bination, the constants of nature set the scales
(lengths, times, and masses) for all objects
and phenomena in the universe, because
scales are dimensioned entities and the only
building blocks from which to construct
them are the fundamental constants around
which all nature rotates. Although in part
merely dimensional analysis, such construc-
tions encapsulate profound insights into
diverse physical phenomena.
Hence, the masses of nuclei, atoms, stars,

and galaxies are set by a restricted collection
of basic constants that embody the finite
number of core natural laws. In this paper,
we demonstrate this reduction to funda-
mentals by deriving the characteristic masses
of important astronomical objects in terms
of just a few fundamental constants. In doing
so, we are less interested in precision than
illumination and focus on the orders of
magnitude. Most of our arguments are not
original (see refs. 1–5 and references therein),
although some individual arguments are.
This exercise will be valuable to the extent
that it provides a unified discussion of the
physical scales found in the astronomical
world. Those interested in the fundamental

connections between the small and the
large in this universe we jointly inhabit are
invited to contemplate the examples we
assembled here.
Reducing, even in approximate fashion,

the properties of the objects of the universe to
their fundamental dependencies requires first
and foremost a choice of irreducible funda-
mental constants. Various combinations of
those constants of nature can also be useful,
so the word “irreducible” is used here with
great liberty. We could choose among the
following:

Z; c; e;G;mp;mπ ;me; [1]

where Z is the reduced Planck’s constant
ðh=2πÞ, c is the speed of light, e is the elemen-
tary electron charge, G is Newton’s gravita-
tional constant, mp is the proton mass, mπ

is the pion mass, and me is the electron mass.
It is in principle possible that these masses
can be reduced to one fiducial mass, with
mass ratios derived from some overarching
theory, but this is currently beyond the state
of the art in particle physics. However, di-
mensionless combinations of fundamental
constants emerge naturally in the variety of
contexts in which they are germane. Exam-
ples are α= e2=Zc, the fine structure constant�
∼ 1

137

�
; αg =Gm2

p=Zcð∼ 10−38Þ, the corre-
sponding gravitational coupling constant;
and mpl = ðZc=GÞ1=2, the Planck mass
ð∼ 2× 10−5 gÞ.
As noted, if our fundamental theory was

complete, we would be able to express
all physical quantities in terms of only
three dimensioned quantities, one each
for mass, length, and time. Many would
associate this fundamental theory with
the Planck scale, so everything could be
written in terms of mpl, the Planck length

ðRpl = ðGZ=c3Þ1=2 ∼ 10−33 cmÞ, and the
Planck time ðGZ=c5Þ1=2ð∼ 10−43 sÞ. The
remaining quantities of relevance would
be dimensionless ratios derivable in this
fundamental theory. For instance, these
ratios could be

ηp =mpl=mpð∼ 1019Þ
ηe =mpl=með∼ 1022Þ
ηπ =mpl=mπð∼ 1020Þ;

[2]

and α, and, in principle, these ratios could be
derived in the hypothetical fundamental the-
ory. We show in this paper that we can write
astronomical masses in terms of mpl or mp,
with mass ratios and dimensionless com-
binations of fundamental constants setting
the corresponding relative scale factors. We
thereby reduce all masses to combinations of
only five quantities: mp, me, mπ , α, and αg or
mpl, ηp, ηe, ηπ , and α. For radii, Z and c are
explicitly needed. Note that αg = 1=η2p and
that α=αg ∼ 1036. The latter is a rather large
number, a fact with significant consequences.
We assume in this simplified treatment

that the proton and neutron masses are the
same and equal to the atomic mass unit, itself
the reciprocal of Avogadro’s constant (NA).
The pion mass can be the mass of any of the
three pions, sets the length scale for the nu-
cleus, and helps set the energy scale of nu-
clear binding energies (6). However, for
specificity and for sanity’s sake, we will as-
sume that the number of spatial dimensions
is three. Then, with only five constants we
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can proceed to explain, in broad outline,
objects in the universe. In this essay, we
emphasize stars (and planets) and galaxies,
but in principle, life and the universe are
amenable to similar analyses (3, 7, 8).
Before we proceed, we make an aside on

nuclear scales and why we have introduced
the pion mass and ηπ . Nucleons (protons and
neutrons) are comprised of three quarks, and
pions are comprised of quark-antiquark
pairs. Quantum chromodynamics (QCD) (9)
is the fundamental theory of the quark and
gluon interactions and determines the
properties, such as masses, of composite
particles. The proton mass (∼938 MeV/
c2) is approximately equal to ∼ 3×ΛQCD,
where ΛQCDð∼ 300 MeVÞ is the QCD en-
ergy scale (10), and 3 is its number of
constituent quarks (11). The pion, how-
ever, is a pseudo-Goldstone boson, and
the square of its mass is proportional to
ΛQCDðmu +mdÞ, where mu and md are the
up and down bare quark masses, re-
spectively. mu +md is very approximately
equal to 10 MeV (quite small). In princi-
ple, all the hadron masses and physical
dimensions can be determined from the
bare quark masses and the QCD energy
scale (12), because the associated running
coupling constant (which sets, for example,
g2πNN=4π) perforce approaches unity (large
values) on the very spatial scales that set
particle size.
For our purposes, we assume there are two

fundamental masses in the theory. These
could be ΛQCD and mu +md , but they could
also be mp and mπ . We opt for the latter.
Importantly, pion exchange mediates the
strong force between nucleons, and the nu-
cleon-nucleon interaction determines nuclear
binding energies and nuclear energy yields.
Moreover, since the pion interaction is a de-
rivative interaction (11), the corresponding
nuclear energy scale is notmπ (∼135 MeV/c2),
but is proportional to ðg2πNN=4πÞmπðηp=ηπÞ2.
The upshot is that the binding energies of
nuclei scale asmπðηp=ηπÞ2 and the size of the
nucleon is ∼ Z=mπc, about one fermi for the
measured value of mπ . Hence, the two fun-
damental masses, mπ and mp, determine the
density of the nucleus and nuclear binding
energies, both useful quantities. This fact is
the reason we includemπ (or ηπ) in our list of
fundamental constants with which we de-
scribe the Cosmos—reasons for including mp

(or ηp) are more self-evident. An ultimate
theory would provide the ratios of all the
couplings (QCD, electro-weak, gravitational)
and mass ratios, as well as all other dimen-
sionless numbers of nature. Because we are
currently absent of such a theory, we proceed
using the quantities described.

