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The aligned rotator

Steady-state force-free axisymmetric relativistic MHD  
Scharleman & Wagoner 1973
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The aligned rotator

Regularization condition at x=1:

Yields THE poloidal electric current distribution 

Space charge density: 
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The aligned rotator
Goldreich & Julian 1969
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FIG. 1.ÈNumerical checks of our integration routine. In (a) we run a simulation with 80 ] 80 points with AA@ \ 0 inside the light cylinder. We plot the
Ñux surfaces ( \ 0.15, 0.4, 1.0, 1.4, 1.59 (heavy line), and respectively (we remind the reader that ( \ 0 along the axis). The solution compares well1.7(pc,with Michel (1991), Fig. 4.9. In (b) we run a simulation with 30 ] 30 points inside the light cylinder and another 30 ] 30 points outside for a rotating (split)
monopole at the origin. The Ñux and current distributions, and , respectively, are obtained with high(

m
\ (open (1 [ cos h) A

m
\ [RLC~1 ((2 [ (/(open)precision. We plot the Ñux surfaces ( \ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (heavy line). In (c) we run a comparison with Michel (1991),times(openFig. 4.12, to show that, although the monopole current distribution comes close to a smooth solution, it is not the Ðnal answer (a numerical problem in that

solution is discussed in the text). In that simulation, we used the values of ((x \ 1~, z) obtained from the interior solution as boundary values ((x \ 1`, z) in
the exterior solution. Here, and We plot the Ñux surfaces ( \ 0.05, 0.2, 0.5, 0.9, 1.0, 1.1, and 1.5 timesA \ [((2 [ (/(open), (open \ 1.742(pc . (open.

pole (Michel 1973a), and the solution in Michel (1982). As
we said, we generate the distributions ( \ ((x, z) that
solve equation (5) inside and outside the light cylinder, and
then correct the electric current distribution to one that will
(hopefully) lower the di†erences ((x \ 1`, z) [ ((x \ 1~,
z) along the light cylinder. The reader can get an idea of the
discontinuities that the electric current distribution correc-
tion iteration goes through in Figure 2. The solution is
extremely sensitive to the electric current distribution, and
small deviations from the correct current distribution reÑect
to large kinks/discontinuities at the light cylinder. In view of
this sensitivity of the solution to the current distribution, it
becomes apparent that a simple guess of its form is likely to
result in discontinuities in the solutions.

4. THE SOLUTION

The procedure described in the previous section is repeat-
ed 50 times, at which point we obtain a magnetospheric
structure that is sufficiently smooth and continuous around
the light cylinder (Fig. 3). The last open Ðeld line (thick line)
corresponds to

(open \ 1.36(pc , (13)

where corresponds to the last Ðeld line which(pc 4 m/RLC

closes inside the distance to the light cylinder in the non-
relativistic dipole solution. As expected from our intuition
based on the current-free distorted dipole solution, (open [

and contrary to our naive intuition, the present mag-(pc,netically dominated system does not reach a closed Ðeld line
structure outside the light cylinder but rather opts (as we
will see) for a quasi-radial structure. A nice physical way to
see this e†ect is that the equivalent ““ weight ÏÏ associated
with the electromagnetic Ðeld energy pulls the lines open
because of the magnetospheric rotation (Bogovalov 1997).

The main electric current (which, for an aligned rotator,
Ñows into the star) is equal to

I \ 0.6IGJ , (14)

where is the electric current one obtains byIGJ 4 )2m/c
assuming that electrons (positrons in a counteraligned
rotator) with GJ number density stream outward at the
speed of light from the nonrelativistic dipole polar cap. This
electric current is distributed along the inner open Ðeld lines

as seen in Figure 4. The electric current0 \ ( \ 1.08(pc,distribution is close to the one which corresponds to a
rotating monopole with the same amount of open Ðeld lines
(dashed line), but varies slightly, in particular in that a small
amount of return current Ñows in the(Ireturn \ 0.03IGJ)

FIG. 2.ÈEvolution of the simulation for a rotating dipole at the origin, as the correct current distribution is approached in our iteration scheme (Ðrst,
second, third, and Ðfth iterations in [a], [b], and [c], respectively). Lines plotted as in Fig. 3.
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Fig. 5. Summary of our numerical solutions applied in the case of
SGR 1806-20. We show here ψopen (continuous line), the acceler-
ating potential Vacc/(1012 statvolt) (dashed line), and the spindown
rate |ν̇|/10−11 Hz s−1 (short dashed line). On the plot are shown our
estimates for the magnetospheric configuration before and after the
December 27, 2004 burst.

