Relativistic MHD And Radiative Transfer

Charles F. Gammie University of Illinois

with J. Dolence, P.-K. Leung, M. Moscibrodzka, H. Shiokawa, S. Noble

* : (MAPE + SCATTERED) LOST

28

30

Josh Dolence dolence2@illinois.edu

Dadde

0.2deg ~ 30 pc ~ 1.5 x 10⁸ GM/c²

Spitzer 2-8 µm mosaic; NASA/JPL-Caltech/S. Stolovy

90" ~ 4 pc ~ 2 x 10⁷ GM/c²

Spitzer 2-8 µm mosaic; NASA/JPL-Caltech/S. Stolovy

 $M = 4.1 \times 10^{6} M_{\odot}$ D = 8 kpc

 $GM/c^2 = 6 \times 10^{11} cm$ 5 µas at 8 kpc

Unique! M87: 2 μas

Stellar mass BH At 4000 AU

Doeleman et al. 2008 1.3mm VLBI HWHM ~ 20 μas

Shen et al., 2005: VLBI image at 3.5mm

Some recent Sgr A* models:

Dexter, Agol, & Fragile 2009 Hilburn et al. 2009 Moscibrodzka et al. 2009 Huang et al. 2009 Yuan et al. 2009 **Chan et al. 2009** Broderick et al. 2009 Huang, Takahashi, & Shen 2009 Markoff, Bower, & Falcke 2007 Huang et al. 2007 Loeb & Waxman 2007 **Broderick & Loeb 2006** Goldston, Quataert, & Igumenshchev 2005 Ohsuga, Kato, & Mineshige 2005 Yuan, Quataert, & Narayan 2003

Some recent Sgr A* models:

Dexter, Agol, & Fragile 2009 Hilburn et al. 2009 Moscibrodzka et al. 2009 Huang et al. 2009 Yuan et al. 2009 **Chan et al. 2009** Broderick et al. 2009 Huang, Takahashi, & Shen 2009 Markoff, Bower, & Falcke 2007 Huang et al. 2007 Loeb & Waxman 2007 Broderick & Loeb 2006 Goldston, Quataert, & Igum. 2005 Ohsuga, Kato, & Mineshige 2005 Yuan, Quataert, & Narayan 2003

Flow model:

Rel. Simulation Rel. Simulation Rel. Simulation Steady (RIAF) model Steady (RIAF) model Nonrel. Simulation Steady (RIAF) model Steady (RIAF) model Jet Steady (RIAF) model Jet Steady (RIAF) model Nonrel. Simulation Nonrel. Simulation Steady (RIAF) model

Some recent Sgr A* models:

Dexter, Agol, & Fragile 2009 Hilburn et al. 2009 Moscibrodzka et al. 2009 Huang et al. 2009 Yuan et al. 2009 **Chan et al. 2009** Broderick et al. 2009 Huang, Takahashi, & Shen 2009 Markoff, Bower, & Falcke 2007 Huang et al. 2007 Loeb & Waxman 2007 Broderick & Loeb 2006 Goldston, Quataert, & Igum. 2005 Ohsuga, Kato, & Mineshige 2005 Yuan, Quataert, & Narayan 2003

Radiative transfer:

Rel. Ray Tracing Nonrel. Monte Carlo **Rel. Ray Tracing, MC Rel. Ray Tracing Rel. Ray Tracing** Nonrel. Rays + corrections **Rel. Ray Tracing Rel. Ray Tracing** Nonrel. Rays + corrections **Rel. Ray Tracing** Analytic scaling **Rel. Ray Tracing** Nonrel. Rays Nonrel. Monte Carlo Nonrel. Rays

Outline

I: Motivation

II: Fluid Dynamics

III: Radiative Transfer

IV: Results

V: Summary

Physical processes:

Rotating (Kerr) black holea* = J c/(G M²)Accreting, magnetized plasmaNo cooling, radiation forces (yet)Collisionless plasmaApproximation: plasma ~ perfectly conducting fluid⇒Ideal magnetohydrodynamics (MHD)

Parameters:

M black hole mass
a* black hole spin
Plasma initial conditions: torus model for extended flow

General Relativistic MHD Equations

Particle number conservation:

 $\partial_t (\sqrt{-g} \, \rho_o u^t) = -\partial_i (\sqrt{-g} \, \rho_o u^i) \qquad \partial_t \rho = -\nabla \cdot (\rho \mathbf{v})$

Ideal MHD:

$$u_{\mu}F^{\mu\nu} = 0 \qquad \qquad \mathbf{E} + \mathbf{v} \times \mathbf{B}/c = 0$$

Momentum and energy conservation:

$$\partial_t \left(\sqrt{-g} \, T^t_{\nu} \right) = -\partial_i \left(\sqrt{-g} \, T^i_{\nu} \right) + \sqrt{-g} T^{\kappa}_{\lambda} \Gamma^{\lambda}_{\nu\kappa}$$
$$\partial_t (\rho \mathbf{v}) = -\nabla \cdot \mathbf{T} - \rho \nabla \phi$$
$$T_{\mu\nu} = \left(\rho_o + u + p + \frac{b^2}{4\pi} \right) u_{\mu} u_{\nu} + \left(p + \frac{b^2}{8\pi} \right) g_{\mu\nu} - \frac{b_{\mu} b_{\nu}}{4\pi}$$
$$T_{ij} = \rho v_i v_j + \left(p + \frac{B^2}{8\pi} \right) \delta_{ij} - \frac{B_i B_j}{4\pi}$$

