
AST 403 Problem Set #1 Due April 5, 2017

1. The dynamical timescale of a star, tdyn, the Kelvin-Helmholtz timescale, tK , and the nuclear
timescale, tnuc, are given very approximately by the expressions:

tdyn ∼
√

R3

GM
,

tK ∼
GM2

R
/L ,

and

tnuc ∼ 0.1× 0.007Mc2

L
,

where R, M , and L have there standard meanings. (a) If the luminosity on the main sequence scales
with mass as M3 and the radius of a star on the main sequence scales as R ∝M0.8, compare these
three timescales for main-sequence stars with masses of 0.5, 1.0, 2.0, 4.0, 6.0, and 10.0 M�. (b)
What general conclusions (plural) can you draw from what you find?

2. The virial theorem for a star in hydrostatic equilibrium states that:

−3(γ − 1)Eth = Ω ,

where Eth and Ω are the total thermal and total gravitational energies, respectively. For a polytrope
we will find that:

Ω = − 3
5− n

GM2

R
.

Assuming that:

Eth =
∫

3
2
NkBTdV ,

where N is the number density of the gas particles in the star, T is the local temeperature, kB is
Boltzmann’s constant, and V is the volume, derive an approximate formula for the average temper-
ature for such a star. Note that we are using the ideal gas law for the matter equation of state.
Assuming that the average temperature and central temperature (Tc) are always proportional (not
always a good assumption, but ...), that a star’s radius on the main sequence is proportional to
M0.8, that γ = 5/3, and that n = 3.0, derive the central temperature of a main sequence star as a
function of total mass. Assume that Tc for the Sun is 1.5× 107 Kelvin (K). (b) Find Tc for stars of
mass 0.5, 1.5, 2.0, 4.0, 6.0, and 8.0 M�.

3. a. Assume that a star is in hydrostatic equilibrium. Show that the free-fall time and the sound
travel time across the star are similar. Use only order-of-magnitude arguments.

b. Show that the orbit time of a satellite skimming a star’s surface is comparable to these times.
c. Calculate the dynamic times for the Sun, a white dwarf, and a neutron star. Comment.

4. The pressure (P )/mass-density (ρ)/temperature (T ) relation for an ideal gas depends upon the
number density (Ni,e) of free particles in the gas through the mean molecular weight, µi,e, via the
equation:

Pi,e = Ni,ekBT =
kBρT

µi,emp
,

where mp is approximately the proton mass, i, e stand for the ions or the electrons, respectively,
and NA is Avogadro’s number. (Note that kBNA = R, the gas constant, and NA ∼ 1

mp
). The total
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gas pressure is Pi +Pe and the total pressure is this pressure, plus Prad, where Prad = aT 4

3 . (a) For
a completely ionized gas, derive µi and µe as a function of the hydrogen, helium, and heavy mass
fractions, X, Y , and Z, respectively. Note that the total µ is naturally given by the expression:

1
µ

=
1
µi

+
1
µe

.

(b) Calculate and compare all these various pressures at T = 107 K and ρ = 100 gcm−3 (roughly
values at the center of the Sun) for X = 0.73, Y = 0.25 and Z = 0.02 and assemble them in order.
Which dominates?

5. The Rosseland average opacity of matter to light is approximately given by the Kramers formula
(everything in CGS units):

κross = 4.0× 1025(1 +X)(Z + 0.001)
ρ

T 3.5
cm2g−1 .

(a) Calculate the value of this opacity at T = 106 K and ρ = 1 g cm−3 for X = 0.73 and Z = 0.02,
and then calculate the corresponding mean-free-path in centimeters. Comment. (b) Assuming that
this opacity is representative, calculate a very approximate diffusion time in years out of the Sun.
(c) Interpret your result and comment on what it might mean.

6. For degenerate electrons at high densities and “low” temperatures, the pressure is given by the
formula:

Pdeg = 0.99× 1013
( ρ
µe

)5/3

dynes cm−2 ,

where ρ is in CGS. At what temperature, T , would this pressure be equal to the ideal gas pressure for
a given mass density, ρ? This is approximately the temperature below which Pdeg would dominate
and the material can be considered degenerate.

