Relativistic HD and MHD models for AGN jet propagation and deceleration

Rony Keppens

Centre for Plasma Astrophysics, K.U.Leuven
FOM-Institute for Plasma Physics Rijnhuizen
Astronomical Institute, Utrecht University

15 January 2010

In collaboration with:

- Z. Meliani
Outline

• Introduction:
 ⇒ SRMHD model and AMRVAC software
 ⇒ Fanaroff-Riley classification and HYMORS
 ⇒ contemporary challenges in AGN jet modeling

• Relativistic (M)HD simulations
 ⇒ relativistic HD jet simulations and HYMORS
 ⇒ relativistic (M)HD two-component jet simulations
 ⇒ helically magnetized, relativistic jets

• Outlook
Special Relativity and MHD

- **special relativistic magnetofluids** → flat Minkowski space-time
 ⇒ particle, tensorial energy-momentum conservation, full Maxwell
- **ideal magnetohydrodynamic**: vanishing electric field in comoving frame

\[E = -v \times B \]

⇒ fix Lorentz frame, use 1 + 3 split (time/space), obtain

\[\partial_t U + \partial_i F^i = 0 \]

⇒ conserved variables \(U = (D, S, \tau, B) \)

- \(D = \) rest mass density \(\rho \times \Gamma \)
 ⇒ lab number density \(\Gamma n_0 \): volume change by length contraction
 ⇒ conserved variables \(U = (D, S_{tot}, \tau, B) \), primitives \((\rho, v, p, B) \)
MHD waves

- 7 wavespeeds \textit{entropy}, \pm slow, \pm Alfvén, \pm fast [anisotropic!]
- MHD waves in uniform medium
Relativistic MHD waves I

- in MHD: anisotropic wave behavior in rest frame
 ⇒ phase & group (Friedrich) diagrams for slow, Alfvén, fast

⇒ horizontal B, uniform plasma
⇒ δ-perturbation yields group diagram, also Huygens construction
⇒ **Alfvén waves**: circles in phase diagrams, pointlike in Friedrich
Relativistic MHD waves II

- draw phase diagram when source moves at

\[\mathbf{v} = 0.9 \left[\sin(\pi/4)\mathbf{e}_x + \cos(\pi/4)\mathbf{e}_z \right] \]

- group speed diagram then fully 3D objects, no more symmetry

⇒ use Huygens construction: slow and fast wave fronts
Relativistic MHD waves III

- when speed $v = 0.9c e_z$ aligned with B, still up-down symmetry
 \Rightarrow from Lorentz transform get group diagram

- see *Physics of Plasmas* 15, 102103, 2008
 \Rightarrow knowledge of exact group diagrams: stringest code test!
Adaptive Mesh Refinement & AMRVAC

- extreme contrasts, positive $p, \rho, \tau, v < 1, \Gamma \geq 1$, solenoidal B
 \Rightarrow stringent demands on numerics and accuracy: AMR vital

- Special relativistic HD and MHD: ‘modules’ in AMRVAC
 \Rightarrow advection, hydro, MHD, relativistic (M)HD modules
 \Rightarrow different EOS implemented for relativistic modules
 \Rightarrow any-D, explicit grid adaptive framework
 \Rightarrow full MPI octree variant, cartesian/cylindrical/spherical

- shock-capturing schemes (TVDLF/HLL/HLLC/Roe), reconstructions (linear/PPM)
RMHD Orszag-Tang test

- relativistic analogue of 2D MHD Orszag-Tang test
 - double periodic, supersonic relativistic vortex rotation
 - initial field configuration: double island structure

⇒ current sheets form, shock interactions, reconnections
AMR vital: captures small-scale reconnection effects

\[\text{time} = 6.4 / 0906 \]

\[\text{min} = 1.000000, \text{max} = 1.704703 \]
• Equation of state in relativistic numerical simulations
 ⇒ mostly assumed constant polytropic index γ
 ⇒ specific internal energy $e_{th} = p/(\gamma - 1)\rho$

• Relativistically correct ideal gas: effective $\hat{\gamma}(T)$
 ⇒ compare Synge with convenient proxy (no Bessel functions)
MPI-AMRVAC and HPC-Europa2

