
SHELL BURNING STARS: Red Giants and Red Supergiants

There is a large variety of stellar models which have a distinct core – envelope structure.
While any main sequence star, or any white dwarf, may be well approximated with a single polytropic
model, the stars with the core – envelope structure may be approximated with a composite polytrope:
one for the core, another for the envelope, with a very large difference in the “K” constants between
the two. This is a consequence of a very large difference in the specific entropies between
the core and the envelope. The original reason for the difference is due to a jump in chemical
composition. For example, the core may have no hydrogen, and mostly helium, while the envelope
may be hydrogen rich. As a result, there is a nuclear burning shell at the bottom of the envelope;
hydrogen burning shell in our example. The heat generated in the shell is diffusing out with radiation,
and keeps the entropy very high throughout the envelope. The core – envelope structure is
most pronounced when the core is degenerate, and its specific entropy near zero. It is
supported against its own gravity with the non-thermal pressure of degenerate electron gas, while
all stellar luminosity, and all entropy for the envelope, are provided by the shell source.

A common property of stars with well developed core – envelope structure is not only a very
large jump in specific entropy but also a very large difference in pressure between the center, Pc,
the shell, Psh, and the photosphere, Pph. Of course, the two characteristics are closely related to
each other. In a main sequence star, or in a white dwarf, we have Pc/Pph ≫ 1, and this makes a
star a very well defined object, with a distinct surface. A star with a core – envelope structure has
Pc/Psh ≫ 1, as well as Psh/Pph ≫ 1, and hence the core is like a star in its own right, with the
shell providing the outer boundary condition, just like the photosphere provides the outer boundary
condition for the envelope. In the core – envelope star the boundary conditions for the envelope are
provided by the photosphere on the outside, and by the core surface on the inside. In a detailed
stellar model there is never a true discontinuity in any physical quantity. Nevertheless, it is useful
to imagine the core and the envelope as two stars which interface each other at the shell source.

The origin of the core – envelope structure may always be traced to the development of a self-
gravitating core, i.e. to the condition Pc/Psh ≫ 1, and the “Schonberg – Chandrasekhar
limit”. Once an isothermal core becomes self-gravitating, it remains self-gravitating forever, even
if a new nuclear fuel ignites in the core, and the core is no longer isothermal. The reason is that
pressure required to sustain helium burning is orders of magnitude higher than pressure required to
sustain hydrogen burning. Therefore, even in a composite model with a helium burning core and a
hydrogen burning shell we still have Pc/Psh ≫ 1.
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Stars with a core – envelope structure are called giants. They have photospheric radii
which are much larger than radii of main sequence stars. They come in many varieties, the most
common are red giants and blue giants. Red giants are stars which have envelopes expanded all the
way to the Hayashi limit, their photospheres are cool, with Teff between 2000 K and 4000 K , hence
their red color, and their name. Blue giants have hot photospheres, with Teff between 104 K and
3 × 104 K , hence their blue color, and their name. There is no simple rule that might tell when a
star may become a red or a blue giant. This may depend on small changes in the profile of chemical
composition, e.g. on the details of variation of hydrogen abundance with mass fraction, X(Mr). In
fact, in many cases a star with exactly the same hydrogen profile, X(Mr), may be either a red giant,
or a blue giant, depending on its previous evolution. This is a direct consequence of invalidity of
the so called “Vogt – Russell theorem”, and a multitude of equilibrium solutions for a given profile
of chemical composition. In one case up to 9 different equilibrium models were found for a fixed
total mass M , and a fixed hydrogen profile X(Mr) (M. Kozlowski and B. Paczynski 1973, Acta

Astronomica, 23, 65). Many of those were stable.

