What Can We Learn From Simulations of Tilted Black Hole Accretion Disks?

Dr. P. Chris Fragile College of Charleston, SC

Collaborators:

Omer Blaes (UCSB), Ken Henisey (UCSB), Bárbara Ferreira (Cambridge), Chris Done (Durham), Adam Ingram (Durham), Jason Dexter (U. of Washington), Peter Anninos (LLNL), Jay Salmonson (LLNL)

> Students: Christopher Lindner (UT-Austin), Will DuPre (CofC), Tim Monahan (CofC), Sam Cook (CofC)

PRINCETON CENTER FOR

THEORETICAL SCIENCE

Tilted Black Hole
Accretion DisksAstrophysical motivation

- Active Galactic Nuclei (AGN)
 - Post merger
- Black hole X-ray Binaries (BHXRB's)
 - Asymmetric supernova kick

Tilted Black Hole
Accretion DisksSimulations of tilted disks

- Initialization similar to model KDP from DeVilliers, Hawley, & Krolik (2003)
- Initial tilt (15°) added

http://fragilep.people.cofc.edu/research/movies/torus3d.m.915h_rho.mov

Epicyclic motion induced by tilt

Fragile & Blaes (2008)

Epicyclic motion induced by tilt

Fragile & Blaes (2008)

- I. Global radial epicyclic motion
 - 180° out of phase across the midplane

Standing shocks

(Fragile & Blaes 2008)

Tilted Black Hole
Accretion DisksEccentricity of tilted orbits

• In terms of "twisting" coordinates (R, ψ, ξ)

Crowding of orbits near apocenter

Schematic diagram of results

- I. Global radial epicyclic motion
 - I80° out of phase across the midplane
- 2. Standing shocks near apocenters of orbits
 - One above and one below midplane
 - Aligned with line-of-nodes

Inner radius of tilted disks

• Surface density

Inner radius of tilted disks

• Surface density

Tilted Black Hole
Accretion DisksDetermining spin of a black hole

Simulation Parameters			
Simulation	a/M	Tilt Angle	Grid
0H ^a	0	•••	Spherical-polar
315H ^b	0.3	15°	Spherical-polar
50H ^a	0.5	0°	Cubed-sphere
515H-S ^a	0.5	15°	Spherical-polar
515H-C ^a	0.5	15°	Cubed-sphere
715H ^b	0.7	15°	Spherical-polar
90H ^c	0.9	0°	Spherical-polar
915H ^c	0.9	15°	Spherical-polar

^aFragile, Lindner, Anninos & Salmonson, 2009, ApJ, 691, 428 ^bFragile, 2009, ApJ, 706, L246

^cFragile, Blaes, Anninos & Salmonson, 2007, ApJ, 668, 417

Inner radius of tilted disks

Inner radius of tilted disks

- I. Global radial epicyclic motion
 - I80° out of phase across the midplane
- 2. Standing shocks near apocenters of orbits
 - One above and one below midplane
 - Aligned with line-of-nodes
- 3. r_{in} nearly independent of spin for tilted disks
 - at least for simulated disks with $H/r \sim 0.2$ and $\beta_0 = 15^{\circ}$

Disk precession

- Torque of BH causes disk to precess
 - After initial twisting phase, disk precesses as solid body

http://fragilep.people.cofc.edu/research/movies/torus3d.m.915m_rho.mov

Low Frequency QPOs

LFQPOs from tilted disks

LFQPOs from tilted disks

LFQPOs from tilted disks

(Ingram, Done, & Fragile 2009)

- How is the hot, thick inner disk coupled to the cold, thin outer disk?
 - Can the inner disk precess freely as assumed in our naive picture?

- I. Global radial epicyclic motion
 - I 80° out of phase across the midplane
- 2. Standing shocks near apocenters of orbits
 - One above and one below midplane
 - Aligned with line-of-nodes
- 3. r_{in} nearly independent of spin for tilted disks
 - at least for simulated disks with $H/r \sim 0.2$ and $\beta_0 = 15^\circ$
- precessing tilted disks provide a possible model for low-frequency QPOs
 - give right frequency range for large range of black hole parameters

Standing shocks precess with disk

(Fragile & Blaes 2008)

- What determines the orientation of a jet?
 - angular momentum (spin) of BH (Blandford & Znajek, 1977; Koide et al., 2002)
 - ⊥ to BH symmetry plane

- What determines the orientation of a jet?
 - angular momentum (spin) of BH (Blandford & Znajek, 1977; Koide et al., 2002)
 - \perp to BH symmetry plane
 - angular momentum or net magnetic flux of disk (Blandford & Payne, 1982; Lynden-Bell, 2006)
 - \perp to disk midplane
 - precess with disk

- What determines the orientation of a jet?
 - angular momentum (spin) of BH (Blandford & Znajek, 1977; Koide et al., 2002)
 - \perp to BH symmetry plane
 - angular momentum or net magnetic flux of disk (Blandford & Payne, 1982; Lynden-Bell, 2006)
 - \perp to disk midplane
 - precess with disk
 - properties of ambient medium
 - ????

Jet orientation

• McKinney & Gammie (2004)

- mathematical singularity at pole
- large variation in zone sizes
 - small zones near pole prohibit reasonable timesteps

- no singularities except at origin
- nearly uniform zone sizes

Acknowledgments

- Thank you to
 - LOC and SOC
 - NSF
 - SCSGC & SC EPSCoR

South Carolina

PRINCETON CENTER FOR

THEORETICAL SCIENCE

Dr. P. Chris Fragile

SPACE GRANT