- excellent scaling for domain decomposition and full multi-level AMR
 \[\Rightarrow \text{2D MHD at } \approx 400^2, \ 1000 \ \Delta t \ \text{in less than 5 seconds (includes IO)} \]
 \[\Rightarrow \text{10 level AMR for RHD with sustained 80\% efficiency on 2000 CPUs!} \]
Fanaroff-Riley 1974 classification

- correlation **radio luminosity** - positions high-low surface brightness

 ⇒ Class I – Class II transition: at well-defined $L_{178\text{Mhz}}$

- FR I: brightest near core, jets in 80 %, **relativistic at parsec scale while diffuse and subrelativistic at kpc**

- FR II: emission in **lobes and hot spots**; narrow, highly relativistic jet

- relation radio appearance - **IGM energy transport/deposition**
HYMORS

- Gopal-Krishna & Wiita 2002: Hybrid Morphology Radio Sources
 - FR I appearance on one side, FR II characteristics
 - FR I/II classification relates to ambient medium differences

⇒ FR II lobe with hotspot to SE, diffuse jet to NW (FR I)
⇒ source yields ‘identical’ launch conditions at each side
AGN jet challenges

- How to decelerate highly energetic (especially FR II) flows?
 ⇒ HYMORS suggest external medium influence, study with axisymmetric HD jet models
- Jet launch models and observations point out transverse stratification
 ⇒ source region controls inner/outer jet properties
 ⇒ FR II/FR I transition: liability to relativistic Rayleigh-Taylor mode
 ⇒ relativistic 2.5D and 3D (M)HD simulations
- Magnetization of jet flows
 ⇒ role of helical B in collimation/propagation
Model parameters

- jet kinetic energy & Lorentz factor Γ (order 10-20)
- ratio between jet/IGM inertia (density contrast)
- opening angle: cylindrical/conical models

- external medium stratification: include **density discontinuities**
 \Rightarrow inevitable boundaries separating differing regions of influence
- **special relativistic (magneto)hydro** equations
• Relativistically correct ideal gas: effective $\gamma(T)$
 ⇒ varying polytropic index: affects compression rate, shock strength
• Application: **AGN jets encountering density discontinuity**
 ⇒ simulate jet propagation through layered media
 ⇒ $\Gamma \approx 20$ beam Lorentz factor, $L_{\text{Jet, Kin}} \sim 10^{46}\text{ergs/s}$.
• lower region: lighter medium $\rho_{\text{Low}}/\rho_{\text{b}} = 0.1496$
 ⇒ after 160 light crossings **zoom on jet head before jump encounter**
• preformed jet head: ultrarelativistic state in shocked, swept-up ISM
 ⇒ effect on dynamics as it penetrates denser region
• explored differences between **low-high energy jets**: \(10^{43}\) or \(10^{46}\) ergs/s

⇒ jet beam kinetic luminosity

\[
L_{\text{jet},\text{Kin}} = (\Gamma_b h_b - 1) \rho_b \Gamma_b \pi R_b^2 v_b
\]

⇒ 10 model computations, **varying** \(\Gamma_b = 10 - 20\) and \(\theta = 0 - 1\)

⇒ always CD, with/out \(\rho\) variation, Case II \(10^{46}\) ergs/s at \(t = 900\)

⇒ **FR II jet at first, then dramatic slowdown with FR I appearance**
• high energy jets: need significant contrast to induce FR I transition

\[\Gamma = 10, \text{ density jump 10-1000}, \text{ IGM stratification effects} \]
• overall findings on jet deceleration
 ⇒ FR II-FR I transition feasible at large density contrast
 ⇒ FR I changeover: relativistic at pc to subrelativistic at kpc
• FR I low energy jets: **Richtmeyer-Meshkov instability** as shock passes CD

⇒ all *high-resolution, grid-adaptive computations, effective resolutions of* 3000×5000, *4 to 6 refinement levels*

⇒ typical execution times: *4 days on 64 processors*
Internal stratification effects and jet deceleration

- AGN jets **radial stratification: fast inner, slow outer jet**
 - different launch mechanism \rightarrow different rotation
- outer ‘disk’ jet launched magnetocentrifugally
 - Magnetized Accretion-Ejection Structure (MAES)

