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Introduction Background

Cosmic Rays

Relativistic electrons responsible for synchrotron emission at
relativistic outflows

GRB outflows
AGN jets

Require acceleration mechanism to account for power law electron
distributions
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Introduction Goals

Goals

Evolve a particle distribution passively coupled to a hydromagnetic
medium

To measure the efficiency of charged particles acceleration in different
RMHD environments

Directly observe first or second order Fermi mechanism at work

Jonathan Zrake (New York University CCPP) Charged Particle Acceleration in RMHD January 16, 2010 3 / 26



Introduction Theoretical Setting

Theoretical Setting

A probability distribution function f (xµ, pµ) evolves according to
relativistic Vlasov equation

uµ ∂f

∂xµ
+ Fµ ∂f

∂pµ
= 0 (1)

Fµ =
e

m
Fµ

νu
ν (2)

Forcing term comes from Lorentz force law

Model described in Kulsrud and Ferrari (1971)
B-field frozen in a non-resistive turbulent hydromagnetic medium
E = −v × B
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Computational Techniques

Relativistic Magnetohydrodynamics

Formalism described by Antón et al. (2006), with flat spacetime
metric

Standard setup for solving the system of ideal RMHD equations in
conservation form

HLL Riemann solver
Piecewise linear reconstruction on primitive quantities
Method of lines, Runge-Kutta time integration
∇ · B = 0 by Constrained Transport scheme Tóth (2000)
Primitive variable recovery described by Noble et al. (2006)
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Computational Techniques Magnetohydrodynamics

Implementation of Hydro Modules

Fully modularized coding environment using C and C++

Hand-written code from scratch with few dependencies

Any implementation of the MPI 2 standard
HDF5 storage library used for data IO

Large portions of code are dimension-independent, for solving
problems over 1,2,3 dimensional domains with little fuss

Parallelized to run using domain decomposition on an arbitrary
number of cores
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Computational Techniques Charged Particle Motion

Implementation of Charged Particle Modules

Charged particles are implemented as passive tracers, no feedback
into the hydro

Field values are interpolated to particle positions using either constant
or bi/tri-linear interpolation

Coding makes extensive use of the C++ STL, especially the std::list
class template

Parallelization achieved by shipping particles between domain subgrids
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Computational Techniques Charged Particle Motion

Particle Mover

Need a solution to the relativistic Lorentz force law

d(γv)

dt
=

q

m
(v × B + E)

dγ

dt
=

q

m
(v · E) (3)

d2xµ

dτ2
=

q

m
Fµ

σ

dxσ

dτ

dxµ

dτ

dxµ

dτ
= −1 (4)

A solution to these equations is known as a particle mover
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Computational Techniques Charged Particle Motion

Particle mover of Boris (1970)

Described in Tajima (1986) section 15-4

Uses second order ’leapfrog’ algorithm, xµ and uµ for particle orbit
are known at staggered times

Easy to implement, fast execution

Bad orbit resolution when ∆t ωB
2π > 0.2

Used in the TRISTAN Relativistic PIC plasma code
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Computational Techniques Charged Particle Motion

Particle mover of Hyman (1996)

Explicit solution f µ
λ(τ) to Equation (4), parameterized in particle

proper time
xµ(τ) = xµ(0) + f µ

λ(τ)uλ (5)

Exact description of particle trajectory at any future time

Need to invert Equation (5) to obtain τ(x0), requires an iterative
solver
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Computational Techniques Charged Particle Motion

Comparison of Orbit Trajectory
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Computational Techniques Charged Particle Motion

Comparison of Energy Gain
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Diffusive Shock Acceleration Hydro Model

Shock Model

Meant to be the hydrodynamical counterpart to plasma model
described by Sironi and Spitkovsky (2009)

2 dimensional domain with converging flow along x-direction

Equivalent to fluid moving towards a reflecting wall

Shock propagates outward from the discontinuity

Turbulence is created by stirring the fluid

Velocity perturbations are added at every time step
Only within a distance c × t of the initial discontinuity
Weak turbulence upstream of the shock resembles the precurser
observed in PIC simulations
Strong turbulence downstream in shocked fluid
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Diffusive Shock Acceleration Hydro Model

What the Shock Looks Like
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Diffusive Shock Acceleration Particle Energy Spectra

Magnetic Field in Shock Plane
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Diffusive Shock Acceleration Particle Energy Spectra

No Magnetic Field in Shock Plane
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Diffusive Shock Acceleration Where the Acceleration is Most Efficient

Magnetic Field in Shock Plane
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Diffusive Shock Acceleration Where the Acceleration is Most Efficient

No Magnetic Field in Shock Plane
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Diffusive Shock Acceleration Growth in Energy versus Bulk Flow Velocity
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Other Projects 3 Dimensional Turbulence Growth and Decay

Turbulence Model

Described in Zhang et al. (2009)

Tangential velocity discontinuity in periodic 3 dimensional domain

Kelvin-Helmholtz instability is excited at the shearing layer

Turbulence cascade from large to small scales until saturation

Turbulence decays as it slowly loses kinetic energy to grid viscosity
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Other Projects 3 Dimensional Turbulence Growth and Decay

What Kelvin-Helmholtz Looks Like
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Other Projects 3 Dimensional Turbulence Growth and Decay

Particle Acceleration Properties
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Other Projects Cylindrical Magnetized Jets

Jet Model

Described in Mignone et al. (2009)

Initial model consists of uniform ambient medium

Circular jet nozzle placed on left wall consists of

Small differential rotation
Toroidal magnetic field
Pressure profile to ensure no momentum flux in radial direction
(satisfies Bernoulli equation)
Perturbations added to radial velocity component
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Other Projects Cylindrical Magnetized Jets

What Cylindrical Jets Look Like
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Summary

Summary

Implementing charged particles into MHD simulations is practical

Computationally inexpensive
Easy to code
Numerically reliable

Power-law type distributions in particle energy are naturally realized

The efficiency of Diffusive Shock Acceleration can be directly
observed to increase with higher velocities of the bulk flow
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Summary

That’s it!

Thank you for listening

Questions / discussion welcome

Jonathan Zrake (New York University CCPP) Charged Particle Acceleration in RMHD January 16, 2010 26 / 26



References

Antón, L., Zanotti, O., Miralles, J. A., Mart́ı, J. M., Ibáñez, J. M., Font,
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