Maximum Mass of a White Dwarf: The
Chandrasekhar Mass
Stars are objects in hydrostatic equilibrium
for which inward forces of gravity are bal-
anced by outward forces due to pressure
gradients. The equation of hydrostatic equi-
librium is

dP
dr

=− ρ
GMðrÞ
r2

; [3]

where P is the pressure, r is the radius, ρ is the
mass density, and MðrÞ is the interior mass
(the volume integral of ρ). Dimensional anal-
ysis thus yields for the average pressure or the
central pressure (Pc) an approximate relation,
Pc ∼ GM2

R4 , where M is the total stellar mass and
R is the stellar radius, and we used the crude
relation ρ∼ M

R3.
For a given star, its equation of state,

connnecting pressure with temperature,
density, and composition, is also known in-
dependently. Setting the central pressure de-
rived using hydrostatic equilibrium equal to
the central pressure from thermodynamics or
statistical physics can yield a useful relation
between M and R (for a given composition).
For example, if the pressure is a power-law
function of density alone (i.e., a polytrope),
such that P= κργ , then using ρ∼ M

R3 and
setting κργ equal to GM2

R4 gives us

M ∝
�
κ

G

� 1
2−γ
Rð4−3γÞ=ð2−γÞ: [4]

One notices immediately thatM and R are
decoupled for γ = 4=3. In fact, one can show
from energy arguments that if γ is the adia-
batic gamma and not merely of structural
significance, then at γ = 4=3 the star is neu-
trally stable—changing its radius at a given
mass requires no work or energy. In other
words, the star is unstable to collapse for
γ < 4=3 and stable to perturbation and pul-
sation at γ > 4=3. For γ = 4=3, there is only
one mass, and it is

�
κ
G

�3=2
.

The significance of this is that white dwarf
stars are supported by electron degeneracy
pressure, fermionic zero-point motion, which
is independent of temperature. Such de-
generate objects are created at the terminal
stages of the majority of stars and are what
remains after such a star’s thermonuclear life.
The pressure, which like all pressures re-
sembles an energy density, is approximately
given by the average energy per electron
ðhɛiÞ times the number density of electrons
(ne). If the electrons are nonrelativistic,
hɛi∼ P2

F=2me, where PF is the fermi mo-
mentum, and simple quantum mechan-
ical phase-space arguments for fermions

give PF = ð3π2Z3neÞ1=3. Because ne =NAρYe,
where Ye is the number of electrons per
baryon (∼0.5), it is easy to show that the
pressure is proportional to ρ5=3, that the as-
sociated γ = 5=3, and that the star is, there-
fore, a polytrope. By the arguments above,
such stars are stable.
However, as the mass increases, the central

density increases, thereby increasing the
fermi momentum. Above cPF ∼mec2, the
electrons become relativistic. The formula for
the fermi momentum is unchanged, but the
fermi energy is now linear (not quadratic) in
PF. This fact means that hɛi× ne is pro-
portional to ρ4=3 and that the white dwarf
becomes unstable (formally neutrally stable,
but slightly unstable if general relativistic
effects are included). Hence, the onset of
relativistic electron motion throughout a
large fraction of the star, the importance of
quantum mechanical degeneracy, and the
inexorable effects of gravity conspire to yield
a maximum mass for a white dwarf (13, 14).
This mass, at the confluence of relativity (c),
quantum mechanics (Z), and gravitation
(G), is the Chandrasekhar mass, named
after one of its discoverers. Its value can

be derived quite simply using
�
κ
G

�3=2
(Eq.

4) and κ= 3π2
4

Zc
m4=3

p

Y4=3
e , where we have set

NA = 1=mp. The result is

MCh ∼
�
Zc
G

�3=2 Y2
e

m2
p

: [5]

Note that the electron mass does not occur
and that the proper prefactor is ∼3.1. For
Ye = 0:5, 3:1Y2

e is of order unity and MCh =
1:46 M⊙. We recovered our first significant
result. There is a maximum mass for a white
dwarf, and its value depends only on fun-
damental constants Z, c, G, and mp, most of
which are of the microscopic world. We can
rewrite this result in numerous ways, some
of which are

MCh ∼mp

 
Zc
Gm2

p

!3=2
=

mp

α3=2g

MCh ∼mpη3p

MCh ∼mplη2p:

[6]

Hence, the Chandrasekhar mass can be
considered to be a function of the Planck
mass and the ratio, ηp, or the proton mass and
the small dimensionless gravitational coupling
constant, αg

�
=

Gm2
p

Zc

�
. Such relationships are

impressive in their compactness and in their
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implications for the power of science to explain
nature using fundamental arguments.

As an aside, we can use the arguments
above to derive a relation for the character-
istic radius of a white dwarf. To do this, we
return to Eq. 4, but insert γ = 5=3, the non-
relativistic value relevant for most of the
family. The degeneracy pressure is then given
by P= κρ5=3, where

κ=
ð3π2Þ2=3

5
Z2

mem
5=3
p

Y5=3
e ; [7]

which is an expression easily shown to follow
from the general fact that pressure is average
particle energy times number density, but for
the nonrelativistic relation between momen-
tum and energy. We will find this relation
useful elsewhere, so we highlight it. Eq. 4 then
yields Rwd ∼ κ

GM1=3. We now use some sleight-
of-hand. Noting that a white dwarf’s mass
changes little as the electron’s fermi energy
transitions from nonrelativistic to relativistic
and the mass transitions from ∼ 0:5 M⊙ to
Mch, and using Eq. 7, we obtain

Rwd ∼
Z

mec
ηp

∼Rplηeηp

∼ 104km

[8]

where we have set M ∼MCh. This relation
powerfully connects the radius of a white
dwarf to the product of the electron Compton
wavelength and the ratio of the Planck mass
to the proton mass. It also provides the white
dwarf radius in terms of the Planck radius.
Putting numbers in yields something of order
a few thousand kilometers, the actual mea-
sured value. We will later compare this radius
with that obtained for neutron stars and de-
rive an important result.