- generic mechanism for jet launch
 - magnetic torque brakes disk matter azimuthally
 - magnetic torque spins up jet matter
 - mass source for jet: disk
 - \mathbf{B} collimates, accelerates
 - **Jet formation animation & Escaping accretion**

- accretor can be very different
 - YSO, compact object, AGN
Two-component jet model

- close to central engine: GR mechanisms launch additional inner jet
 - efficient extraction AM from inner disk + black hole
 (Blandford-Znajek mechanism)
 - fast rotating inner jet, introduce radially layered jet
 - inner $\Gamma \sim 30$, outer $\Gamma \sim 3$

- perform 2.5D runs in cross-section
 - variation along jet axis ignored
 - both HD and MHD runs
 - explore differences in effective inertia

- repeat in full 3D HD
 - confirm & complement 2.5D scenario
• vary relative contribution inner jet to total $L_{Jet,Kin} \sim 10^{46}\text{ergs/s}$

\Rightarrow discovery new relativistic, centrifugal Rayleigh-Taylor mode

\Rightarrow FR I versus FR II related to launch efficiency inner jet!
• novel relativistically enhanced Rayleigh-Taylor mode
 ⇒ approximate dispersion relation
 ⇒ insert spatio-temporal dependence \(\exp(\lambda t - k |\zeta|) \) with displacement \(\zeta \)
 \[
 \lambda^2 \propto k \left[(\Gamma^2 \rho h + B_z^2)_{\text{in}} - (\Gamma^2 \rho h + B_z^2)_{\text{out}} \right]
 \]
• Stability: effective inertia outer jet > effective inertia inner jet
 ⇒ works for both HD and MHD relativistic jets
 ⇒ purely poloidal \(B \) effect incorporated
 ⇒ No classical counterpart (relativistic flow essential)!
 ⇒ \(\Gamma^2 h \) effect with \(h \) specific enthalpy
 ⇒ relativistic EOS crucial: cold/hot outer/inner jet
• stable versus unstable jets: design initial conditions with varying contribution of inner/outer jet to total kinetic energy flux
 ⇒ criterion predicts cases A, C, D stable; B1, B2 unstable
 ⇒ evolution of inner jet mean Lorentz factor

 \[\gamma_{\text{mean}} \text{ vs. } t \text{ (year)}\]

 The evolution of mean Lorentz factor

 Case A
 Case B1
 Case B2
 Case C
 Case D

 ⇒ efficient AM redistribution and enhanced inner/outer jet mixing when mode develops
• can quantify jet de-collimation due to mode development

⇒ non-axisymmetric mode development ultimately responsible

⇒ relativistic RT mode decelerates inner, decollimates total jet

• FR II/FR I transition thereby related to central engine

⇒ depends on distribution kinetic energy over two-component jet
Preview: 3D two-component scenarios

- set up cylindrical, two-component jet models
 ⇒ assume periodic segment, ignore jet opening angle
 ⇒ visualization: exploit Paraview (www.paraview.org)
- 3D case liable to RT mode versus 3D case stable to RT mode
Summary two-component jet evolutions in 3D

- despite additional Kelvin-Helmholtz modes with axial variation
 ⇒ main evolution driven by newly discovered RT mode
- further work: analyse observational consequences
 ⇒ synthetic radio maps!
 ⇒ role of helical magnetic fields (to do . . .)
 ⇒ combined internal/external stratification effects (to do . . .)
Helically magnetized jets

- Axisymmetric **helical field configurations**
 - ⇒ again 2.5D, density contrast 1/10: light jet
 - ⇒ inlet profile of Γ and $\mu = \frac{R_j B_\varphi}{R B_Z}$

- average $\bar{\Gamma} \approx 7$, $\beta_I = 0.3$ and $\sigma = 0.006$
 - ⇒ kinetic energy dominated, near equipartition jets
- both helical field and rotation within jet!
• follow jet to 147 light crossing times of R_j: p_{mag} top, ρ down

