
Astro 204: Practice Questions

Some of these questions are a bit harder than the average exam question, be it the final
or the mid-term. However, if you can do and understand these questions, the final, in
particular, should be a breeze.

1. If a spherical planet has a constant density (ρ0) and is in hydrostatic equilibrium, one
can straighforwardly find its pressure profile, and in particular its central pressure. (a)
First, what is the relationship between its total mass (M) and (total) radius (Rp)? (b)
Derive its pressure−radius profile (P (r)). (c) What is its central pressure in terms of M
and Rp? (d) For the Earth, what would be the central pressure (in Megabars; 1 Megabar
≡ 106 bars; 1 bar ≡ 106 dynes cm−2)?

2. A planet has a Bond albedo of ∼0.3 and executes a circular orbit of radius (semi-
major axis) a around a G2V star. (a) If it reradiates the energy it absorbs from the star
isotropically, what is its effective temperature (Tp) as a function of a, if a is in AU? For
what range of values of a will Tp be between the boiling and melting points of water? This
orbital range is called the “habitable zone.”

3. A new telescope can detect an object in the visible down to 30th magnitude in V . If
the Sun’s absolute V magnitude is 4.6, out to what distance in parsecs can this telescope
see a sun-like star?

4. The Kelvin-Helmholtz timescale (τKH) is an important characteristic time for stellar
evolution, and, hence, is worth exploring. (a) If stars along the main sequence obey the
relationships: L ∝ M3 and R ∝ M0.8, what is the mass-dependence of τKH? (b) Calculate
τKH for the Sun. (c) Using the results in (a) and (b), determine τKH for a 3-solar-mass
star on the main sequence. Comment.

5. An interstellar cloud of thickness ∆x is comprised solely of atomic hydrogen at a
temperature T and number density nH . We are interested in how opaque the cloud is to
Hα photons. Assuming that the absorption optical depth is proportional to the fraction
of the atoms in the n = 2 state of hydrogen, what is the ratio of the optical depth of such
a cloud at T = 1000 K and T = 100 K? [Hint: You don’t need the Hα absorption cross

section to solve this.]

6. A Jovian-mass planet orbits a sun-like star with a period of 10 days and no eccentricity.
(a) If the orbital plane is edge-on to us, what is maximum Doppler shift (∆ν/ν0) of spectral
lines from the planet? (b) Find the same quantity for spectral lines from the star? [Hint:

First determine aspects of the orbit, and then use them to determine the Doppler shift.

Note that the mass of the planet is much smaller than the mass of the star, but that the

star too executes an orbit.]

7. In this problem, we will explicitly derive the relationship between scale factor and time
in a critical density universe, treating it as a Newtonian problem. The (positive) kinetic
energy of a galaxy a distance r from us is equal and opposite to the (negative) gravitational
potential energy due to the gravitational pull of the mass within the radius r. Using this



fact, write down a differential equation for the relation between radius and time, and solve
it. Use this to get an exact expression for the present age of the universe, expressed in
terms of the Hubble Constant.

8. We have seen that the luminosity of stars on the main sequence scales roughly as the
cube of their mass, L ∝ M3. Assume that the number of stars on the main sequence
per unit mass (which is called the Initial Mass Function) scales as the −1.5 power of the
mass; that is, the number of stars per unit volume in the disk of the Milky Way with
mass between M and M + dM is proportional to M−1.5dM . Assume that each of these
relationships holds true exactly for stars between 0.1 and 60 solar masses, and no stars
exist for any other masses. Moreover, assume for simplicity that all stars are main sequence
stars.

Calculate the mass to light ratio (i.e., the ratio of total mass of stars per unit volume
to total luminosity of stars per unit volume), and express it in solar units (solar masses
divided by solar luminosities).

