The collective effects of intense ion and electron beams propagating through background plasma

I. D. Kaganovich, R. C. Davidson, M. A. Dorf,E. A. Startsev, A. B. Sefkow*Princeton Plasma Physics Laboratory*

A. Spitkovsky *Princeton University, NJ, USA*

V. Khudik, O. Polomarov, G. Shvets *The University of Texas at Austin, Austin, TX, USA*

Outline

Applications:

- Fast Ignition Scheme of Laser Driven Inertial Fusion
- Neutralized Drift Compression Scheme of Ion Beam Driven Inertial Fusion
- Collisionless shocks in astrophysics
- Collective effects in intense particle beams in accelerators

Electron MHD with electron inertia and kinetic effects

Applications: Fast Ignition Scheme of Laser Driven Inertial Fusion

*Tabak, Hammer, Glinsky, Kruer, Wilks, Woodworth, Campbell, & Perry *Phys. Plasmas* 1 1626 (1994) ** H. Azechi, et al. Laser Part. Beams 9, 2 (1991).

•Collisional stopping of 1-2 MeV beams: what if the energy is much higher?

•Electrons have to travel through long "tenuous" coronal plasma: what happens to them on the way to the dense core?

Final Focus

Instead of lasers intense ion beam pulses are used as a driver (energy few 100s MeV, kA currents)

Accelerator

• Issues:

Source.

Injector

Controlling degree of neutralization by plasma;

asmä

Mitigation of plasma instabilities;

Generation of strong magnetic field, beam filamentation, collisionless beam stopping and plasma heating.

Applications: Collisionless shocks in astrophysics Study mechanisms of collisionless energy transfer from intense electron beam to plasma during filamentation process.

Electron beam or plasma stream penetrating to another plasma

10^{-1 €}

Collective effects in intense particle beams in accelerators

Intense nonneutral fast particle beam pulses have with self-potential of 100V-10kV and are subject to collective instabilities, Harris, Weibel, resistive wall, two-stream... **TOOLS:** electron fluid and *full* Maxwell equations are solved numerically and analytically.

$$\begin{split} &\frac{\partial \vec{p}_{e}}{\partial t} + (\vec{V}_{e} \bullet \nabla) \vec{p}_{e} = -\frac{e}{m} (\vec{E} + \frac{1}{c} \vec{V}_{e} \times \vec{B}), \ \frac{\partial n_{e}}{\partial t} + \nabla \bullet \left(n_{e} \vec{V}_{e} \right) = 0, \\ &\nabla \times \vec{B} = \frac{4\pi e}{c} \left(Z_{b} n_{b} V_{bz} - n_{e} V_{ez} \right) + \frac{1}{c} \frac{\partial \vec{E}}{\partial t}, \quad \nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}. \end{split}$$

Explicit and implicit solvers, moving frames

For slow beams or dense plasmas (compared to the beam density) displacement current and radiation can be neglected => Darwin scheme.

Analytical approaches: conservation of the canonical momentum or the generalized vorticity.

beam length $30c/\omega_p$ beam radius $0.5c/\omega_p$ beam density is 5 of plasma density; beam velocity 0.5c.

plasma

Steady- State Results

Controlling degree of neutralization of intense ion beam pulse by dense plasma

Practical consideration: what plasma sources are needed for effective neutralization.

Alternating magnetic flux generates inductive electric field, which accelerates electrons along the beam propagation direction. For long beams canonical momentum is conserved $mV_{ez} = eA_z/c = e\int_0^r Bdr/c$

$$\phi = mV_{ez}^{2} / 2e \quad V_{ez} \sim V_{b}n_{b} / n_{p} \quad \phi_{vp} = mV_{b}^{2} (n_{b} / n_{p})^{2} / 2$$

Having $n_p >> n_b$ strongly increases the neutralization degree.

Electrons produced in the beam pulse carry away magnetic field

If an electron originates in the region of strong magnetic field, and later moves into a region of weaker magnetic field, then the electron flow velocity is in the direction opposite to the beam velocity; and the current of such electrons *enhances* the beam current rather than diminishes the beam current.

