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• What are they?  Short (~ seconds) high-energy 
flashes with afterglows in X-ray, optical and radio 
up to ~ a year

• Where are they from?  Cosmological distances

• How are they made?  

• At least some are made in the death of massive 
stars.  Assoc. w/ core collapse supernovae.

• Some are probably the mergers of compact 
objects (black holes and neutron stars)
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Artist’s Conception of Collapsar
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Credit: NASA / SkyWorks Digital



AMR Simulations of GRB Outflows 
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Zhang & MacFadyen (2009)
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Synchrotron radiation

Collisionless Shock!
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A PIC Simulation of a Collisionless Shock
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Wall

γ = 2
e+, e-

• 2D w/ 20480 x 256 cells

• Δx = 0.1 skin depth

• 128 particles per cell initially,  > 109 particles in the end 

• Similar to Spitkovsky (2008) except for γ and resolution 
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Why γ=2?

• 2 < 15     22<<152

• More relevant for GRB afterglows

• Numerically easier
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Shock Structure
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ISM
n ~ 1 cm-3

ωp ~ 104 Hz
δ ~ 106 cm

GRB at γ ~ 2
~ 1018 cm

Shock
Width ~ 50 δ
Speed ~ 0.94 c

Decaying B field

Density Jump



Particle Acceleration
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• Initial:  γ = 2

• Now:  up to ~ 20

• Fermi Acceleration

• Power-law?

Two Slices

• Downstream:  −50±10

• Upstream:  +50±10
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• Width ~ 40±10 δ
stopped growing?

• Magnetic energy:
saturated? 

Definition of Downstream Width 
containing half of magnetic energy

The Problem
Magnetized region is 

too small!
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Summary of PIC Simulations

• Existence of relativistic collisionless shock

• Field generated near the shock

• Fermi acceleration  

15

• 2D vs. 3D:  The field probably decays faster in 3D.

• Ion + electron plasma

• The magnetized region is too small! 

• (Ultra-)high energy cosmic rays

Open Questions
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Skin Depth Emission Region

Particle Field

Current

Acceleration

However, magnetic fields 
dissipate.

Difficult for PIC 
to simulate very large region

10 orders of magnitude

MHD
Turbulence
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3D RMHD Simulation of Kelvin-Helmholtz
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Initial:  v = 0.5 c, weak B1024 x 1024 x 1024

• Velocity shear

• Vortex

• Winding up field

• Instability grows

• Turbulence

• Stretching & folding

• Field amplification
Zhang, MacFadyen & Wang 

(2009)
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Magnetic Field Structure
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Particle + MHD
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Zrake et al.

Relativistic MHD 
+ 

tracer particles

Turbulence
due to stirring

10010



• Small-scale

• Noise from particles

• MHD waves

PIC            vs.         MHD 
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Pros

Cons

• Kinetic effects

• “First principles”

• Back reaction from 
particles

• Better methods (e.g., AMR)

• Large-scale

• MHD waves

• Lack of Scattering by high 
frequency waves

• Back reaction from particles 
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Initial Conditions

Particle Effects

PIC MHD