9. Consider two spherical, self-gravitating objects of the same uniform density throughout,
and radii r and R, respectively; one is much larger than the other (r ≪ R). Consider the
tidal force (i.e., difference in gravitational force between the near and far side of the object)
on the small object due to the gravitational force of the large object.

a. Compare with the self-gravity of the small object, and derive a condition on the dis-
tance between the two objects such that the small object remains intact. What you have
calculated is termed the “Roche limit.”

b. (XXX points) Calculate approximately the radius of the Roche limit around the Earth.
Do we, sitting on the surface of the Earth, lie inside the Roche limit? If so, how is it that
we remain intact?

c. The star τ Boötes has a mass 1.25 times that of the Sun; the radius is 1.25 times that
of the Sun as well. Calculate the radius of its Roche limit. It has a planet, discovered
by Marcy and Butler, in an orbit with semi-major axis 0.045 AU. Does this lie inside or
outside the Roche limit?

10. a. Calculate the tidal force (i.e., the difference in gravitational force between the near
and far side) of an object of length r falling into a black hole of mass M , when that object
lies at the Schwarzschild radius RS (= 2GM/c2). Assume r ≪ RS . Is this tidal force
larger for a big black hole or a small black hole?

b. Calculate the Schwarzschild radius for a black hole large enough to power a quasar
(109 M⊙). Calculate the tidal force on the Sun if were unlucky enough to fall into such a
black hole.

c. Would the Sun be torn apart by the black hole’s tidal forces before it fell in? Can you
conclude therefore that you can survive falling into such a massive black hole?



11. Consider a spherically symmetric star in which the density as a function of radius
scales as:

ρ(r) = ρ0

(

1 −
r

Rp

)

,

where ρ0 is a constant and Rp is the radius of the star.

a. Calculate the total mass of the star.

b. Calculate the pressure of the star at the center.

12. a. Calculate the rate at which the Sun is losing mass due to the burning of hydrogen
in its core (and the subsequent conversion of mass into energy). Over the lifetime of the
Sun, what fraction of its mass will be lost to energy?

b. Consider a star of mass 20 times that of the Sun. Will the fraction of its mass lost to
energy be larger or smaller than that of the Sun? To answer this, do a crude, order-of-
magnitude estimate of the fraction of mass lost as a function of mass.

c. A wind of particles, termed the solar wind, is seen streaming radially from the Sun.
It is made mostly of protons and electrons, and at the radius of the Earth’s orbit, has a
characteristic speed of 500 km/s, and a density of 7 protons/cm3. Assuming that the solar
wind is emitted uniformly from the surface of the sun, calculate the rate at which the Sun
is losing mass due to this process. Assuming that the rate at which material is lost to the
solar wind is constant, calculate the fraction of the mass of the Sun lost over its lifetime.
Is this fraction larger or smaller than that you calculated in part (a)?

13. The interstellar medium has a mean density of about 0.5 H atoms/cm3. What is the
radius of the spherical volume of the ISM that you’d need to collapse to form the Sun?
If the rotation speed around the Galactic center at the Sun’s distance (8.5 kpc) is 220
km/sec, what is the angular momentum of this protosolar cloud due to differential galactic
rotation? Compare this to the angular momentum of the Sun and of the Solar System.

14. For the sake of argument, assume that every star has exactly one planet with the
same mass and composition as the Earth, and that the planet’s orbital distance is equally
likely to have any value between 0.01 and 100 AU. Define the inner and outer radii of the
habitable zone as the freezing and boiling points of water. Star A has twice the Sun’s mass,
and star B has half the Sun’s mass. (a) Which is more likely to have a habitable planet,
A or B ? Why? (b) If the probability that intelligent life arises on a habitable planet
is proportional to the lifetime of its star, which of these stars is more likely to support
intelligent life? [Hint: Assume an appropriate dependence of stellar luminosity on mass.

Remember that the luminosity of a star increases very rapidly with mass.]

15. How do we detect the presence of neutral atomic hydrogen in the Universe? Describe
the physics of the effect that is used in the detection method in the radio band.



16. Discuss the critical role of quantum effects for the nuclear fusion inside stars.

17. Describe the evolutionary path of a solar-mass star. Discuss which conditions are
necessary for the occurence of a helium flash.

18. Describe the physics that goes into setting an upper limit on the mass of a white
dwarf.

19. A bright star is observed to orbit a supermassive black hole in a circular orbit with a
period of 20 years. The orbital plane is inclined with respect to the plane of the sky by 30◦.
Observations of various lines in the stellar spectrum show that the maximum line-of-sight
velocity exhibited by the star in the course of its orbital motion is 1200 km s−1. The
angular distance between the most separated points of the stellar orbit is 0.21 arcseconds.
Determine the mass of the black hole and how far away it is from us based on these data.