7. If Thomson scattering off electrons (assumed free) were the dominant opacity source in the Earth’s
atmosphere, what would be its optical depth? Does this seem reasonable?

8. For a radiative zone, the temperature gradient is given by a formula involving L(r) and κR. For
a convective zone, the temperature gradient is given by a formula that expresses isentropy. Use
these separate relations for dT

dr (and any other relations needed) to determine the simplest-looking
condition on L(r), M(r), and κR for a radiative zone to be tripped into convection, i.e. the critical
local luminosity. How is this relation related to the Eddington limit and why? [Hint: Please define
1-β = PRad/P and write your result in terms of β.]

AST 403 Problem Set #3 Due April 19, 2017

9. (a) Derive in the context of mixing-length theory the relationship between the energy flux, Fconv,
in a convective zone and the mean convective speed, Vconv.

(b) Calculate this speed for the convection zone of the Sun, making reasonable assumptions
concerning the quantities in the resulting formula.

(c) What is the approximate relationship between the convective Mach number (M) and the
quantity ∇ − ∇ad? Are there any stellar contexts in which we can expect M to be near one and
what would this mean for the value of ∇−∇ad?
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10. Using the generic scaling relations for approximate T and ρ as a function of mass (M) and
radius (R), assuming Kramers opacity, and using the ideal gas law, derive a very approximate R(M)
for main-sequence stars from ∼1.5 M� to 4.0 M�. [Hint: You will need to know whether hydrogen
burning is proceeding by the PP chain or the CNO cycle.] Retain the µ dependence of your result.
What power-law indices for µ and M emerge?

11. (a) The Earth can be represented roughly as a polytrope of Emden index n = 0, i.e. constant
density. Assuming this, and given that ME = 6×1027 g and RE = 6.4×108 cm, calculate its central
density, central pressure, and gravitational potential energy. Convert the pressure to atmospheres
(1 atm = 1.01× 106 dyne cm−2).
(b) Calculate the corresponding quantities for Jupiter, which is composed mostly of degenerate
molecular hydrogen rather than rock and is better approximated by n = 1, MJ = 2 × 1030 g =
10−3M�, RJ = 7× 109 cm = 0.1R�.

12. (a) Calculate the Q values for all the reactions in the PPI, PPII, and PPIII chains and the
energy derived per helium nucleus produced (in ergs g−1). [Hint: Use a table of mass excesses.]

(b) Which reaction dominates the PPI chain?

13. Calculate the Q values for the 3-α, 12C(α,γ)16O, and 16O(α,γ)20Ne reactions. [Hint: Use a table
of mass excesses.]

AST 403 Problem Set #4 Due April 26, 2017

14. (a) Calculate the positions of the Gamow peak (in keV) for the rate-limiting reaction of hydrogen
burning for hydrogen-burning cores in 0.25, 1, 3, 5, and 25 M� stars.

(b) What are the approximate “power-law” indices for the temperature-dependence of the nuclear
rates in each of these cores (both hydrogen- and helium-burning)?

15. Derive the general formula for a nuclear reaction rate:

σv(T ) =
(

8
πµ(kBT )3

)1/2
∞∫
0

σ(E)Ee−E/kBT dE,

=
(

8
πµ(kBT )3

)1/2
∞∫
0

S(E) exp
[
− b√

E
− E

kBT

]
dE . (1)

16. Identify the general stellar (or elsewhere) site and burning process (i.e., H-burning, He-burning,
big bang, carbon-burning, etc.) where each of the elements in the Sun or interstellar medium up to
an atomic number (Z) of 26 are created.

17. In our discussion of the “ignition mass” for a given stage of thermonuclear burning, we derived
a formula that seemed to work reasonably well for the main-sequence edge. Determine using the
same formula what the corresponding mass to ignite core helium burning would be. Note that the
mean molecular weight and “ignition temperature” will not be the same as for hydrogen burning.

18. (a) Assuming a non-relativistic equation of state, estimate the radius, central density, and
central pressure of a cold, solar-mass white dwarf consisting of pure carbon (12C). From your results,
check whether the non-relativistic assumption is self-consistent. (b) Assuming that the relativistic
degenerate electron equation of state obtains, derive the Chandrasekhar mass in solar mass units.
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