Induction equation:

$$\partial_t (\sqrt{-g}B^i) = -\partial_j (\sqrt{-g}(u^j b^i - b^j u^i)) \quad \partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

= $-\nabla (\mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v})$

No monopoles constraint:

$$\partial_i(\sqrt{-g}B^i) = 0 \qquad \nabla \cdot \mathbf{B} = 0$$

General Relativistic Magnetohydrodynamics Equations

Numerical approach:

HARM: Gammie, McKinney, Toth 2003, (2D) Noble et al. 2006 (variable inversion) Noble, Krolik, & Hawley 2009 (3D) conservative, finite volume scheme local Lax-Friedrichs fluxes constrained transport: $\nabla \cdot B = 0$

2D, single core (Xeon E5520): 161,000 zc/s
3D, single core (Xeon E5520): 110,000 zc/s
3D, single core (Opteron 2356): 63,000 zc/s
71% efficiency on 1152 cores at TACC ranger

3D model **Fishbone-Moncrief torus** $r(P_{max}) = 13 \text{ GM/c}^2$ a* = 0.94 $\Delta \phi = 2\pi$ 192 x 192 x 128 shell average density relaxes on viscous timescale $t_v \sim r^2/v$

movie

3D model **Fishbone-Moncrief torus** $r(P_{max}) = 13 \text{ GM/c}^2$ a* = 0.94 $\Delta \phi = 2\pi$ 192 x 192 x 128 midplane density structure at m = 1 $\langle \beta \rangle$ ($\Delta \phi = 2\pi$) = 20 $\langle \beta \rangle (\Delta \phi = \pi/4) = 35$

movie

Mosc. et al. 2009

Physical conditions in typical model

Outline

I: Motivation

II: Fluid Dynamics

III: Radiative Transfer

IV: Results

V: Summary

Physical processes:

Two temperature plasma Thermal synchrotron emission Thermal synchrotron absorption Compton scattering Transport along geodesics

Parameters:

- M mass accretion rate
- *i* inclination
- T_p/T_e temperature ratio

Numerical Approach:

ibothros: Noble et al. 2007 (ray-tracing)
grmonty: Dolence et al. 2009 (monte carlo)
direct integration of geodesics
Leung et al. 2010 emissivities/opacities

Tests:

- synchrotron emitting sphere (thick and thin) grmonty vs quasi-analytic solution
- comptonizing sphere from Pozdnyakov et al. 1983 grmonty vs sphere code
- spherical accretion, turbulent accretion grmonty VS ibothros

Comptonizing sphere problem Pozdnyakov et al. 1983

grmonty VS sphere

Dolence et al. 2009 thanks to S. Davis

Benchmark problem: photons from source on circular orbit at ISCO a* = 0.9375

grmonty (dots)

geokerr (solid)

Dolence et al. 2009

19,000 geodesics/sec

Now: time ind. data

Future: time dependent Monte Carlo

red: radio green: IR + optical blue: X-ray

grmonty

Dolence et al. 2010

movie

Now: time ind. data

Future: time dependent ray tracing

Sgr A* model at 45deg 230 GHz

ibothros

Dolence et al. 2010

movie

Location of emitting regions in typical model

Mosc. et al. 2009

Outline

I: Motivation

II: Fluid Dynamics

III: Radiative Transfer

IV: Results

V: Summary

IV: Results - Parameter Survey

Parameters

- **M** black hole mass
- **D** black hole distance
- a* black hole spin
 - inclination

Ì

- dM accretion rate
- T_{_}/T_{_} temperature ratio

(numerical and initial condition parameters)

Constraints

Stellar orbits fix M and D

- (1) 1.3mm flux fixes dM
- (2) 1.3mm slope fixes T_{_}/T_{_}
- (3) 1.3mm size constrains both T_{_}/T_{_} and dM
- (4) IR upper limits on quiescent flux
- (5) X-ray upper limits on quiescent flux

IV: Results

All models w/ T_p/T_e = 1 ruled out

Fail to fit submm slope or Overproduce X-rays

A: a* = 0.5 B: a* = 0.75 C: a* = 0.93 D: a* = 0.96 E: a* = 0.98

Moscibrodzka et al. 2009

IV: Results

Best bet model: $T_{p}/T_{e} = 3$ $a^{*} = 0.93$ *i* = 85deg

Fits submm slope Doesn't overproduce X-rays A: a* = 0.5

B: a* = 0.75 C: a* = 0.93 D: a* = 0.96 E: a* = 0.98

Moscibrodzka et al. 2009

IV: Results

Models with $T_p/T_e = 3$ consistent with 1.3mm VLBI

Models with $T_p/T_e = 10$ tend to be too large

Moscibrodzka et al. 2009

V: Summary

Fully relativistic fluid/radiation models of Sgr A*

- Submm slope/X-rays rules out models w/ $T_p/T_e = 1$
- Best-bet model: a* = 0.93, T_p/T_e = 3, i = 85deg
- Models w/ $T_p/T_e = 10$ tend to be too large for 1.3mm VLBI constraint.

Future:

consistent time-dependent polarized spectra, combined fluid - radiation code, pair production, electron heating model