20. Calculate the amount of mass the Sun loses per second as a result of thermonuclear
burning in its interior. Compare this number with the amount of mass the Sun loses per
second in the form of solar wind. The solar wind consists of protons and at Earth’s orbit
it has a number density of 10 particles cm−3 and velocity 400 km s−1. Assume that the
wind is spherically symmetric.

21. Small dust grains around stars are affected not only by the stellar gravity but also by
the pressure exerted by stellar radiation. Determine at what size (radius) a spherical dust
grain gets pushed away from a 1 L⊙ star by radiation pressure if it absorbs all infalling
radiation with cross section equal to its geometric cross section? The density of the grain
material is 2 g cm−3, and the mass of the star is 1 M⊙.

22. The stellar mass function dN/dM is the distribution of the number of stars as a func-
tion of their initial mass (number of stars dN per interval of initial mass dM). Observations
show that the mass function can be reasonably well fit by the following expression:

dN

dM
∝ M−2.35

for 0.5 M⊙ < M < 100 M⊙ and dN/dM = 0 outside of this mass range (the so-called
Salpeter mass function). (a) What is the mean stellar mass for such a distribution? (b)
Let’s assume that all stars with initial mass 10 M⊙ < M < 30 M⊙ end up producing a
neutron star at the end of their life. Calculate the total number of neutron stars in our
Galaxy if all the stars in it were born 4 billion years ago with this mass function. Assume
that the initial number of stars was 1011.

23. Calculate the parallax of a star located 50 pc away from us.

24. A giant star expands increasing its radius by a factor of 10. Assuming that its effective
temperature stays the same at all times, what is the change in the apparent magnitude of
the star during expansion (it is important that you get not only the magnitude but also
the sign of the change right!)?

25. What would be the orbital period of a planet moving around the Sun if its semimajor
axis were 4 AU?



26. Assuming that the current rate of hydrogen fusion in the Sun remains constant, what
fraction of the Sun’s mass will be converted into helium over the next 5 billion years? How
will this affect the overall chemical composition of the Sun?

27. The star Krüger 60B in the constellation Cepheus has an apparent bolometric mag-
nitude of 11.3 and a parallax of 0.25 arcseconds.

a. Determine its absolute magnitude.

b. What is the ratio of the luminosity of Krüger 60B to the Sun’s luminosity?

28. Consider a planet of constant density (mass per unit volume) ρ and radius R.

a. What is the mass of the planet?

b. What is the gravitational acceleration at distances r > R (measured from the center of
the planet)?

c. What is the gravitational acceleration at distances r < R?

d. What is the period of an orbit that skims the surface of the planet? Express your
answer in terms of Newton’s G and ρ. Assume the orbiting object is a “test particle” of
negligible mass.

e. Imagine a tunnel that makes a circle around the planet with radius (of the circle, not
the tunnel passageway, which is very thin) r < R. What is the orbital period inside such
a tunnel?

29. a. Calculate the nuclear energy released in a Type Ia supernova. The energy released
from nuclear burning of Carbon to the Iron peak is about 0.001mpc

2 per baryon (p+ or
n), where mp is the proton mass. You can assume the WD is 1.3M⊙ of pure Carbon and
burns completely.

b. Calculate the gravitational binding energy of a 1.3M⊙ white dwarf. Assume that the
radius of the white dwarf is 4000 km.

c. Is there enough energy from nuclear burning to unbind the white dwarf?