the azimuthal component of the magnetic field Bφ and in the
electric field E, namely
∫

(B2
φ + E2)r2dr ∼

∫ (
ΩFrBp

c

)2
r2dr

∼ Ω2
FoB2

∗r
3
∗

(
r∗
rlc

)3 ( r
rlc

)
· (24)

Here, the integration distance r extends to distances$rlc. Any
evolution between the different solutions will require the re-
lease (or buildup) of the corresponding energy difference (see
discussion in the next section).

We discovered that, as ΩFo varies from Ω to 0, the open
field region decreases to a minimum value of about ψopen ∼ 1.2
(see Fig. 5). In the next section we will see that this numerical
result might have interesting physical implications in under-
standing the SGR phenomenon.

Figure 6 shows the corresponding rescaled electric cur-
rent distribution A/(ψopenΩFo), and the rescaled distribu-
tion AA′/(ψopenΩ

2
Fo), (obtained numerically) as functions of

the normalized magnetic flux ψ/ψopen. We see that indeed the
electric current distributions are very similar and proportional
to ΩFo. Let us now see how this result affects our estimation
of stellar magnetic fields B∗. As we mentioned in the introduc-
tion, it is customary to estimate B∗ by equating the observed
stellar spindown energy loss to the estimated electromagnetic
spindown torque. As we show in the Appendix,

Lem spindown = Ω

∫ ψopen

ψ=0
A(ψ)dψ ≈ 2

3
ΩFoψ

2
open

≈ B2
∗Ω

3ΩFor6
∗

4c3

(
rlc

rc

)2
(25)

(in real units). In general, rc introduces one more free param-
eter in the problem (see Sect. 5). Let us here consider only
the natural case rc ∼ rlc and discuss the physical significance
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Fig. 6. The rescaled electric current distribution A/(ψopenΩFo) and the
rescaled distribution AA′/(ψopenΩ

2
Fo), as functions of the rescaled mag-

netic flux ψ/ψopen in the open line region, for ΩFo = 1, 0.8 and 0.6
(from the lower curves up respectively). The upper curves (dotted) are
the ones that correspond to the Michel split monopole expression.

of ΩFo. Equation (25) implies that stellar magnetic field es-
timates need to be revised upwards over the canonical value
obtained when one compares Eqs. (1) and (2). Note that when
ΩFo = 0, ρe = 0, J = 0, i.e. no currents flow through the
magnetosphere, and therefore the star will not spin down. In
most cases, ΩFo ∼ [80, 95]%Ω (Romani, personal communi-
cation), and therefore, the correction introduced in the stellar
magnetic field estimate is in most cases practically insignifi-
cant. The correction is significant and should be taken into se-
rious consideration for slow pulsars near the pulsar death-line,
where V∗(ψopen) ≈ 1012 Volts = V(ψopen) and VF(ψopen) ≈ 0
(Eq. (13)).

4. A “coughing” magnetosphere

The solutions presented in the previous section are all steady-
state solutions characterized by one parameter, ΩFo, which, as
we argued, is determined by the particle acceleration gap mi-
crophysics. Let us imagine first that charge carriers are freely
available at the base of the magnetosphere. In that case, the gap
is shorted out, and the magnetosphere is described by a steady-
state solution withΩFo ≈ Ω (CKF). Let us imagine next that the
supply of charge carriers is somehow suddenly depleted. The
gap will suddenly grow, and the magnetosphere will quickly
evolve towards a different steady-state solution with ΩFo ! Ω.
We are now going to discuss how, in our opinion, the magne-
tosphere may evolve from the one steady-state solution to the
other. We will base our discussion on the particular example of
SGR 1806-20, and its December 27, 2004 burst.

