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5.6 TWO-STREAM INSTABILITY; LINEAR ANALYSIS

The model consists of two opposing streams of charged particles as
sketched in Figure 5-6a. Models with relative motion between two sets or
streams of charged particles have been studied in great detail since papers by
Haeff (1949) and Pierce (1948). Detailed knowledge of the nonlinear
behavior of opposing streams came much later, from the simulations done
by Dawson (1962). The fluid analog was given much earlier, as by H. Hertz
in the 1880’s; see comprehensive books on hydrodynamics and acoustics,
such as Lamb (1945) or Rayleigh (1945).

One can readily see that an opposing stream system is unstable. When
two streams move through each other one wavelength in one cycle of the
plasma frequency, a density perturbation on one stream is reinforced by the
forces due to bunching of particles in the other stream and vice versa; hence
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Figure 5-6a (a) Two opposing streams as seen in the laboratory. (b) The streams in phase
space at the start of the problem, ¢t = 0. (c) The streams in velocity space at = 0 and ¢ > 0.
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An; =< n, so that the perturbation grows exponentially in time. This simple
relation was put forth in 1948 by Professor M. Chodorow of Stanford [and
buried in Birdsall’s dissertation (Birdsall, 1951)] for two streams moving in
the same direction (Chodorow and Susskind, 1964). The phase relation for
reinforcement is written as
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This k is very close to that found from analysis for maximum growth rate.

The longitudinal linear dielectric function for two independent cold
streams may be obtained as was done in Section 5-3 by applying the equa-
tions of motion and continuity separately for each stream and adding the
currents of each in the field equation. The result is
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for two streams with drift velocities vg; and v This result is also obtainable
directly from the usual Vlasov-Poisson set by letting the velocity distribution
be two delta functions,

fo(\’) = AS(V - VOI) + BS(V - V02) (4)

A system of N independent cold streams produces a sum over streams or
species s:
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[Extension of the sum to an integral, for N — oo, must be done carefully,
both analytically as shown by Dawson (1960), and also in simulation when a
discrete set of beams is used to approximate a smooth distribution f(v) as
shown by Byers (1970), and Gitomer and Adam (1976), and discussed in
Chapter 16.]

The solutions for complex o, assuming real k¥ (i.e., an absolute instabil-
ity, growth in time only, no convection in space), opposing streams of equal

strength, w, = w, = w,, vo=—vge = vy, is found from e(w,k) =0
which is quartic in @ with four independent solutions. These are
w= :t[kzv&+m3:w,,(4k2v3+w,,7)"’]‘/’ (6)

for which
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kvg two roots are real
0 < @, <2 two roots are imaginary M
kv
V2 < =2 all four roots are real (8)
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This behavior is sketched in Figure 5-6b; the growth {(@imagnary) IS glven in
more detail in Figure 5-6¢.

In this model, where there is growth (@imagnary > 0), we find that
wra = 0, that is, there is no oscillatory part associated with the growth, a
situation which is not generally true.

A point of Figure 5-6¢ is to make clear the existence of a minimum
unstable length L of the system; in this model (normalized)
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in order to obtain growth. This is the same as (7) using L = 27 / k¢, Where
k¢ is the smallest wavenumber in the system.

Growth which begins at small amplitude continues until the streaming is
destroyed; indeed, the distribution becomes nearly Maxwellian. Hence, we
say that "the colliding streams have thermalized," although not by collisions.

Figure 5-6b Dispersion, or w-k, diagram for two equal opposing streams, real k, complex w.
The uncoupled space-charge waves are shown dashed. For each value of k, there are four
values of w that correspond to four linearly independent waves.
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Figure 5-6¢c Growth rate wmgginary fOr tWo opposing streams.

Instead, collective effects build up large electric fields at long wavelengths
(A >> particle spacing) and these scatfer the particles in phase space.

As the instability grows, two changes are readily observed in f(v) as
indicated for ¢ > 0 in Figure 5-6a(c). The width of each beam increases
[measured directly on an £ (v) plot or by (v — %% of one stream], which is
taken as an increase in the temperature of each beam (but perhaps carelessly
so, for if the electric field were suddenly shut off—and you should try
this —the spread might decrease). The drift or mean velocity v decreases.

We might expect, as v perma increases and vy, decreases, that the condi-
tions for linear growth would cease to be met [see Stringer (1964), who
shows the threshold for growth for electron-electron streams to be
Vartt = 1.3Vihermai] and that the exponential growth would stop. However, at
this time, the conditions for linearity are largely violated, with perturbed
charge densities comparable to the zero-order density; particles in one stream
are about to pass their neighbors and wrap into vortices in phase space, that is,
become trapped. Hence, the growth need not stop, although we might be
tempted to look for a change in character of the growth (e.g., away from
exponential in time) at the time where v, exceeds v/ 1.3; keep this in mind
in your project. Of course, ES1 can readily be run with warm beams; hence,
look for growth with vy = 2v, (Section 5-9), but stability with vg= v,.