30. Translate the peak bolometric luminosity of a Type Ia, M = -20.5, into ergs/s.

31. This problem is to gain familiarity with the expression for the spectrum of black-body
radiation,

Bλ(T ) =
2 hc2

λ5

1

ehc/λkT − 1
.



a. (XXX points). Calculate the wavelength at which the black-body function peaks, as
a function of temperature. [Hint: This will require solving one equation numerically; you

can do so with a pocket calculator, and only one or two decimal places of precision are

required.]

b. (XXX points). Derive the corresponding spectrum Bν(T ), the flux per unit frequency.
Calculate the frequency at which this spectrum peaks.

c. (XXX points). Are the peak wavelength λmax and peak frequency νmax you’ve calcu-
lated in parts (a) and (b) related by λmaxνmax = c? Why or why not?

d. (XXX points). Consider two black-bodies of the same size, one radiating at a higher
temperature than another. Prove that the hotter one gives off more black-body radiation
per unit wavelength than the cooler one, at any wavelength. [Hint: Consider the derivative

of the black-body function with respect to temperature.]

e. (XXX points). The Moon shines brightly in the night sky, clearly radiating profusely
in the visible part of the spectrum. From this statement, what can you infer about its
surface temperature? Explain your answer in full. [Hint: This is a bit of a trick question.]

f. (XXX points). Calculate approximately the rate at which your body loses energy due
to black-body radiation. Explain your assumptions clearly. Express your answer in watts
(joules/sec); remember that a typical lightbulb consumes 100 watts of power.

32. The average person eats of order 2000 (kilo)calories of food a day; one (kilo)calorie is
roughly 4200 joules. What, therefore, is your power intake? Do you eat enough to keep
yourself at a constant temperature? Explain your answer.

33. The formula for a black-body spectral distribution is:

Bν =
2hν3/c2

ehν/kT − 1
.

However, if hν/kT >> 1, we have the Wien distribution. Assuming this for all νs (an
approximation, to be sure), what is the average energy (!) of a photon in terms of kT?
[Hint: Bν is an energy spectrum. What is the number spectrum? How do you define the

average energy? Do various constants drop out?]

34. Argue that the luminosity of a star is given by its thermal energy content divided by
the random walk time for a photon to diffuse from the center to the edge of the star. Write
a general expression for this luminosity in terms of the radius and mean temperature of the
star, assuming (very roughly) that the temperature is uniform throughout. For the Sun,
assume a mean interior temperature of T = 4.5 × 106 ◦K, and a mean free path between
absorptions of l = 0.5cm. Calculate the luminosity of the Sun, and compare with the
observed value of 4 × 1033 erg s−1.



35. Use general scaling arguments to determine how the internal pressure of a star depends
on its mass and radius. Only proportionalities are needed here; there is no need to work
out the constants. [Hint: A pressure is a force per unit area.] Similarly, determine how
the mean density of the star scales with mass and radius.

36. For stars of low to high mass, the perfect gas law gives a relationship between the
pressure, temperature and density. For very high mass stars, radiation pressure dominates;
this pressure is proportional to the energy density of photons. Use this fact, and the
proportionalities you’ve derived from the equations of stellar structure to show that for
main-sequence stars:

a. L ∝ M5.5/R0.5 for stars with low to medium mass;

b. L ∝ M3 for stars with high mass;

c. L ∝ M for stars with very high mass.

37. An O star lights up at the center of an HI region with particle number density
nH = 5 × 103 cm−3. The star produces ṄOB = 3 × 1048 ionizing photons per second,
and the recombination coefficient (α) is 3.1 × 10−13 cm3 s−1. A photoionization front
propagates into the HI region until the size of ionized region reaches equilibrium. What is
this equilibrium size? How long does it take for the ionized region to reach the equilibrium
size after the emergence of an O star? [Hint: Before the ionized region reaches equilibrium,

all UV flux goes into ionization of hydrogen atoms.]

38. Suppose you have a white dwarf of mass 1 M⊙, radius the same as the Earth’s, and
composed of pure hydrogen. If its initial temperature is 100,000 K, calculate the time
it takes for the star to cool to a temperature of 5,000 K. (Assume: 1. the star stays
isothermal, i.e. the whole star has the same temperature at any given time: 2. the star
is composed of a perfect gas: 3. its radius stays constant: and 4. the star radiates like a
perfect black body).

39. Follow the simple heuristic derivation of the radius-mass relationship for a white
dwarf to derive the radius-mass relationship for a neutron star. Treat the neutrons as free
particles, i.e. as a perfect gas of fermions, and ignore the difference between the masses of
protons and neutrons. Also, assume that you can use the classical equation for hydrostatic
equilibrium. For a given mass (less than the Chandrasekhar mass limit) find an expression
for the ratio of the radii of a neutron star and a white dwarf. Numerically it’s about 10−3.
Why? (one sentence, qualitative answer).