We shall concentrate on one particular red giant model, that is the simplest and also the most
extreme. The helium core will be degenerate, hydrogen burning shell will be the only
energy source, and the very extended envelope will be convective. Numerical models
show that the radius of hydrogen burning shell is slightly larger than radius of a white dwarf with
the mass equal to the helium core mass. It is slightly larger because the shell itself is not degenerate,
and there is a thin, non degenerate layer below it. Between the shell and a very extended convective
envelope there is an intermediate radiative zone, which has a very simple structure. There
are no energy sources within this zone, and its mass is very small compared to the core or envelope
mass. Therefore, we may calculate its structure assuming Mr ≈ Mc, and Lr = L, where Mc is the
core mass, and L is the total stellar luminosity.
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The equations of hydrostatic and radiative equilibria may be written as
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Assuming that opacity is given by electron scattering, i.e. κ = 0.2(1 + X) = const, and dividing
equations (rg1.2) and (rg1.1) side by side we obtain
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The last equation may be integrated to obtain
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P + C1, (rg1.4)

where C1 is the integration constant. In many numerical models the intermediate radiative zone
may extend from T = 108 K at the hydrogen burning shell out to T = 105 K at the bottom of
the convective envelope, i.e. over many orders of magnitude variation of T 4. The constant C1 can
be calculated from the matching conditions between the radiative zone and the outer convective
envelope, and it is very important near the radiative – convective boundary. However, deep inside
the radiative zone the other two terms in the equation (rg1.4) become much larger than the constant
C1, and C1 may be neglected. Therefore, as long as we are well below the radiative – convective
boundary, we have the approximate relation
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, (rg1.6)

is the Eddington luminosity for the core.
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From the equation of state
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we may calculate density to be
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This may be combined with the equation of radiative equilibrium (rg1.2) to obtain
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The last equation may be written as
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and taking into account equation (rg1.5) this becomes
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which may be integrated to obtain
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+ C2, (rg1.12)

where C2 is the integration constant. Just as before, the numerical value of the constant C2 may
be obtained from the interface between the radiative zone and the outer convective envelope. This
constant is very important near the interface, but at small radii, near the hydrogen burning shell
source the other two terms in the equation (rg1.12) are much larger than C2, and C2 may be
neglected.

The equations (rg1.8) and (rg1.12) may be written as
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[ K ], (rg1.13)
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where µ−1 = 2X + 0.75Y + 0.5Z.
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Now we may check how reasonable was our assumption that mass of the radiative zone described
with equations (rg1.13) and (rg1.14) is small. Let us calculate mass between two radii, r1 and r2

using density distribution given with equation (rg1.14) ; we obtain:
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. (rg1.15)

Adopting X = 0.7, Y = 0.28, and Z = 0.02 we have µ−1 = 1.62, and the equation (rg1.15) becomes
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We find that mass of the radiative zone varies logarithmically with the ratio of its radii, and it is
very small indeed if β is not too close to 1, i.e. provided the luminosity is not too small (cf. equation
rg1.5)

Hydrogen burning shell in our red giant model is very thin, in mass as well as in radius. This is
a consequence of high temperature sensitivity of hydrogen burning rate. At temperature
above 1.5 × 107 K hydrogen burning is dominated by CNO cycle, and we have

ǫ ≈ ǫ0ρT ν, ν ≈ 15. (rg1.17)

As a crude approximation we shall take the density and temperature distribution within hydrogen
burning shell as given with equations (rg1.13) and (rg1.14), even though within the shell Lr and X
vary. Within this approximation we have
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∞
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sh ,

where rsh is the shell radius. It is the very rapid variation of energy generation rate with
radius, dLr/dr ∼ r−ν−4, that makes the shell so thin. At a radius 2× rsh the hydrogen burning rate
is almost 106 times smaller than at rsh.
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Radiative equilibrium in the radiative zone above the shell source gives L ∼ (1 − β)Mc (cf.
equations rg1.5 and rg1.6). Combining this relation with equation (rg1.18) we obtain

(1 − β) Mc ∼
βν+8

(1 − β)2
Mν+6

c r−ν−3

sh . (rg1.19)