\Rightarrow significant magnetic pressure within beam and backflow regions
- magnetic field: helicity throughout the jet beam
 ⇒ changes at internal cross-shocks
 ⇒ localized mainly toroidal field within vortical backflows
beam cross-shocks: increased helical field pinches flow downstream
⇒ matter reaccelerates up to next cross-shock
⇒ deceleration relativistic jet with equipartition B: extreme lengths
- detailed variation of field quantities at jet head
 \[\Rightarrow\] significant 2D effects compared to related 1D Riemann problems
explored transition $\tilde{\Gamma} = 1.15 \rightarrow 7$
\[\Rightarrow\text{non-relativistic: strong toroidal field in cocoon}\]
- quantified propagation characteristics
 ⇒ varied field inlet topology and external medium

⇒ propagation characterized by $\Gamma > \bar{\Gamma}$
• power maps give **indication of sites of synchrotron emission**

⇒ total radiation emitted is \(\propto v^2 \Gamma^2 B^2 \sin^2 \psi \)

⇒ varies significantly from toroidal to poloidal field cases

⇒ simultaneous plots of pressure/temperature at right

Ref2: time=217.91
Outlook

- **In summary:** realistic relativistic (M)HD models
 - external medium influence HYMORS: one-sided FR II to FR I
 - radial jet stratification: FR II versus FR I
 - helical B jets: magnetic reacceleration across cross-shocks

- **Related References:**
As a sequel to **Principles of Magnetohydrodynamics** (Goedbloed & Poedts, CUP 2004), I can warmly recommend ...
Quadtree-Octree AMR

- example with 2D domain covered by $8 = 4 \times 2$ base level grid blocks
 \Rightarrow hierarchically nested AMR levels, fixed factor 2 refinement

- Space-filling Morton (Z-order) curve for $N_{\text{block}} = 17$ grid blocks
 \Rightarrow load-balancing: N_p CPUs each N_{block}/N_p ‘adjacent’ blocks
 $\Rightarrow N_p = 4$: $P_0 : 1 \rightarrow 5$, $P_1 : 6 \rightarrow 9$, $P_2 : 10 \rightarrow 13$, $P_3 : 14 \rightarrow 17$
 \Rightarrow after every timestep: full grid-tree re-evaluated
AMR criteria

- automated block-based regridding procedure: 3 steps
 - consider all blocks at level $1 < l < l_{\text{max}}$
 - quantify local error \mathcal{E}_i at each gridpoint x_i in a grid block
 - if ANY point has $\mathcal{E}_i > Tol^l$ refine block (and ensure nesting)
 - if ALL points have $\mathcal{E}_i \leq f_{\text{Tol}}^l Tol^l$ coarsen block

- involves (user) parameters:
 - error tolerance per level Tol^l
 - coarsen fraction f_{Tol}^l per level
Error estimation

- choice between 3 different local error \mathcal{E}_i estimators
 - Richardson-based: quantify error at t^{n+1}, use w^{n-1}, w^n
 - local comparison between w^{n-1}, w^n
 - Löhner (& FLASH3) estimator: use w^n, normalized 2nd derivatives
- all estimators use user-selection of (conserved or auxiliary) variables

\[
\mathcal{E}_i = \sum_{i,w} \sigma_{i,w} \mathcal{E}_{i,w}^{\text{Rel}}
\]

- local relative variable errors $\mathcal{E}_{i,w}^{\text{Rel}}$, weights obey $\sum_{i,w} \sigma_{i,w} = 1$
- all error estimators augmented with user-coded (de)refinement

Rony Keppens
AGN jet modeling
Richardson estimator

- Richardson procedure: compute 2 future solutions w^{n+1}, 3 time levels
 ⇒ start from w^{n-1}, coarsen to $2\Delta x$, integrate with $2\Delta t$
 ⇒ **Coarsened-Integrated** solution w^{CI}
 ⇒ start from w^n, integrate with Δt, coarsen to $2\Delta x$
 ⇒ **Integrated-Coarsened** solution w^{IC}
 ⇒ local relative variable errors \mathcal{E}_{iw}^{Rel} from

\[
\mathcal{E}_{iw}^{Rel} = \frac{|w_{iw}^{CI} - w_{iw}^{IC}|}{\sum_{iw} \sigma_{iw} |w_{iw}^{IC}|}
\]