40. a. I just observed a pulsar with a period of 5 milliseconds. On the assumption that
I’m seeing the rotation period of a 1 M⊙ object, give simple physical arguments to show
that the pulsar cannot be a normal star or even a white dwarf, but must be a neutron star.

b. The Sun’s rotation period is about one rotation per 27 days. If the Sun were to shrink
to a neutron star (losing no mass in the process) what would be its rotation period? Is
this physically possible?



41. The smallest period known for a pulsar is 1.6 milliseconds. Assume the pulsar is a
neutron star of M = 1.4M⊙, and radius 10 km. Can gravity hold the pulsar together?
That is, can gravity supply the centrifugal force to keep material on the surface from flying
off?

42. Consider the strength of the tides due to the neutron star. Imagine a cube of iron 1 cm
on a side held just above the surface of the neutron star. Iron has a density ρ ∼ 8 g cm−3,
and will rupture (be torn to shreds) if the stress (force per cross-sectional area) on it is
greater than 1.5 × 109 dyne cm−2; for stresses greater than 4.2 × 108 dyne cm−2, it will be
permanently stretched. Consider the difference between the gravitational force on the top
and bottom of the cube, and describe what will happen to it. [Hint: Consider the mass of

the cube concentrated into two halves: one on the top of the cube and one on the bottom.]
Would the cube be more or less strong (i.e., more or less susceptible to stretching and
rupture) if it were made larger?

43. Calculate the ratio of the Newtonian gravitational potential energy of this neutron star
(i.e., that released when the neutron star first forms) to its rest-mass energy. You will find
that the gravitational collapse of a star to form a neutron star releases a substantial fraction
of its rest-mass energy. Compare this fraction with that released in the thermonuclear
fusion of Hydrogen. Compare this fraction with that released in the thermonuclear fusion
of all elements heavier than Hydrogen. [Hint for study: See Fig. 10.9 of the textbook.]
Compare the energy released in the formation of a neutron star with the 1051 ergs of
energy released in photons in a typical Type II supernova, and speculate on other avenues
by which energy might be released.

44. The pulsar in the Crab nebula completes 30 revolutions per second. It is observed to
be slowing down at a rate, here assumed to be constant, which would bring its spin to a
halt in about 2,500 years, due to magnetic braking. It is, therefore, releasing rotational
energy Iω2/2. Calculate the associated power output of the pulsar, and compare with the
observed luminosity of the Crab nebula (3 × 1038 erg/sec). The moment of inertia of a
uniform-density sphere, which you may assume the pulsar to be, is I = 2MR2/5.

45. The rotation curves of spiral galaxies are flat as far as they can be measured, implying
the existence of a dark matter halo. It is not known how far this dark matter halo extends.
Imagine that the dark matter halo of the Milky Way extends half-way to the Andromeda
Galaxy (which is itself 2 million light years away), so that the halos of the two galaxies
just touch each other. We assume that the rotation curve remains flat to this point, so
that the rotation speed at that radius is equal to that at our radius.

a. What is the total mass you infer for the Milky Way, in solar masses?

b. The mean distance between massive galaxies in the universe is 10 million light years.
Assuming that they all have the same mass that you just calculated above, and they
represent all the mass of the universe, what is the mean density of the universe? What is
the value of the Cosmological Density Parameter Ω?

c. What volume of space at the density you calculated in part b would contain the mass of



the Sun? Express your answer in terms of the side of a cube of this volume, in light-years.

46. The temperature of the microwave background is 2.73 K and it is a nearly perfect
black body. Suppose the motion of the Sun around the galactic center at 220 km/sec were
our only motion with respect to the microwave background. What would you measure as
the temperature of the microwave background in the direction of the Sun’s motion, and
in the opposite direction? The observed effect is much larger than this. What might be
going on?