Maximum Mass of a Neutron Star
Neutron stars are supported against gravity
by pressure due to the strong repulsive nu-
clear force between nucleons. Atomic nuclei
are fragmented into their component sub-
atomic particles and experience a phase
transition to nucleons near and above the
density of the nucleus. As we have argued,
the interparticle spacing in the nucleus is
set by the range of the strong force, which
is the reduced pion Compton wavelength
λπ = Z=mπc. Therefore, because the repulsive
nuclear force is so strong, the average density
of a neutron star will be set (very ap-
proximately) by the density of the

nucleus
�
ρnuc ∼

mp

4πλ3π=3

�
. Although nucleons

are fermions, the maximum mass of a neu-
tron star is not determined by the special
relativistic physics that sets the Chan-
drasekhar mass (15). Rather, the maxi-
mum mass of a neutron star is set by
a general relativistic (GR) instability. GR
gravity is stronger than Newtonian gravity,
and at high enough pressures, pressure
itself becomes a source, along with mass,
to amplify gravity even more. The result is
that increasing pressure eventually becomes
self-defeating when trying to support the
more massive neutron stars and the object
collapses. Whereas the collapse of a Chan-
drasekhar mass white dwarf leads to
a neutron star, the collapse of a critical neu-
tron star leads to a black hole.
The critical mass of a neutron star is

reached as its radius shrinks to near its
Schwarzschild radius, 2GM

c2 , say to within a
factor of two (but call this factor βn). GR
physics introduces no new fundamental con-
stants and involves only G and c. Therefore,
the condition for GR instability is R= 2GMβn

c2 .
We can derive the corresponding mass by
using the relation ρ∼ 3M

4πR3. The result is

MNS ∼
�
Zc
G

�3=2 1
m2

p

 
ηπ

2βnηp

!3=2

∼MCh

 
ηπ

2βnηp

!3=2

∝
mp

α3=2g

 
ηπ

2βnηp

!3=2

∝mplη2p

 
ηπ

2βnηp

!3=2

:

[9]

Dropping βn ð∼Oð1ÞÞ, MNS is also even

more simply written as MCh

�
ηπ
ηp

�3=2
. The

Planck mass and the Chandrasekhar mass
appear again, but this time accompanied
by the proton-pion mass ratio and un-
accompanied by 3:1Y2

e . For βn ∼ 2, given the
values of mp and mπ with which we are fa-
miliar, MNS is actually close to MCh. Details of
the still-unknown nuclear equation of state,
GR, and the associated density profiles
yield values for MNS between ∼ 1:5 and
∼ 2:5 M⊙, where eventually we would need
to distinguish between the gravitational mass
and the baryonic mass. We note here that the
fact that the two common types of degenerate
stars—end products of stellar evolution—
have nearly the same mass derives in part
from the rough similarity of the pion and
proton masses.

Of course, the pion mass, mπ , enters
through its role in the nuclear density, as
does Z and mp. c enters through GR and
through its role in setting the range of the
Yukawa potential. G enters due the perennial
combat of matter with gravity in stars. All but
mπ are actors in the Chandrasekhar saga, so
we should not be surprised to see MCh once
again, albeit with a modifying factor. Note
that, because neutron stars are formed when
a white dwarf achieves the Chandrasekhar
mass and critical neutron stars collapse to
black holes, the existence of stable neutron
stars requires that MNS >MCh, with many,
many details. When those details are
accounted for we find that MNS (baryonic) is
about twice MCh, the ratio being comfortably
greater than, but at the same time un-
comfortably close to, unity. Suffice it to say,
stable neutron stars do exist in our universe.
The radius of a neutron star is set by some

multiple of the Schwarzschild radius. The
baryonic mass of a neutron star is set by its
formation and accretion history, but it is
bounded by the minimum possible Chan-
drasekhar mass (recall this is set by Ye).
Therefore, if we set a neutron star’s mass
equal to its maximum, we will not be far off.
The upshot is the formula

Rns ∼ 2
2G
c2

�
Zc
G

�3=2 1
m2

p

∼
Z

mpc
ηp ∼Rplη

2
p:

This equation is very much like Eq. 8 for the
radius of a white dwarf, with mp substituted
for me. Therefore, the ratio of the radius of
a white dwarf to the radius of a neutron star
is simply the ratio of the proton mass to the
electron mass ðηe=ηpÞ, within factors of order
unity. In our universe, ηe=ηp is ∼1,836, but
we can call this “three orders of magnitude.”
Ten-kilometer neutron stars quite natu-
rally imply ∼ 5× 103 to ∼ 104-km white
dwarfs. By now, we should not be surprised
that this ratio arises in elegant fashion from
fundamental quantities using basic physical
arguments.

Minimum Mass of a Neutron Star
The minimum possible mass (Mns) for a sta-
ble neutron star may not be easily realized in
nature. Current theory puts it at ∼ 0:1 M⊙
(16), and there is no realistic mechanism by
which a white dwarf progenitor near such
a mass, inside a star in its terminal stages or
in a tight binary, can be induced to collapse
to neutron star densities. The Chandrasekhar
instability is the natural agency, but MCh

is much larger than ∼ 0:1 M⊙. However,
such an object might form via gravita-
tional instability in the accretion disks of
rapidly rotating neutron stars of canonical
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mass. Mass loss after the collapse of a
Chandrasekhar core is possible by Roche-
lobe overflow in the tight binary, but the
associated tidal potential is quite different
from the spherical potential for which Mns

is derived.
Nevertheless, a first-principles estimate of

Mns is of some interest. What is the physics
that determines it? A white dwarf is sup-
ported by the electron degeneracy pressure of
free electrons, and its baryons are sequestered
in nuclei. A neutron star is supported by the
repulsive strong force between degenerate
free nucleons, and most of its nuclei are
dissociated. Both are gravitationally bound.
One can ask the question: for a given mass,
which of the two, neutron star or white
dwarf, is the lower energy state? Note that
to transition to a neutron star, the nuclei
of a white dwarf must be dissociated into
nucleons, and the binding energy of the nu-
cleus must be paid. Note also that a neutron
star, with its much smaller radius, is the more
gravitationally bound. Therefore, we see that
when the specific (per nucleon) gravitational
binding energy is equal to the specific nuclear
binding energy of the individual nuclei, we
are at Mns. Above this mass, the conversion
of an extended white dwarf into a compact
neutron star and the concomitant release of
gravitational binding energy can then pay the
necessary nuclear breakup penalty. However,
of course, a substantial potential barrier must
be overcome.
In equation form, this can be stated as