- integrator: use first order D-unsplit scheme, only unsplit source terms
Local comparison

- Local comparison: employ 2 time levels w^{n-1}, w^n
 \[\Rightarrow \text{local relative variable errors } E_{iw}^{Rel} \text{ from} \]
 \[E_{iw}^{Rel} = \frac{|w_{iw}^{n-1} - w_{iw}^n|}{|w_{iw}^{n-1}|} \]

- Richardson or Local may need added user-set buffer zone to refine
 \[\Rightarrow \text{additional user parameters } n_{buff} \]
Löhner estimator I

- Löhner (1987) as adjusted in PARAMESH & FLASH3
 \[\Rightarrow \text{instantaneous } w^n, \text{ quantifies normalized 2nd derivatives} \]
 \[\Rightarrow \text{local relative variable errors } \mathcal{E}_{iw}^{\text{Rel}} \text{ from} \]
 \[\mathcal{E}_{iw}^{\text{Rel}} = \sqrt{\frac{N_{iw}}{\max (D_{iw}, \epsilon)}} \]
 \[\Rightarrow \text{numerator } N_{iw} = \sum_{i_1} \sum_{i_2} \left[\Delta_{i_1} (\Delta_{i_2} w_{iw}) \right]^2, \text{denominator} \]
 \[D_{iw} = \sum_{i_1} \sum_{i_2} \left[| L_{i_1} w_{iw} | + | R_{i_1} w_{iw} | + f^l S_{i_2}(S_{i_1} | w_{iw} |) \right]^2 \]
 \[\Rightarrow \text{discrete central, left and right shifts } \Delta_i, L_i, R_i, \text{ sum operator } S_i \text{ for direction } i \]
Löhner estimator II

- estimator quantifies a weighted 2nd derivative in grid point \(i \) as in

\[
\left\{ \frac{\sum_{i_1} \sum_{i_2} \left(\Delta x_{i_1} \Delta x_{i_2} \left(\frac{\partial^2 w}{\partial x_{i_1} \partial x_{i_2}} \right) \right)^2}{\sum_{i_1} \sum_{i_2} \left[| \Delta x_{i_1} \frac{\partial w}{\partial x_{i_1}} |_{i-1} + | \Delta x_{i_1} \frac{\partial w}{\partial x_{i_1}} |_{i+1} + f^l | \bar{w} | \right]^2} \right\}^{\frac{1}{2}}
\]

- (level dependent) 'wavefilter' parameter \(f^l \), order \(10^{-2} \)
 \(\Rightarrow \) can also use logarithm for (positive) variables

- Note: tolerance \(Tol^l \) order 0.1, smaller for Richardson or Local
Special Relativity I

- 4D flat space-time, with c as maximal propagation speed
 - four-vector $X = (ct, x)^T$ squared length invariant
 \[X \cdot X = -c^2 t^2 + x_1^2 + x_2^2 + x_3^2 \]
 - Minkowski metric $g_{\alpha\beta} = g^{\alpha\beta} = \text{diag} \ (-1, 1, 1, 1)$
 - contra- & covariant components $X^\alpha = g^{\alpha\beta} X_\beta$ reverse $X^0 = -X_0$
- particle wordline: ideal clock for proper time τ
 - four-velocity $U = dX/d\tau$, components
 \[
 U^\alpha = \begin{pmatrix}
 c \\
 \frac{dt}{d\tau} \\
 \frac{dx_i}{dt} \\
 \frac{dt}{d\tau}
 \end{pmatrix} = (c\Gamma, \Gamma v)^T \tag{1}
 \]
 - spatial three-velocity v in prechosen Lorentzian reference frame
 - Lorentz factor $\Gamma = \frac{1}{\sqrt{1-v^2/c^2}}$
Special Relativity II