47. Suppose the Galaxy’s mass (let’s say 8 × 1010 M⊙) is all located at the center of the
Galaxy and the Sun was 8 kpc from the center when the Galaxy formed at the beginning
of the Universe. Suppose that the Galaxy has a central black hole which is turning mass
into radiation at the rate of 1 M⊙ yr−1 and the Universe is 1.3 × 1010 years old. How
far from the center of the Galaxy will the Sun be today? How does this increase in the
Sun’s distance compare with the expansion of the Universe? (Think carefully about what
is conserved in this problem, and state your assumptions carefully.)

48. The Galaxy and the Andromeda galaxy are now moving towards each other with
a relative velocity of -130 km/sec, and are about 640 kpc apart. Assuming that the two
galaxies are moving along the line joining them (i.e. have no angular momentum about each
other) and that they are equal point masses (is this reasonable?), what is the total mass
of the Galaxy/M31 system? If the luminosity of the Galaxy is 2× 1010 solar luminosities,
what is their mass to light ratio? State all your assumptions very carefully.

49. Suppose we live in an Ω > 1 (and hence k = +1) universe, and the present radius is R.
Calculate the volume of the universe [Hint: Remember that spheres are spheres, even in

curved spaces]. Show that, if Λ is zero, no photon can circumnavigate the universe. [Hint:

Find the total comoving distance a photon moves between two times after the big bang and

before the big crunch.]

50. A cluster of galaxies has density distribution that is well approximated as a “Jaffe
sphere,” which has a density distribution

ρ(r) =
ρ◦a

4

r2(r + a)2
,

where ρ◦ and a = 5 Mpc are constants. The total mass of the cluster is 1015 M⊙. Two
clouds of gas each of mass 108 M⊙ freely fall into this cluster (from very large distance
≫ a) on parabolic orbits and collide with each other in such a way that the resulting cloud
is initially at rest at a distance of 2.5 Mpc with respect to the cluster center (obviously, the
resultant cloud would subsequently fall into the cluster center, but do not worry about this
stage). Determine the total amount of energy that gets emitted in the form of radiation
as a result of this collision of clouds.

51. In the 1930’s, Zwicky measured the velocities of galaxies moving in the Coma cluster
to be ≃ 1000km s−1. The radius of the Coma cluster is ≃ 3Mpc. Estimate the mass of the
coma cluster. A rough estimate of the mass of stellar material in the cluster is 5×1012M⊙.
What does this mean?



52. Consider a cloud of neutral hydrogen gas with all of the atoms in the ground state.
The gas cools by collisional excitation of electrons. What is the interaction rate for one

hydrogen atom in the cloud? Show that the cooling function (luminosity per unit volume)
for the entire cloud is proportional to n2, where n is the number density of atoms.

53. Consider an elliptical galaxy in equilibrium. Suppose you decrease the velocity of all
of the stars by 10% and then allow the system to relax to a new equilibrium. What is the
final radius of the stellar system? The final velocity dispersion?

54. A cloud of gas can be characterized by three timescales: The dynamical time τdyn ∝
1/

√
Gρ giving the timescale over which gravitational effects become important; the sound

crossing time τsct ∝ R/Cs (where R is the size of the system and Cs is the sound speed)
giving the timescale over which sound (pressure) effects become important; and the cooling

time τcool ∝ nkT/Λ (where Λ is the collisional cooling luminosity per unit volume) giving
the time required for a parcel of gas to radiate away all of its thermal energy.

What happens if:

a. τdyn ≃ τsct ≪ τcool

b. τsct ≪ τdyn, τcool

c. τdyn ≪ τcool, τsct

d. τcool ≪ τsct, τdyn

(Recall the dependence of the Jeans mass on temperature)

55. The velocity dispersion of galaxies in the Coma cluster is ≃ 1000km s−1. Find the
temperature of the hot intracluster gas.

56. Derive the relation between the scale height of stars in a thin galactic disk and their
vertical velocity dispersion. You’ll need to know that φ(z) = 2πGΣz where φ is the
gravitational potential, Σ is the mass surface density of the disk and z is the height above
the disk.

57. Consider a flat radiation-only universe. This describes the early evolution of our own
universe. Ωr0 = 1 and Ωm0 = ΩΛ0 = Ωk0 = 0. Find the evolution of the scale factor with
time and the comoving size of the past light cone.