The return current becomes nonlocal.

Long tail in the B profile is produced in the wake of the beam pulse due to ionization.

Beam pulse (left) produces plasma by gas ionization with comparable density (right), which generates a tail in the self-magnetic field.

 E_x in the beam pulse pushes new electrons into the beam center. E_z in the beam tail pushes electrons in the direction opposite to the beam velocity.

Influence of magnetic field on beam neutralization by a background plasma

10

Anal. PIC =

x (cm)

50

Small radial electron displacement generates fast poloidal rotation according to the conservation of azimuthal canonical $V_{\phi} = \frac{e}{mc} (A_{\phi} + B_{sol} \delta r)$ momentum:

> The poloidal rotation twists the magnetic field and generates the poloidal magnetic field and large radial electric field.

Self-magnetic field; perturbation in the solenoidal magnetic field; and the radial electric field in a perpendicular slice of the beam pulse: $n_{b0} = n_p/2 = 1.2 \times 10^{11} cm^{-3}$; $V_h = 0.33c$, B_{z0} : (b) 300*G*; and (e) 900*G*.

10

8

2

x (cm)

Application of a solenoidal magnetic field allows control of the radial force acting on the beam particles

Normalized radial force acting on beam ions in background plasma for different values of $(\omega_{ce} / \omega_{pe} \beta_b)^2$. The green line corresponds to a gaussian density profile. System parameters are : $r_b = 1.5\delta_p$; $\delta_p = c/\omega_{pe}$.

Weibel instability in relativistic beams

plasma

J_{beam}

Opposite currents are repelled → filaments formation and interaction

Three Stages of Beam Filamentation

- Linear growth and saturation via magnetic particle trapping
 - small current filaments (c/ω_p) , small energy extraction.

Nonlinear coalescence of current filaments

• each filament carries up to 17kA of current; significant energy conversion into magnetic fields.

Coalescence of super-Alfvenic current filaments

• beam current reduction, formation of "hollow" current filaments, decrease of the Bfield energy.

#17

Movie of the beam density in 2D PIC simulations (fixed plasma ions)

Super-Alfvenic filaments, $I>I_A=\gamma mc^3/e$

density (species2,cell) at X=188.6, Z=0.0000

Plasma density

1×10¹⁰

8×10⁴

6×10⁶

4×10⁵

2×109

Beam density

Beam density is equal to the back-ground ion density in the filament and sharply decreases at the periphery of the filament.

$$\nabla^2 \psi - \frac{4\pi e^2}{mc} n_i \psi = 4\pi e n_b \beta_{b0}$$

Ambient plasma is fully expelled from the filament.

100 Y (cm)

> Beam current is absent in the center of filament and localized at the edges of the filament.

100 Y (cm

Current density

Slice Plot at X=188.4, Z=0.0000

return

current

Beam

current

200

150

Analytical solution making use of conservation of the canonical momentum, O. Polomarov, PRL 2008

Schematic of

the electron

velocity.

Movie of the plasma ion density in 2D PIC simulations moving plasma ions

Density colorplots of beam electrons, plasma electrons, and plasma ions

Electric field pushes ions inwards inside filaments and outwards outside the filaments.

Slice of density profiles electron beam – plasma electrons – plasma ions –

Electron beam temperature growth

Distribution of the beam density normalized to the initial value, $n_{b0}/n_p = 10^{-3}$

Trapped and untrapped particle form a Maxwellian distribution function

 $Tn_{p}/mc^{2} n_{b}=1.45$

f

Conclusions

- Developed fast codes (Darwin scheme).
- Developed nonlinear theory of charge and current neutralization of intense ion and electron beam pulses propagating in plasma.
 - Presence of the magnetic field clearly makes the collective processes of beam-plasma interactions rich in physics content.
- Developed an analytical model of the filaments structure of electron beams during the Weibel instability.