GM2

R ∼ΔMc2, where ΔMc2 is the binding
energy of the nucleus. This equation can be
rewritten as GM

Rc2 ∼
ΔM
M = f , where f is the

binding energy per mass, divided by c2. From
the fact that the nucleon is bound in a nu-

cleus with an energy ∼mπc2
�
ηp
ηπ

�2
, we obtain

f ∼
�
ηp
ηπ

�3
(an appropriate extra factor might

be ∼3). In our universe, f is ∼0.01–0.02.
Now, notice that we can rewrite this con-
dition as 2GM

Rc2 ∼ 2f , which is the same as the
condition for the maximum neutron star
mass, with 1

2f substituted for βn in Eq. 9.
Using exactly the same manipulations, we
then derive

Mns ∼MChf 3=2
�
ηπ
ηp

�3=2

∼MCh

�
ηp
ηπ

�3

∼mplη2p

�
ηp
ηπ

�3

:

[10]

The Planck mass and MCh emerge again
(quite naturally), but this time accompanied

by the small factor
�
ηp
ηπ

�3
  

��
mπ
mp

�3�
. Note

that Mns=MNS ∼ ð2βnf Þ3=2 ∝
�
mπ
mp

�4:5
, which

fortunately is a number less than one. How-
ever, to derive the precise value for Mns re-
quires retaining dropped factors and much
more precision, but the basic dependence on
fundamental constants is clear and revealing.

Maximum Mass of a Rocky Planet
A rocky planet such as the Earth, Venus,
Mars, or Mercury is comprised of silicates
and/or iron and is in hydrostatic equilibrium.
If its composition was uniform, its density
would be constant at the solid’s laboratory
value. This value is set by the Coulomb in-
teraction and quantum mechanics (which
establishes a characteristic radius, the Bohr
radius). As its mass increases, the interior
pressures increase and the planet’s matter is
compressed, at first barely and slowly (be-
cause of the strength of materials), but later
(at higher masses) substantially. Eventually,
for the highest masses, many of the electrons
in the constituent atoms would be released
into the conduction band, the material would
be metalized (17), and the supporting pres-
sure would be due to degenerate electrons.
Objects supported by degenerate electrons
are white dwarfs. Therefore, at low masses
and pressures, the (constant) density of
materials and the Coulomb interaction imply
R∝M1=3, whereas at high masses, the object
acts like a white dwarf supported by electron-
degeneracy pressure and R∝M−1=3. This
behavior indicates that there is a mass at
which the radius is a maximum for a given
composition (18). It also implies that there
is a mass range over which the radius of the
object is independent of mass and dR

dM∼ 0. For
hydrogen-dominated objects, this state, for
which Coulomb and degeneracy effects bal-
ance, is where Jupiter and Saturn reside, but
one can contemplate the same phenomenon
for rocky and iron planets. It is interesting to
ask the following question: what is the max-
imum mass ðMrockÞ of a rocky planet, above
which its radius decreases with increasing
mass in white-dwarf-like fashion, and below
which it behaves more like a member of a
constant-density class of objects? This defi-
nition provides a reasonable upper bound to
the mass of a rocky or solid planet. With the
anticipated discovery of many exoplanet
“Super-Earths” in coming years, this issue
is of more than passing interest.
There are two related methods to de-

rive Mrock. The first is to set the expres-
sion for nonrelativistic degeneracy pressure
(P0 = κρ5=30 , where κ is given by Eq. 7) equal
to the corresponding expression for the

central pressure of a constant density object
in hydrostatic equilibrium. The result is

P=
1
2

�
4π
3

�1=3

GM2=3ρ4=30 [11]

The other method is to use the radius-mass
relations for both white dwarfs and constant-
density planets and to set the radius obtained
using one relation equal to that using the
other. Stated in equation form, this is

Rwd ∼ κ
GM1=3 ∼Rrock ∼

�
3M
4πρ0

�1=3
. For both meth-

ods, one needs the density, ρ0, and using ei-
ther method one gets almost exactly the same
result. ρ0 is set by the Bohr radius, aB = Z2

mee2
,

and one then obtains

ρ0 ∼
3mpμ

4πa3B
; [12]

where μ is the mean molecular weight of the
constituent silicate or iron (divided by mp). A
bit of manipulation yields

Mrock ∼mp

 
e2

Gm2
p

!3=2
6
π
Y5=2
e μ1=3

∼mp

�
α

αg

�3=2

∼MChα3=2

∼mplη2pα
3=2:

[13]

Note that Mrock is actually independent of Z,
c, and me.
This equation expresses another extraor-

dinary result: Mrock can be written to scale
with the Planck mass and ηp or the Chan-
drasekhar mass, but multiplied by a power of
the fine-structure constant. The latter comes
from the role of the Coulomb interaction in
setting the size scale of atoms and also indi-
cates thatMrock is much smaller thanMCh, as
onemight expect. As Eq. 13 also shows,Mrock

scales with mp, amplified by the ratio of the
electromagnetic to the gravitational fine
structure constants to the 3/2 power. Plug-
ging numbers into either of these formulas,
one finds that Mrock is ∼ 2× 1030 g
∼ 300 MEarth ∼ 1 MJup. Detailed calcula-
tions only marginally improve on this es-
timate. Note that reinstating the Y5=2

e μ1=3

dependence yields roughly the same value
for both hydrogen and iron planets.

