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NOTE

Falling Slugs

The fall of viscous slugs in vertical capillary tubes is described.
Deviations toward Poiseuille law are analyzed by taking into ac-
count the dissipation in menisci, together with the existence of a
film behind the slug. Slugs are found to fall slower in dry tubes than
in prewetted ones, which is quantitatively discussed in term of vis-
cous friction. A criterion for the minimal length of the slug obeying
the Poiseuille solution is finally derived. C© 2001 Academic Press
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INTRODUCTION

A very simple way to measure the viscosity of a liquid consists of
termining the velocity with which a liquid slug moves downward in a ca
illary tube. If the slug is long enough, the velocity simply results from
balance between viscous force and gravity, which leads to the Poise
law,

Vo = ρgR2

8η
, [1]

whereρ andη are, respectively, the liquid density and viscosity, andR the tube
radius. Equation [1] is independent of the slug lengthL, since the latter quantity
fixes both the weight and the viscous force. If it is obeyed, the liquid visco
can be simply deduced from the slug velocity. We also supposed that the
wets the tube material. In a partial-wetting situation, the slug can stay at
because of the contact-angle hysteresis: if the capillary force associated
the latter is larger than the weight (i.e., for short slugs), the slug sticks to
tube.

DRY VERSUS WET

Experiments were made using a glass tube of inner radiusR= 127µm and
a wetting silicone oil of surface tensionγ = 20.6 mN/m, density 0.95, an
viscosityη = 16.7 mPa.s (measured with a classical Ostwald viscosimeter)
fall velocity is expected from Eq. [1] to be 1.12 mm/s. The different experime
lead to a fall velocity significantly lower than this value, as shown in Fig. 1, wh
the velocityV is plotted as a function of the slug lengthL (the horizontal dashed
line illustrates Eq. [1]). Because of a film left behind, the drop gets shorter du
the fall—but we checked that this variation remained always smaller than
which allowed us to consider the slug velocity a constant during the w
motion.

The shorter the slug, the smaller the velocity, and the effect is more
nounced if the tube is dry than if it is prewetted with a thin film of the sa
liquid. Such a film was obtained by first moving a slug at a constant
locity along the tube, producing the deposition of a film of constant th
nessh = 1.5 µm. In both cases, the velocity tends toward the value gi
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by Eq. [1] for very long slugs (at least 5 cm), much larger than the t
radius.

ZOOM ON BOTH INTERFACES

It is also observed that the front meniscus is flatter than the rear one.
effects contribute to this effect, as shown in Fig. 2: (i) a dynamic (advanc
contact angle sets up at the front, which flattens the meniscus; (ii) the film
behind reduces the radius of the rear meniscus. This kind of situation has
theoretically investigated by Jensen (1), and we restrict ourselves here
simplified case where the variation of the slug length during its motion ca
neglected, along with the flows inside the film.

The radii of curvatureRa (>R) andRr (<R) of the menisci generate Laplac
pressures which do not compensate and thus are a force opposing the m
The stationary regime is found by balancing the pressure drop due to visc
along the slug (the Poiseuille term) with gravity lowered by this Laplace pres
difference. This balance is written as

8ηV

R2
L = ρgL + 2γ cosθ

R
− 2γ

R− h
, [2]

whereγ is the liquid surface tension,θ the dynamic contact angle, andh the
difference between the tube radius and the actual meniscus radius. As s
by Bretherton (2),h is proportional toh∞, the thickness of the film deposite
behind the rear meniscus. When both the angle and the film thickness are
(θ ¿ 1 andh¿ R), which physically corresponds to slow motions, Eq.
becomes

8ηV

R2
L = ρgL − 2γ

R

(
θ2

2
+ h

R

)
. [3]

The dynamic angleθ and the thicknessh are generated by viscosity, and a
limited by surface tension. Thus, they are both expected to be a function o
capillary numberCa, which compares these forces (Ca= ηV/γ ). In the same
limit as previously (Ca¿ 1) and for wetting liquids, it is indeed the case:h
obeys Bretherton’s law (h/R= 2.9h∞/R= 3.88Ca2/3) (2), while θ is given
by Hoffman–Tanner’s law (θ= αCa1/3, with α a numerical constant of th
order of 4–5, for a dry tube) (3, 4).