If the shell radius is only somewhat larger than a radius of degenerate dwarf (polytrope of

index 1.5) with a mass Mc, then rsh ∼ M
−1/3
c , and equation (rg1.19) may be written as
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We may look at equation (rg1.20) as a core mass – luminosity relation. According to this equation
an increase of the core mass Mc leads to a decrease of β, and according to equations (rg1.5) and
(rg1.6) to an increase of stellar luminosity , L ∼ (1 − β)Mc. Full scale numerical computations
confirm this conclusion. A luminosity of a red giant with a degenerate core increases with the core
mass, and it is independent on the envelope mass. The core mass – luminosity relation may be
approximated with
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< 0.45, (RGB) , (rg1.21)

for red giants with a degenerate helium cores and a hydrogen burning shell source
(S. Refsdal and A. Weigert, 1971, Astronomy and Astrophysics, 6, 426), and with
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)
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< 1.4, (AGB) , (rg1.22)

for red supergiants with a degenerate carbon – oxygen core and hydrogen and
helium burning shell sources (B. Paczynski, 1970, Acta Astronomica, 20, 47).
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The core mass – luminosity relation (rg1.21) describes evolution of low and intermediate mass
stars (M < 2M⊙ ) along the red giant branch up to helium ignition in the core. In these stars helium
ignition is known as a helium flash — a rather violent, almost dynamical event. The violence of
helium ignition is due to degeneracy of the core. When the core mass increases its central density
increases too. The temperature within hydrogen burning shell and within the core also increase.
At some point the rate of energy release due to helium burning becomes important for the heat
balance near the center, and leads to an additional increase of the central temperature. This rise
in temperature does not produce any increase in gas pressure, because pressure of degenerate gas
does not depend on temperature. Therefore, there is no expansion of the core. Instead, rising
temperature increases the rate of helium burning, and this in turn rises temperature even more.
We have a thermal run-away: a self-accelerating rise in temperature and helium burning. This is
somewhat similar to the instability of semi-degenerate stars on the “high density branch” of main
sequence. In that case the unstable models were separated from stable models by a turning point
corresponding to a minimum in total stellar mass. In the helium flash case the unstable and stable
models are separated by a turning point corresponding to a maximum of a degenerate helium core
mass. Helium flash corresponds to the tip of red giant branch in the H—R diagram.

Helium flash leads to such a large rise in temperature, that degeneracy of electron gas is removed.
At this point farther release of heat increases pressure and makes the core expand. The expansion
lowers pressure, density and temperature, and we reach stable conditions for helium burning. In the
process of reaching this stable condition approximately 5% of all helium is converted into carbon
— that much energy is required to remove electron degeneracy. This may be estimated as follows.
Kinetic energy of degenerate electrons is equal to minus one half of gravitational energy of the
core. Helium flash develops when Mc ≈ 0.45M⊙, and the core radius rc ≈ 0.014R⊙. Gravitational
binding energy per unit mass in the core, which is like n = 1.5 polytrope, is about 0.5GMc/rc ≈

5 × 1016 erg g−1. Therefore, energy density of electron gas is about 2.5 × 1016 erg g−1. Burning 1
gram of helium into carbon releases 6 × 1017 erg g−1. Hence, about 1/20 of all helium has to be
burnt to provide enough heat to generate thermal pressure comparable to degenerate pressure.
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During stable core helium burning stage of stellar evolution there are two sources
of energy, because hydrogen is burning in a shell source. Therefore, mass of the helium core
increases. Horizontal branch stars in globular clusters, as well as “red clump” stars in
old open clusters are in this stage of evolution.

When helium is exhausted in the center the mass surrounded by the hydrogen shell is approx-
imately 0.6M⊙. About 50% of that is in the inner carbon – oxygen core, made of helium burning
products, while the other 50% is in the outer helium core. At this time we have two nuclear shell
sources: hydrogen and helium. Initially, helium burning proceeds more rapidly, and most of the outer
helium core is burnt into carbon and oxygen. The helium burning shell catches up with the hydrogen
burning shell, and very little mass is left between them. The core of approximately 0.6M⊙ becomes
isothermal and degenerate, as there are no nuclear energy sources within it. The star becomes a red
supergiant. In globular clusters these are called “asymptotic giant branch” (AGB) stars.
Their structure is similar to that of red giants: they have degenerate core, extended convective
envelope, and intermediate radiative zone. Structure of the radiative zone is well described with
equations (rg1.13) and (rg1.14). There is one major difference: red giants have only one shell source
burning hydrogen. Asymptotic branch giants have two shell sources: hydrogen and helium. The
two core mass – luminosity relations given with equations (rg1.21) and (rg1.22) correspond to these
two types of stars.
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