58. Consider the Milne universe, which contains no material in the form of matter, ra-
diation, or vacuum energy. Ωr0 = Ωm0 = ΩΛ0 = 0, so Ωk0 = 1. If there were no
cosmological constant, then eventually our universe would evolve into the Milne universe
because Ωm0 < 1. Find the evolution of the scale factor with time and the comoving size
of the past light cone.

59. Consider the anti-de Sitter universe. The AdS universe contains only vacuum energy,
but the Hubble constant today is negative. Find the evolution of the scale factor with time
and the comoving size of the past light cone.



60. Suppose that the universe has a large scale positive charge. Derive the Friedmann
equation in a quasi-Newtonian way, like we did in class.

61. We have been saying that the timescale for the evolution of the universe is so long
compared to human timescales that as far as cosmology is concerned, “today” is the same
thing as “tomorrow” or “100 years from now.” How long would you have to wait for the
redshift of a given galaxy to change by one part in 106? You’ll need to compute dz/dt for
a given galaxy.

62. Consider a matter-only universe where Ωm0 = 1.5. What is the eventual fate of such
a universe? Are there any limits on the value of the scale factor? If so, what happens at
those limits? What do they mean?

63. What is the comoving distance to the surface of last scattering at recombination,
assuming a flat matter-only universe and that zls = 1100. What was the proper distance
when recombination happened?

64. Assume that the Universe consists of only Helium. Use the Saha equation to find the
redshift at which recombination occurs.



Useful Constants and Facts

Radius of Earth = 6.4 × 108 cm

Radius of Moon = 1.7 × 108 cm

Radius of Sun = 6.96 × 1010 cm

Mass of Earth = 6 × 1027 g

Mass of Sun = 1.9892 × 1033 g

Mass of Jupiter = 1.9 × 1030 g

Surface Temperature of Sun = 5777 K

1 Astronomical Unit ∼ 1.5 × 1013 cm

1 light year ∼ 1 × 1018 cm

1 year ∼ 3 × 107 sec

1 parsec = 3.26 light years

Radius of Moon’s orbit around the Earth = 3.8 × 1010 cm

Luminosity of Sun = 4 × 1033 erg/s

Newton’s constant G = 6.67 × 10−8 cm3 s−2 g−1

Planck’s Constant h = 6.63 × 10−27 erg·s

Boltzmann Constant kB = 1.38 × 10−16 erg/K

Stephan-Boltzmann Constant σ = 5.67 × 10−5 erg/cm2/s/K4.

1 eV ≡ 1.602 × 10−12 ergs ; Mass of proton mp = 1.67 × 10−24 g

Speed of light: c = 2.99792458× 1010 cm s−1

Hubble Constant H0 ≈ 70 km s−1 Mpc−1

Critical Density of Universe ρcrit ≈ 10−29 g cm−3

Temperature of Cosmic Microwave Background = 2.735 K

Rotation speed of the Milky Way at our radius = 220 km s−1

Distance to the center of the Milky Way = 8 kpc

[MBol = 0] ≡ [LBol = 3 × 1035 ergs/s]

1 year = 3.15 × 106 s

1 parsec = 3.08 × 1018 cm



1 km/s ≃ 1 pc/Myr

Solar Mass M⊙ = 1.9892 × 1033 g

Hubble Time (1/H0) = 13.7 Gyr

Hubble Radius (c/H0) = 4.2 Gpc
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τMS = ηε
M⋆c

2

L⋆

Eth =
3

2
NkBT

2K + W = 0

τ =
1

nσv

H =
1

R

dR

dt
ρc =

3H2

8πG
Ω =

ρ

ρc
R =

1

1 + z



H2 =

(

1

R

dR

dt

)2

= H2
0

(

Ωk0

R2
+

Ωm0

R3
+

Ωr0

R4
+ ΩΛ0

)

ds2 = −c2dt2 + R2(t)(d̟2 + S2
k(̟)(d θ2 + sin2 θ dφ2))

Sk(̟) = D0 sin(̟/D0) (Ωk < 0)

Sk(̟) = ̟ (Ωk = 0)

Sk(̟) = D0 sinh(̟/R) (Ωk > 0)

NII

NI
=

2ZII

neZI

(

2πmekT

h2

)3/2

e−Ei/kT


