
Homologous Stars: Simple Scaling Relations

Converting the equations of stellar structure from differential to difference equations, effectively doing
dimensional analysis and assuming self-similar solutions, we can extract simple general relations
between luminosity, mass, radius, and mean molecular weight for various assumptions concerning
the EOS and opacity laws. These relations contain the essence of stellar structure.
The equation of hydrostatic equilibrium and ρ ∼ M/R3 yield

P ∼
GM2

R4

and therefore for an ideal gas (T ∼ µP
ρ )

T ∼
µGM

R
.

If we assume the star is radiative, the luminosity, L, scales as

L ∼
R2

κρ

(

T 4

R

)

∼ R2 R3

M

(

R3

M

)n(
GMµ

R

)α(
µGM

R

)4

/R

∼ µα+4R3n−αMα+3−n

where κ ∼ ρnT−α.

For Kramers opacity and an ideal gas EOS, α = 3.5, n = 1, resulting in

L ∼ µ7.5

(

M5.5

R0.5

)

.

For Thomson opacity and an ideal gas EOS, α = 0, n = 0, and we have

L ∼ µ4M3 .

The last two equations are classic results.

If the star is radiation-pressure dominated, P ∼ PR ∝ T 4 ∼ GM2

R4 , and if Thomson opacity
(constant) predominates, we have

L ∼ R2 R3

M

GM2

R5
∼ M

another classic result, this time for very massive stars.
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But what of R(M)? For steadily burning stars, this is obtained by setting the luminosity above
equal to the thermonuclear power in the core. If the specific nuclear power, ε, goes as

ε ∼ ρu−1T s

then we can use the ρ ∼ M/R3 and T ∼ µGM/R relations to obtain:

µα+4R3n−αMα+3−n ∼ M

(

M

R3

)u−1(

GMµ

R

)s

.

If we set s = 20 (CNO burning), u = 2, n = 1, and α = 3.5, we find R ∼ M0.73, not far off. However,
this model for R(M) is quite crude and full numerical calculations are warranted.
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POLYTROPES

Polytropes are self-gravitating gaseous spheres that were, and still are, very useful as crude
approximation to more realistic stellar models. Properties of polytropes are thoroughly described
in a classical, and very old, textbook: An Introduction to the Study of Stellar Structure by S.
Chandrasekhar (1939, Dover editions: 1958, 1967) .

We assume that a spherical star is in a hydrostatic equilibrium. Its structure is described by two
ordinary, first order differential equation:

dP

dr
= −

GMr

r2
ρ, (poly.1a)

dMr

dr
= 4πr2ρ. (poly.1b)

These may be combined to a single, second order Poisson equation:

1

r2

d

dr

(

r2

ρ

dP

dr

)

= −4πGρ. (poly.2)

We assume that there is a polytropic relation between pressure and density:

P = Kρ1+ 1
n , (poly.3)

where K and n are real, positive constants, and n is called a polytropic index. We introduce
dimensionless variables:

ρ = ρcθ
n, P = Pcθ

n+1, r = αξ, (poly.4)

where ρc is the central density, θ is ”polytropic temperature”, α is a length constant defined as

α2 =
K (n + 1) ρ

1−n
n

c

4πG
, (poly.5)

and ξ is a new radius like variable. Combining equations (poly.2-5) we obtain the Poisson equation
in dimensionless variables:

1

ξ2

d

dξ

(

ξ2 dθ

dξ

)

= −θn. (poly.6)

This is known as the Lane-Emden equation for polytropic stars.

The two boundary conditions for the eq. (poly.6) are at the center:

θ = 1,
dθ

dξ
= 0, at ξ = 0. (poly.7)

As both conditions are at the same point, they are in fact initial conditions. Therefore, for every
value of a polytropic index n there is only one solution of eq. (poly.6) . The solution has a physical
meaning as long as θ >= 0. The surface of a polytropic star is at ξ = ξ1, where θ = 0, and according
to eqs. (poly.4) density and pressure go to zero.

There are three analytic solutions known:
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n = 0, θ = 1 −
ξ2

6
, ξ1 =

√
6 ≈ 2.45,

n = 1, θ =
sin ξ

ξ
, ξ1 = π ≈ 3.14,

n = 5, θ =

(

1 +
ξ2

3

)

−1/2

, ξ1 = ∞.