One way to understand Tanner’s law is to derive the viscous forcefη in
the liquid wedge (5–7), which can be written, per unit length of the con
line

fη = 3η
∫

V

θx
dx, [4]

wherex is the coordinate along the tube (x = 0 defines the position of the conta
line) and the local thicknessy in the meniscus is linearized in the vicinit
of the contact line (y = θx). The coefficient 3 comes out from the detail
2
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FIG. 1. Velocity V of a liquid slug falling in a vertical tube as a functio
of its lengthL. Experiments were done in a glass tube of inner radius 127µm,
using silicone oil (which totally wets the tube wall) of density 0.95, viscos
16.7 mPa.s, and surface tension 20.6 mN/m. Open symbols, dry tube; c
symbols, tube prewetted with a film of thickness 1.5µm. The data are compare
with Eq. [1] (horizontal dashed line) and Eq. [7]. Solid line,0 = 15.3 (dry
tube); dotted line,0 = 5.1 (prewetted tube); dashed line, correction of Eq.
by Jensen’s theory for a prewetted tube.

calculation (7). Introducing natural cutoff lengths (a molecular sizea and the
tube radiusR) allows a treatment of the logarithmic divergence of the integ
which finally gives

fη = 3ηV

θ
ln (R/a). [5]

The logarithmic factor0 = ln(R/a) can be considered a constant, of t
order of 13 for a millimetric tube. The stationary shape of the dyna
meniscus can finally be expressed by balancing the viscous forcefη with
the capillary one (γ θ2/2), which yields θ = (60Ca)1/3. For 0= 13, the
numerical coefficient in the latter law is 4.3, in close agreement with Hoffm
data (3).

FIG. 2. Effects of the liquid viscosity on the shapes of the front and r
interfaces. The dynamic contact angle at the front flattens the interface

film is deposited behind, which increases the curvature of the rear menis
Both effects reduce the speed of the falling slug.
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Introducing Hoffman–Tanner’s and Bretherton’s laws in Eq. [3] leads to
equation for the motion

8ηV

R2
L = ρgL − 2γ

R
βCa2/3, [6]

with β a numerical coefficient (β = (60)2/3/2+ 3.88) of the order of 10, for a
dry tube. Thus, the deviation toward Poiseuille law expressed by Eq. [6] is ma
due to the dynamical angle at the front, since the correction due to the depo
film is 30% of the previous one. Equation [6] can finally be simplified, using
maximum velocityVo (Eq. [1]) and a lengthLo defined byLo = β(γ R/8ρg)1/3.
We find

L = Lo
(V/Vo)2/3

1− V/Vo
, [7]

whereVo clearly appears to be the limit for the velocity at large slug leng
L. For a slug length equal to the characteristic lengthLo, V is only 43% ofVo.
Lo only depends on the static parameters of the problem (γ, ρ, andR), and is
typically of about several millimeters.

COMPARISON WITH THE DATA

Figure 1 shows that Eq. [7] fits quite well the experimental data obtained
a dry tube (open diamonds). The figure also stresses the (logical) increase
slug velocity due to the prewetting film. This can be understood phenom
logically as a reduction of the coefficient0 in Tanner’s law, and consequentl
of Lo in Eq. [7]: since the slug is lubricated by the film, the minimal cu
off length in the derivation of Eq. [5] is no longer a molecular size, but c
be taken as the thicknessh0 of the prewetting film.0 is written as ln(R/h0),
which gives0 = 4.5 for h0 = 1.5 µm, in good agreement with the fit dis
played in Fig. 1 (in dotted line). Another solution to the problem was rece
proposed by Jensen, who carefully derived the Stokes equation for the
geometry and boundary conditions (1). In the case whenh0/R andCaare of the
same order, he found that the presence of a film induces an additive corre
to Tanner’s law:θ2 = (13.5Ca)2/3 − 2.55h0/R. Then, Eq. [3] is corrected as
well as Eqs. [6] and [7] which can finally be compared with the data (da
dotted line). A good agreement is found once again between the experim
data and the argument presented above. More systematic experiments r
to be done to discriminate between the models and to more precisely d
mine the friction, in particular as a function of the thickness of the prewet
film.

The characteristic lengthsLo are respectively found to be 3.8 mm for th
dry tube and 1.6 mm for the prewetted one. This experiment finally provide
experimental framework for simple measurements of the viscosity using fa
slugs. It is found that slugs much longer thanLo must be used (L À Lo), which
in practicality means slugs of several centimeters. Then, corrections due t
dynamic angle and to the presence of a film at the rear of the slug can be ign
and Eq. [1] simply used.

Note finally that this analysis is restricted to the use of small capillary
Reynolds numbers. At largeCa and for a forced slug, both the dynamic ang
(which reaches 180◦) and the film thickness converge toward a limit indepe
dent ofCa (8). But a slug always falls at a capillary number smaller than
Equation [1] shows that the capillary number is at mostR2κ2/8, notingκ−1

the capillary length. Since we haveR< κ−1, we immediately getCa< 1. On
the other hand, the Reynolds numberρRV/η can become of the order of 1 o
larger, using liquids of small viscosity. Then, the problem formally becom
much more complicated, because of (small) corrections on both the dyn
angle (9) and the thickness of the deposited film (10).
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