- inertial frames Lorentz transform $X' = L_{\alpha}^{\alpha'} X$
 \Rightarrow lost simultaneity, length contracts, time dilates
- proper density: $\rho = m_0 n_0$ with n_0 rest frame number density
 \Rightarrow lab frame ‘density’ $D = \Gamma \rho$: volume change by length contraction
- Particle conservation is $\partial_{\alpha} (\rho U^\alpha) = 0$ or
 \[
 \frac{\partial D}{\partial t} + \nabla \cdot (Dv) = 0
 \]
- stress-energy tensor:
 \[
 \begin{pmatrix}
 T^{00} & T^{0i} \\
 T^{i0} & T^{ij}
 \end{pmatrix}
 = \begin{pmatrix}
 \text{energy density} & \text{energy flux} \\
 \text{momentum flux} & \text{stresses}
 \end{pmatrix}
 \]
Special Relativity III

- gas stress-energy contribution from expression in rest frame:
 \[
 \begin{pmatrix}
 \rho c^2 + \rho \epsilon \\
 \text{rest mass + internal energy} \\
 0 \\
 \hline
 0 \\
 \end{pmatrix}
 \]

 \[
 \Rightarrow \text{to lab frame by inverse Lorentz } T_{\alpha \beta} = \mathbf{L}_{\alpha'}^{-1, \alpha} \mathbf{L}_{\beta'}^{-1, \beta} T_{\alpha' \beta'}
 \]

 \[
 \begin{pmatrix}
 T^{00} & T^{0i} \\
 T^{i0} & T^{ij} \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 \tau_g + Dc^2 & \frac{S_g}{c} \\
 \frac{S_g}{c} & \frac{S_g v}{c^2} + pl \\
 \end{pmatrix}
 \]

 \[
 \Rightarrow S_g = (\rho c^2 + \rho \epsilon + p) \Gamma^2 v \quad \text{and} \quad \tau_g + Dc^2 = (\rho c^2 + \rho \epsilon + p) \Gamma^2 - p
 \]
Special Relativity IV

- when also allowing for electromagnetic fields: EM stress-energy

\[
T_{\alpha\beta}^{em} = \begin{pmatrix}
\frac{B^2}{2\mu_0} + \epsilon_0 \frac{E^2}{2} & S_{em} \\
\frac{S_{em}}{c} & \left(\frac{B^2}{2\mu_0} + \epsilon_0 \frac{E^2}{2}\right) I - \epsilon_0 EE - \frac{BB}{\mu_0}
\end{pmatrix}
\]

- EM energy flux is Poynting flux \(S_{em} = \frac{E \times B}{\mu_0} \)
- use \(E = -v \times B \): perfect conductivity

Rony Keppens AGN jet modeling
• energy-momentum conservation

\[\partial_\beta \left(T^{\alpha\beta} + T_{\text{em}}^{\alpha\beta} \right) = 0 \]

• introduce energy density minus rest mass and total energy flux from

\[\tau = \tau_g + \frac{B^2}{2\mu_0} + \epsilon_0 \frac{B^2 v^2 - (v \cdot B)^2}{2} \]

\[S_{\text{tot}} = S_g + S_{\text{em}} \]

⇒ temporal part gives

\[\frac{\partial \tau}{\partial t} + \nabla \cdot \left((\tau + p_{\text{tot}}) v - (v \cdot B) \frac{B}{\mu_0} \right) = 0 \]

⇒ spatial part:

\[\frac{\partial S_{\text{tot}}}{\partial t} + \nabla \cdot \left(S_{\text{tot}} v + p_{\text{tot}} c^2 I - \frac{c^2}{\mu_0} \frac{B B}{\Gamma^2} - \frac{1}{\mu_0} (v \cdot B) v B \right) = 0 \]
Special Relativity VI

- total pressure \(p_{tot} = p + \frac{(v \cdot B)^2}{2} + \frac{B^2}{2 \Gamma^2} \)

- close system with homogeneous Maxwell equations:
 \[\nabla \cdot B = 0 \]
 \[\frac{\partial B}{\partial t} - \nabla \times (v \times B) = 0 \]
 \(\Rightarrow \) together with equation of state
 \[\rho \epsilon = \frac{p}{\gamma - 1} \]

- Summary: ideal relativistic MHD
 \(\Rightarrow \) fix Lorentz frame, use 1 + 3 split (time/space), obtain
 \[\partial_t U + \partial_i F^i = 0 \]
 \(\Rightarrow \) conserved variables \(U = (D, S_{tot}, \tau, B) \)
 \(\Rightarrow \) primitive variables \((\rho, v, p, B) \)