(poly.9)

The case n = 0 corresponds to incompressible fluid, i.e. ρ = ρc = const, P = Pcθ, and it requires
rewriting eq. (poly.6) in a different form. In this case pressure vanishes at the surface, but density
is the same throughout the ”star”. This solution is a crude approximation to the interior structure
of a planet like Earth. The case n = 5 is also special, as the radius of this ”star” is infinite. It is
possible to show that all polytropes with n > 5 have infinite radii. This means that only solutions
with n < 5 have a surface. The two cases most interesting for real stars have n = 1.5 and n = 3,
and unfortunately these do not have analytic solutions.

A solution of eq. (poly.6) depends on one parameter only, the polytropic index n. If stellar
structure is approximated with a polytrope with a given index, then two scaling parameters are
needed to express the structure in physical units, like c.g.s. For example, the two parameter may be
K (which is related to entropy) and central density; or stellar mass and stellar radius; or K and the
stellar mass; and so on. If we know the numerical or analytical solution of the Lane-Emden equation
(poly.6) then we may express the total stellar radius R, and the total stellar mass M as follows:

R = αξ1 =

[

K

G

n + 1

4π

]1/2

ρ
1−n
2n

c ξ1, (poly.10a)

M =

R
∫

0

4πr2ρdr = 4πα3ρc

ξ1
∫

0

ξ2θndξ = (poly.10b)

= 4πα3ρc

ξ1
∫

0

[

−
d

dξ

(

ξ2 dθ

dξ

)]

dξ =

= 4π

[

K

G

n + 1

4π

]3/2

ρ
3−n
2n

c

[

−ξ2 dθ

dξ

]

ξ=ξ1

.

The last two equations may be combined to obtain

R
3−n

n M
n−1

n =
K

GNn
, (poly.11a)

where

Nn ≡
(4π)

1/n

n + 1

(

[

−ξ2 dθ

dξ

]

ξ=ξ1

)

1−n
n

ξ
n−3

n

1 , (poly.11b)

is a dimensionless number that depends on the polytropic index only. We may also calculate the
average density of a star to be

ρav ≡
3M

4πR3
= ρc

3

ξ3
1

[

−ξ2 dθ

dξ

]

ξ=ξ1

, (poly.12)

and therefore

ρc

ρav
=

ξ3
1

3
[

−ξ2 dθ
dξ

]

ξ=ξ1

. (poly.13)

Finally, we may calculate the central pressure to be
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Pc = Kρ
n+1

n
c = Wn

GM2

R4
, (poly.14a)

where

Wn ≡

(

3

4π

ρc

ρav

)

n+1

n

Nn. (poly.14b)

The equations (poly.11a) and (poly.14a) can be obtained with a much simpler approximate anal-
ysis. We replace the differential equations (poly.1a) and (poly.1b) with the corresponding algebraic
equations:

ρ ≈ ρav ≈
M

R3
,

P

R
≈

GM

R2
ρ ≈

GM2

R5
, P ≈

GM2

R4
. (poly.15)

Eqs. (poly.15) may be combined with (poly.3) to obtain the mass-radius relation:

R
3−n

n M
n−1

n ≈
K

G
. (poly.16)

Of course, with this approximate analysis we cannot obtain the numerical values of Nn and Wn. We
must have the solution of the Lane-Emden equation in order to have those coefficients. The results
of numerical integrations are given by Chandrasekhar in his textbook. We shall frequently need all
those coefficients for the two important cases: for n = 1.5, which corresponds to an adiabatic star
supported by pressure of non-relativistic gas, and for n = 3, which corresponds to an adiabatic star
supported by pressure of ultra-relativistic gas. We have

n ρc/ρav ξ1 Nn Wn
kTc

µH
R

GM

0.0 1.0 2.4494 - 3/8 π -
1.0 π2/3 π 0.6366 0.3927 -
1.5 5.99 3.65 0.4242 0.7701 0.539
3.0 54.1825 6.8968 0.3639 11.0507 0.854

Most of the symbols in the table are self-explanatory. The last column gives the dimensionless

number for polytropes supported by pressure of perfect gas, with P = k
µH ρT , and allows a calcu-

lation of the central temperature Tc. Notice, that kTc is roughly thermal energy per particle, while
µHGM/R is gravitational energy per particle, and the dimensionless numbers in the last column,
0.539 and 0.854, are equal to the ratios of these two energies for the two polytropic models.