Maximum Mass of a Star
The fractional contribution of radiation pres-
sure [Prad = ð1=3ÞaradT4, where arad =

π2k4B
15Z3c3
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and kB is Boltzmann’s constant] to the total
supporting pressure in stars increases with
mass. At sufficiently large mass, the gas
becomes radiation dominated, and Prad
exceeds the ideal gas contribution PIG =

ρkBT
μmp

.
The entropy per baryon of the star also rises
with mass. If we set βP≡ PIG, where P=
PIG + Prad , thereby defining β, we derive (19)

P=
�
1− β

β4

�1=3� 3kB
μmparad

�1=3 kB
μmp

ρ4=3: [14]

The upshot is that the effective polytropic
gamma (defined assuming P∼ κργ) decreases
from ∼5/3 toward ∼4/3 as the stellar mass
increases. As we argued in the section on the
Chandrasekhar mass, the onset of relativity
makes a star susceptible to gravitational insta-
bility. Photons are relativistic particles. A radia-
tion pressure–dominated stellar envelope can
easily be ejected if perturbed and at the very
least is prone to pulsation if coaxed. Such coax-
ing and/or perturbation could come from nu-
clear burning or radiation-driven winds. With
radiation domination, and given the high opac-
ity of envelopes sporting heavy elements with
high Z, radiation pressure–driven winds can
blow matter away and in this manner limit
the mass that can accumulate. This physics sets
the maximum mass (MS) of a stable star on the
hydrogen-burning main sequence.
Using Eq. 4, with γ = 4=3, Eq. 14, and the

same arguments by which we derived the
Chandrasekhar mass, we find the only mass
for a given κ

MS ∼
�κrad
G

�3=2

∼
�
1− β

β4

�1=2�45
π2

�1=2�
Zc
G

�3=2 1
m2

pμ
2

∼
�
1− β

β4

�1=2�45
π2

�1=2MCh

μ2

∼
�
1− β

β4

�1=2�45
π2

�1=2

mpl
�
ηp=μ

�2
;

[15]

where MCh is our Ye-free Chandrasekhar
mass. Because kB has no meaning indepen-
dent of temperature scale, it does not appear
in Eq. 15. That MCh occurs in MS should not
be surprising, because in both cases the onset
of relativity in the hydrostatic context, for
electrons in one case and via photons in the
other, is the salient aspect of the respective
limits (20). In determining both MCh and
MS, relativity (c), quantum mechanics (Z),
and gravity (G) play central roles.

The ratio of MS to MChðYeÞ depends only
on μ, Ye, β, and some dimensionless con-
stants. Therefore, it is a universal number.
For β= 1=2, Ye = 0:5, and μ∼ 1, we find
MS=MCh ∼ 20, but for smaller βs (a greater
degree of radiation domination), the ratio is

larger
�
∝ 1

β2

�
. The relevant β and actual ratio

depend on the details of formation and wind
mass loss (and, hence, heavy element abun-
dance), and are quite uncertain. Nevertheless,
indications are that the latter ratio could
range from ∼50 to ∼150 (21).
As an aside, we note that one can derive

another (larger) maximum mass associated
with general relativity by using the fact that
the fundamental mode for spherical stellar
pulsation occurs at a critical thermodynamic
gamma (γ1).

† Including the destabilizing ef-
fect of general relativity, this critical γ1 equals
4=3+K GM

Rc2 , where K ∼ 1. A mixture of ra-
diation with ideal gas for which radiation is
dominant has a γ1 of ∼ 4=3+ β=6 (6). One
could argue that, if the temperature is high
enough to produce electron-positron pairs,
then γ1 would plummet and the star would
be unstable to collapse. Hydrostatic equilib-
rium suggests that the stellar temperature
times Boltzmann’s constant when pairs start
to become important would then be some
fraction of ∼mec2 and would equal GMmp

R .
This correspondence gives us an expres-
sion for GM

Rc2 ð∼ηp=ηeÞ and, therefore, that
β=6∼me=mp = ηp=ηe. Using Eq. 15, we find
a maximum stellar mass due to general-
relativistic instability and pair production
near ∼106 M⊙, close to the expected value
(22). Because other instabilities intervene
before this mass is reached, this limit is not
relevant for the main sequence limit.
However, the facts that (i) MS is much

greater thanMCh and (ii) their ratio is a large
constant are interesting. Therefore, we can
take some comfort in noting that because MS

is much larger than MCh, white dwarfs,
neutron stars, and stellar-mass black holes, all
stellar “residues” that would be birthed in
stars are allowed to exist.

Minimum Mass of a Star
Stars are assembled from interstellar medium
gas by gravitational collapse. As they con-
tract, they radiate thermal energy and the
compact protostar that first emerges is in
quasi-hydrostatic equilibrium. Before achiev-
ing the hydrogen-burning main sequence, the
protostar becomes opaque and radiates from
a newly formed photosphere at a secularly
evolving luminosity. The progressive loss of

energy from its surface occasions further
gradual quasi-hydrostatic contraction. In
parallel, the central temperature increases
via what is referred to as the “negative spe-
cific heat” effect in stars. Energy loss leads to
temperature increase. From energy conser-
vation, the change in gravitational energy
(loosely −GM2

2R ) due to the shrinkage is equal
to the sum of the photon losses and the
increase in thermal energy, in rough equi-
partition. Using either hydrostatic equilib-
rium or the Virial theorem and the ideal
gas law connecting pressure with tempera-

ture
�
P= ρkBT

μmp

�
, we obtain

kBTint ∼
GMmpμ

3R
∼GμmpM

2=3ρ1=3; [16]

where μ is the mean molecular weight (of

order unity), and R∼
�
3M
4πρ

�1=3
has been used.

We note that Eq. 16 demonstrates that the
temperature increases as the star shrinks.
However, the negative specific heat is an

indirect consequence of the ideal gas law. As
the protostar contracts and heats, its density
rises. In doing so, the core entropy decreases
(despite the temperature increase) and the
core becomes progressively more electron
degenerate. When it becomes degenerate, be-
cause degeneracy pressure is asymptotically
independent of temperature, further energy
loss does not lead to a temperature increase
but a decrease. Hence, there is a peak in the
core temperature that manifests itself at the
onset of core degeneracy. The standard ar-
gument states that if at this peak temperature
ðTmaxÞ the integrated core thermonuclear
power is smaller than the surface luminosity
(also a power), then the star will not achieve
the hydrogen main sequence. It will become
a brown dwarf, which will cool inexorably
into obscurity, but over Gigayear timescales.
The mass at which Tmax is just sufficent for
core power to balance surface losses is the
minimum stellar mass (Ms). Below this mass
is the realm of the brown dwarf. Above it
reside canonical, stably burning stars (23).
We can use Eq. 16 to derive the critical

mass in terms of Tmax . A gas becomes de-
generate when quantum statistics emerges to
be important. For an electron, this is when
the deBroglie wavelength of the electron
(λ= h

mev
, where v is the average particle speed)

approaches the interparticle spacing
�
μmp

ρ

�1=3
.