The mass radius relation for a star with n = 1.5 is given as

RM1/3 =
K

0.4242 G
, n = 1.5, (poly.17a)

while for n = 3 we have

M =

(

K

0.3639 G

)1.5

, n = 3. (poly.17b)

These mean that the radius of a star with n = 1.5 is smaller if the star is more massive, while a
star with n = 3 has its mass uniquely determined by the value of K constant, while its radius is not
restricted by either K or M . Clearly, n = 3 is a very special case, and it has many astrophysical
applications.

There is an interesting and useful expression for a gravitational potential energy of a polytropic
star:

Ω ≡ −

M
∫

0

GMrdMr

r
= −

3

5 − n

GM2

R
. (poly.18)
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We shall derive it using the condition of hydrostatic equilibrium (eq. poly.1a) and the polytropic
relation given with eq. (poly.3), and also in the form:

dP

ρ
= K

n + 1

n
ρ

1
n
−1dρ = (n + 1) d

(

P

ρ

)

. (poly.19)

Gravitational potential energy is defined as energy required to remove all stellar mass, shell after
shell, all the way to infinity.

We shall drive the eq. (poly.18) integrating by parts and using eqs. (poly.1a), (poly.1b), (poly.3),
and (poly.19). As we shall be changing integration variables many times we shall use symbols c and
s to indicate center and the surface, i.e. the limits of the integrals.

Ω ≡ −

s
∫

c

GMrdMr

r
= −

1

2

s
∫

c

Gd
(

M2
r

)

r
=

= −

[

GM2
r

2r

]s

c

−
1

2

s
∫

c

GM2
r

r2
dr =

= −
GM2

2R
+

1

2

s
∫

c

Mr
1

ρ
dP =

= −
GM2

2R
+

n + 1

2

s
∫

c

Mrd

(

P

ρ

)

=

= −
GM2

2R
+

[

n + 1

2
Mr

P

ρ

]s

c

−
n + 1

2

s
∫

c

P

ρ
dMr =

= −
GM2

2R
−

n + 1

2

s
∫

c

P

ρ
4πr2ρdr =

= −
GM2

2R
−

n + 1

2

s
∫

c

P
4π

3
d
(

r3
)

=

= −
GM2

2R
−

[

n + 1

2

4π

3
Pr3

]s

c

+
n + 1

6

s
∫

c

4πr3dP =

= −
GM2

2R
−

n + 1

6

s
∫

c

4πr3 GMr

r2
ρdr =

= −
GM2

2R
−

n + 1

6

s
∫

c

GMrdMr

r
=

= −
GM2

2R
+

n + 1

6
Ω = Ω.

(poly.20)

The last line of eq. (poly.20) gives the desired answer, i.e. Ω = − 3

5−n
GM2

R .
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A simple, approximate estimate of the total or average nuclear buring rate in a star can be obtained
in the context of polytropes if one assumes that the burning rate is

ε = εc

(

ρ

ρc

)u−1(

T

Tc

)s

,

where the subscript refers to the central values, that

θn ∼

(

ρ

ρc

)

∼

(

T

Tc

)n

,

where n is the polytropic index, and that

θ ∼ e−
ξ2

6 .

Plugging in, we derive
∫

ε

εc

dM

M
∼

3.23

(3u + s)
3/2

n = 3.0

and
∫

ε

εc

dM

M
∼

2.4

(1.5u + s)
3/2

n = 1.5 .

Note that for large values of s this average nuclear burning rate is correspondingly smaller than the
central value. This indicates that the degree of central concentration of the burning is large when
the dependence of ε on temperature is steep. One can show that under such circumstances, core
burning is more likely to be convective. Such is the case for the main-sequence burning of stars a
bit more massive than the Sun, for which hydrogen burns by the CNO cycle and not the pp chain.
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