It is also when the simple expression for the

ideal gas pressure
�
= ρkBT

μmp

�
equals the simple

expression for the degeneracy pressure
(P= κρ5=3, where κ is given by Eq. 7). We use

†γ1 is the logarithmic derivative of the pressure with respect to the
mass density at constant entropy.
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the latter condition and derive an expression
for Tmax

kBTmax ∼
μmp

κ
G2M4=3 ∼

G2μm8=3
p me

Z2Y5=3
e

M4=3:

[17]

The textbooks state thatMs is then derived
by setting Tmax to some ignition temperature
(frequently set to 106 K), and then solving for
M in Eq. 17. In this way, using measured
constants and retaining a few dropped co-
efficients, one derives Ms ∼ 0:1 M⊙ and this
number is rather accurate.
However, this procedure leaves unex-

plained the origin of Tmax ∼ 106 K‡ and here
we depart from the traditional explanation to
introduce our own. There are two things to
note. First, Ms is not determined solely by
thermonuclear considerations—photon opac-
ities, temperatures, densities, and elemental
abundances (metallicity) at the stellar surface
set the emergent luminosity that is to be
balanced by core thermonuclear power. Sec-
ond, the ignition temperature is not some
fundamental quantity but is in part de-
termined by the specific nuclear physics of
the relevant thermonuclear process, in this
case the low-temperature exothermic proton-
proton reactions to deuterium, 3He, and 4He.
Hence, we would need the details of the in-
teraction physics of the proton-proton chain,
integrated over the Maxwell-Boltzmann dis-
tribution of the relative proton-proton ener-
gies and over the temperature and density
profiles of the stellar core. However, a simpler
approach is possible (20). We can do this
because the thermonuclear interaction rate is
greatest at large particle kinetic energies,
which are Boltzmann suppressed ð∝ e−E=kBTÞ,
and because Coulomb repulsion between
the protons requires that they barrier pen-
etrate (quantum tunnel) to within range of
the nuclear force. This fact introduces the
Gamow factor (24)

e−
2e2
Zv = e−

2αc
v = e−

bffiffi
E

p
; [18]

where E= 1=2μpv
2, μp here is the reduced

proton mass ðmp=2Þ, v is the relative speed,

and this equation defines b as αc
ffiffiffiffiffiffiffiffiffiffi
μp=2

q
. The

reaction rate contains the product of the
Boltzmann and Gamow exponentials and
the necessary integral over the thermal Max-
well-Boltzmann distribution yields another
exponential of a function of T. That function

is determined by the method of steepest de-
scent, whereby the product of the Boltzmann
and Gamow factors is approximated by the
exponential of the extremal value of the argu-
ment: − E

kBT
− bffiffi

E
p . That Gamow peak energy

ðEgamÞ is ðbkBT=2Þ2=3. The result is a term

e−
E

kBTe−
bffiffi
E

p
→ e−

3Egam
kBT ; [19]

in the thermonuclear rate. Although the surface
luminosity depends on metallicity and details of
the opacity, that dependence is not very strong
(23). Furthermore, due to the Boltzmann and
Gamow exponentials (Eq. 19), any characteristic
temperature we might derive (which might be
set equal to Tmax) depends only logarithmically
on the problematic rate prefactor. This argu-
ment allows us to focus on the argument of
the exponential in Eq. 19. Therefore, we set
3Egam
kBT

in Eq. 19 equal to a dimensionless number
fg of order unity (but larger) and presume that
it, whatever its value, is a universal dimension-
less number, to within logarithmic terms. The
resulting equation for the critical T is

kBTmax =
27
16f 3g

α2mpc
2 [20]

In Eq. 20, both α and mp come from the 2e2
Zv

term associated with Coulomb repulsion in
Gamow tunneling physics. Setting Tmax in
Eq. 20 equal to Tmax in Eq. 17, we obtain

Ms ∼mpl

 
ηp

f 9=8g

!2 
ηe
ηp
α2
!3=4 

27π2

8

!3=4
Y5=4
e

μ3=4

∼
MCh

f 9=4g

 
ηe
ηp
α2
!3=4�

27π2

8

�3=4Y5=4
e

μ3=4

∼mp

 
e2

Gm2
p

!3=2 
ηe
ηp

!3=4 
27π2

8f 3g

!3=4
Y5=4
e

μ3=4

∝mp

 
α

αg

!3=2 
ηe
ηp

!3=4

∝mplη2pα
3=2

 
ηe
ηp

!3=4

:

[21]

If we now set fg ∼ 5 and use reasonable values
for Ye and μ, we finally obtain a value of
∼ 0:1 M⊙ for Ms.
Importantly, we tethered the minimum

main sequence mass to the fundamental con-
stants G, e, me, and mp, but in fact c and h�
have cancelled! Ms depends only on mp and
the ratio α=αg in a duel between electro-

magnetism and gravity. The last expression
for Ms in Eq. 21 reveals something else. It
is the same as the expression in Eq. 13
for the mass of the largest rocky planet�
mp

�
α
αg

�3=2�
, but with an additional factor of

ðηe=ηpÞ3=4. This factor is ∼300 and is, as one
would expect, much larger than one. As
a result, we find that, given our simplifying
assumptions and specific values for Ye and μ,
Ms=Mrock depends only on ðηe=ηpÞ3=4. For
measured values of mp and me, Ms=Mrock is
then ∼100; the mass of the lowest mass star
exceeds that of the most massive rocky
planet. If we now scale Ms to the detailed
theoretical value of Mrock, we obtain a value
for Ms that is within a factor of 2–3 of the
correct value. This quantitative correspon-
dence is a bit better than might have been
expected but is heartening and illuminating
nevertheless.

Characteristic Mass of a Galaxy
For stars and planets, we were not concerned
with whether they could be formed in the
universe (nature seems to have been quite
fecund, in any case), but with the masses (say,
maximum and minimum) that circumscribed
and constrained their existence. However, be-
cause of the character of galaxies (as accu-
mulations of stars, dark matter, and gas), the
mass we derive for them here is that for the
typical galaxy in the context of galaxy for-
mation, and we find this approach to be the
most productive, informative, and useful.
First, we ask the following. Is it obvious on

simple physical grounds that a galaxy mass
will be much greater than a stellar mass, i.e.
that a galaxy will contain many stars? The
distribution of the stellar masses of galaxies
ðMstar;galÞ is empirically known to satisfy the
so-called Schechter form with probabilities
distributed as

dP∝
�
Mstar;gal=M p

�−αp e−Mstar;gal=Mp

3 d
�
Mstar;gal=M p

�
;

[22]

with αp typically having the value of ∼1.2 and
Mp a constant with units of mass. Given this
form, with a weak power law at low masses
and an exponential cutoff at high masses,
there is a characteristic mass for galaxies,
hMstar;gali, the value being somewhat greater
than Mp, or roughly 1011 M⊙; galaxies much
more massive than this are exponentially rare.
At the other extreme, there is very little mass
bound up in galaxies having masses much less
than 107 M⊙. The observed range of masses
seems to be set by fundamental physics in
that it does not appear to be very dependent‡A better number for Tmax is ∼ 3:5×106 K.
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on the epoch of galaxy formation or the en-
vironment in which the galaxies are formed
(e.g., in clusters, groups, or the field).
The theory of galaxy formation is by now

fairly well developed, with ab initio hydro-
dynamic computations based on the stan-
dard cosmological model providing reason-
ably good fits to the formation epochs,
masses, sizes and spatial distributions of gal-
axies, although this theory still provides
rather poor representations of their detailed
interior structures. For a recent review of
some of the outstanding problems, see
Ostriker and Naab (25). In the standard
ΛCDM cosmological model, the mean den-
sity of matter at high redshifts is slightly less
than the critical density for bound objects to
form. However, there is a spectrum of per-
turbations such that those that are several σ
more dense than average are gravitationally
bound and will collapse, with the dark matter
and the baryons forming self-gravitating
lumps of radius Rhalo, determined by the re-
quirement that the density of the self-gravi-
tating system formed in the collapse is several
hundred times the mean density of the uni-
verse at the time of the collapse (26). The
temperature of the gas (absent cooling) will
be the virial temperature (C2 ∼GMtot=Rhalo,
where C is the speed of sound). If the gas can
cool via radiative processes given its tem-
perature and density, it will further collapse
to the center of the dark matter halo within
which it had been embedded and will form
a galaxy, some fraction of the gaseous mass
being formed into stars and a comparable
fraction ejected by feedback processes sub-
sequent to star formation.
The lower bound for normal galaxy masses

is not well understood but is thought to be
regulated by mechanical energy input pro-
cesses such as stellar winds and supernovae,
all primarily driven by the most massive
ð≥20 M⊙Þ stars comprising approximately
one-sixth of the total stellar mass. One can
easily show that roughly 1051 ergs in me-
chanical energy input per star is able to drive
winds from star-forming galaxies with ve-
locities of ∼300 km/s, and Steidel et al. (27)
observed such winds to be common. Because
velocities of this magnitude are comparable
to the gravitational escape velocities for sys-
tems less massive than our Milky Way, gal-
axy formation becomes increasingly inef-
ficient for low-mass systems and essentially
ceases when the sound speed of gas photo-
heated by the ultraviolet radiation from
massive stars (10→ 20 km/s) approaches the
escape velocity of low-mass dark matter
halos. The result is a lower bound for normal
galaxies and, in fact, the escape velocity from

galaxies near the observed lower bound is of
the order 30 km/s (26).
The physical argument for the upper

bound and the typical mass is somewhat
more complex. A collapsing proto-galactic
clump has an evolving density (ρ) and tem-
perature (T). Its collapse timescale (tf) is set
by the free-fall time due to gravitation and is
proportional to 1=

ffiffiffiffiffiffi
Gρ

p
. As the clump col-

lapses and the temperature and density rise,
the gas radiates photons. Its associated char-
acteristic cooling time (tc) is the ratio of the
internal energy density to the cooling rate.
Because the cooling rate per gram (Eq. 23)
scales as density to a higher power than the
free-fall rate, only the most overdense per-
turbations can cool on a time comparable to
the free-fall time. Those for which tc � tf
will never form stars on either the free-fall
time or the only somewhat (factor of 20)
longer Hubble time. Moreover, because the
highest-density regions are exponentially
rare, perturbations having tc � tf are un-
common. Thus, the condition tf ∼ tc sets
a natural and preferred scale for galaxy for-
mation. How does this scale compare with
the Jeans mass ðMJeansÞ, the mass for which
gravitational and thermal energies are in
balance and which is proportional to
T3=2=ρ1=2? In principle, the tf ∼ tc condition
will imply a relationship between T and ρ
that might yield Mstar;gals and MJeans that are
functions of ρ or T and, hence, may not be
universal. A wide range of values for Mgal

would vitiate the concept of a preferred
mass scale.
However, here nature comes to the rescue.

The cooling rate (energy per volume per
time) of an ideal gas of hydrogen can be ap-
proximated (following refs. 7, 8, and 28) by
the formula

ΛC ∼
�
Abf +Aff T

� ρ2

T1=2
; [23]

where Abf is the bound-free (recombination)
rate coefficient, and Aff is the corresponding
free-free (bremsstrahlung) rate coefficient. For
the exploratory purposes of this study, these
coefficients are

Aff ∼
29=2π1=2

33=2
e4αk1=2B

m3=2
e m2

pc
2

Abf ∼ α2
mec2

kB
Aff :

[24]

In Eqs. 23 and 24, me, e, and α appear due to
the importance of electromagnetic radiation
processes. As Eq. 23 suggests, free-free cooling
exceeds bound-free cooling at high temperatures.

Eq. 24 indicates that the cross-over tem-
perature, below which recombination cool-
ing predominates, is ∼ α2mec2

kB
, which, using

measured numbers, is ∼ 3× 105 K. The
temperatures of relevance during the incipient
stages of galaxy formation are not much larger
than this, so we can neglect the Aff term in Eq.
23 and find that ΛC ∝ ρ2

T1=2. For an ideal gas, the
internal energy density is 3=2ρkBT

μmp
. Therefore,

tc ∼ ρkBT
mpΛC

∝T3=2=ρ. Because tf ∝ 1=ρ1=2, tc=tf
is proportional to T3=2=ρ1=2; this is propor-
tional to MJeans, the Jeans mass! Therefore,
we find that the tc=tf ∼ 1 condition filters out a
specific mass. What is its value? From tc=tf ∼ 1
and the proper expression for MJeans ð=MgalÞ,
we derive

Mgal ∼mp
α5

α2g

 
ηe
ηp

!1=2

∼MChηpα
5

 
ηe
ηp

!1=2

∼mplη3pα
5

 
ηe
ηp

!1=2

:

[25]

Note that, with Eq. 25, we obtained Mgal not
only in terms of mpl, ηp, ηe, and α, but should
we wish to so express it, in terms of the familiar
constants G, h� , and c (as well as ηe, ηp, and α).
Note also that ηp is a very large number and
more than compensates for the smallness of α5.
The appearance of me, c, and α is a natural
consequence of cooling’s dependence on elec-
tromagnetic processes. As an indication of the
importance of quantummechanics in determin-
ing galaxy characteristics, h� does not cancel.
For measured values of the fundamental

constants and retaining the prefactor drop-

ped in Eq. 25
�
25=2π7=2

27

�
, but retained in Silk

(8), we find Mgal ∼ 1011 M⊙, reassuringly
close to the characteristic mass in stars ðMpÞ of
the average Lp galaxy in our universe. More-
over, one can derive a Jeans length and, hence,
a length scale for this average galaxy. It is

Rgal ∼
Z

mec
α3η2p

 
ηe
ηp

!1=2

∼Rplα
3

 
ηe
ηp

!3=2

;

an expression that scales with the Compton
wavelength of the electron. Plugging in mea-
sured numbers gives Rgal ∼ 50 kiloparsecs,
a number well within reason in our universe
(and, in fact, for our own Milky Way).
Although it is reassuring that the critical

mass that appears from our dimensional
analysis corresponds well to the upper mass
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range of normal galaxies, we are left with two
questions. First, there exist galaxies that are
up to ∼10 times greater in mass than Mp;
how do these form? Second, what happens to
dark matter lumps that are much more
massive than this critical mass and are dense
enough to collapse? The answer to the first
question is becoming observationally clear.
All of these supergiant galaxies are brightest
cluster galaxies (BCGs). We now know that
they form at early times, reach a mass com-
parable to Mp, and cease star formation but
keep on growing in mass (by roughly a factor
of 2–3) and size (by roughly a factor of 4–8).
The process by which this happens is “ga-
lactic cannibalism” (29), by which gravita-
tionally induced dynamical friction causes
the inspiral of satellite galaxies to merge with
the central galaxy. Thus, the excessive mass
of BCGs is caused by a distinct process of
mass growth. With regard to the second
question, the answer again lies in observa-
tions of groups and clusters. If these giant,
self-gravitating units (dark matter halos) have
total masses far above ðΩmatter=ΩbaryonÞ Mp,
i.e. greater than 1012 M⊙, then they host not
one giant mass galaxy but rather a distribu-
tion of galaxy masses, the distribution of
which is given by Eq. 22.§ Thus, we find it
natural that most of the mass in the universe
is in stellar systems containing roughly
1011 stars, each with mass between the limits
Ms and MS, which both scale with the
Chandrasekhar mass.

Conclusion
We now recapitulate in succinct form most
of the masses discussed in this paper. First,
we express our results in the most funda-
mental units

Mrock ∼mplη2pα
3=2

Ms ∼mplη2pα
3=2

 
ηe
ηp

!3=4

MS ∼ 50mplη2p

MCh ∼mplη2p

MNS ∼mplη2p

 
ηπ

2βnηp

!3=2

Mns ∼mplη2p

 
ηp
ηπ

!3

Mgal ∼mplη3pα
5

 
ηe
ηp

!1=2

:

[26]

Eq. 26 reduces the maximum mass of a rocky
planet ðMrockÞ, the minimum mass of a star
(Ms), the maximum mass of a star (MS), the
maximum mass of a white dwarf (MCh), the
maximum mass of a neutron star (Mmax),
the minimum mass of a neutron star (Mns),
and the characteristic mass of a galaxy (Mgal) to
only five simple quantities and makes clear
a natural mass hierarchy related only to mp,
particle mass ratios, and the αs. We expressed
the basics of important astronomical objects
with only five constants, modulo some dimen-
sionless numbers of order unity. Eq. 26 summa-
rizes the interrelationships imposed by physics
between disparate realms of the cosmos.
Alternatively, it is instructive to put these

same relations into a somewhat more familiar
form. We drop all dimensionless constants of
order unity and summarize the relations de-
rived for the masses of astronomical bodies in
units of the Chandrasekhar mass (which is
close to a solar mass), the three particle masses
(mp, mπ , and me), and the Planck mass, mpl,
with MCh ∼mpðmpl=mpÞ3 ∼ 1M⊙.
We found that neutron stars can exist

within the range

�
mπ=mp

�3 <M=MCh <
�
mp=mπ

�3=2
:

Normal stars can exist within the range

��
mp=me

�
α2
�3=4 < ðM=MChÞ< ∼ 50;

and rocky planets can exist with masses

M=MCh < α3=2;

which is comfortably smaller than the mini-
mum mass of stars. Finally, normal galaxies
have a characteristic mass

M=MCh ∼ α5
�
mpl=mp

��
mp=me

�1=2
;

which is larger than the characteristic mass of
both normal low mass stars and even the
most massive stars by a very large factor.
Everything astronomical is indeed con-

nected, and that the essence of an object can
be reduced to a few central quantities is one
of the amazing consequences of the unifying
character of physical law. Indeed, in this ex-
ercise, we focused on stars, planets, and gal-
axies, avoided complexity, eschewed any hint
that emergent phenomena might be of fun-
damental import, and ignored topics such as
life and the ubiquitous complexity that clut-
ters most experience. Rather, our goal here
was to understand and articulate the simple
connections inherent in the universal opera-
tion of a small number of physical principles
and fundamental constants and to identify
the ties between seemingly unrelated, but key,
astronomical entities. We hope we conveyed
to the reader that not only are these con-
nections knowable and quantifiable but that
they are both simple and profound.
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