We will argue that, when the particle acceleration gap at the
base of the magnetosphere suddenly grows, the magnetosphere
will spontaneously evolve from a configuration with a larger
open field line region and a larger poloidal electric current, to
one with a smaller open field line region and a smaller poloidal
electric current. One way to achieve this might be through
north-south reconnection at the distance of the light cylinder.
We expect a significant amount of magnetic flux (∼5% ψopen)
to “snap” and move equatorially outward similarly to a solar
coronal mass ejection (plasmoid). At the same time, the mag-
netosphere will release the excess energy contained in the

Contopoulos, Kazanas & Fendt 1999
Contopoulos 2005

8



No. 1, 1999 AXISYMMETRIC PULSAR MAGNETOSPHERE 355

FIG. 3.ÈFinal numerical solution for the structure of the axisymmetric
force-free magnetosphere of an aligned rotating magnetic dipole. We used
a grid of 30 ] 30 points inside and another 30 ] 30 points outside the light
cylinder. Thin lines represent Ñux surfaces in intervals of with0.1(pc ,( \ 0 along the axis. A small amount of return current Ñows between the
dashed Ðeld line and the thick line at which( \ 1.08(pc (open \ 1.36(pc ,determines the boundary between closed and open Ðeld lines, and where
the bulk of the return current Ñows. The null line, along which iso

e
\ 0,

shown dotted. The solution asymptotically approaches the dash-dotted
lines obtained through the integration of eq. (15).

outer (the bulk of the return1.08(pc \ ( \ 1.36(pccurrent obviously Ñows along the boundary between open
and closed lines, and along the equator, i.e., the thick line in
Fig. 3). This is very interesting in view of the fact that the
equivalent monopole current distribution comes close to
generating a continuous solution, although the physical
behavior of the inside and outside solutions di†er near the
light cylinder (Fig. 1c ; see Michel 1982). We would like to
emphasize that several trials of this procedure with di†erent
initial current distributions have all converged to the same
Ðnal distribution shown in Figure 4. This suggests that

there may in fact exist a unique poloidal electric current
distribution consistent with the assumptions of our treatment.

We would like to give particular emphasis to a subtle
point in our numerical treatment of the interface between
the open and closed Ðeld lines within the light cylinder. The
numerical relaxation procedure determines AA@((), and
A(() is obtained by integrating AA@ from ( \ 0 to (open.
This implies that there is no a priori guarantee that A((open)is equal to zero, and in fact it is not. The reader can con-
vince himself/herself that, because of north-south symmetry,
this implies that a return current sheet equal to [ A((open)Ñows along the equator and along the interface between
open and closed Ðeld lines. Since no poloidal electric
current can Ñow inside the closed domain, there is an
unavoidable discontinuity in across the interface, andBÕthis can only be balanced by a similar discontinuity in B

p
!

This e†ect is numerically entirely missed if one naively con-
siders the expression for AA@ as given in Figure 4, where
AA@ ] 0 for since one will then be missing the( ] (open,
delta function (not shown in Fig. 4) that corresponds to the
step discontinuity in A (e.g., Michel 1982). A Ðnite-
resolution numerical grid will not discern an inÐnite jump
in A((), and therefore we treat this problem by artiÐcially
transforming the step discontinuity into a smooth
(Gaussian) transition in A over an interval We0.1(open.
note that a similar problem does not arise in the split mono-
pole case, since the current sheet there extends all the way to
the origin, and can be simply treated as an equatorial
boundary.

The null line, i.e., the line with zero GJ space charge, is
shown dotted. The crossings of the null line by open Ðeld
lines have often been suspected to be the regions where
pulsar emission originates (Cheng et al. 1986 ; Romani
1996). We plan to investigate the detailed microphysics of
the gaps that will appear around these regions in a forth-
coming publication (see also ° 6). According to equation (6),
at large distances, the null line asymptotically approaches
the Ðeld line along which AA@ \ 0. Well within( \ 1.08(pcthe light cylinder, the null line is simply given by the locus
of points where the condition X Æ B \ 0 (or equivalently

is satisÐed.B
z
\ 0)
Knowing the poloidal electric current distribution along

the open magnetic Ðeld lines, we can also derive the asymp-
totic structure of our solution at distances x ? 1. One can

FIG. 4.ÈElectric current distribution A \ A(() (solid line) along the open Ðeld lines that allows for the solution presented in Fig. 3. Compare this with the
equivalent monopole (i.e., a monopole with the same amount of open Ðeld lines) electric current distribution (dashed line).A

m
[ \ [RLC~1 ((2 [ (/(open)Although our numerical iteration scheme seems to be relaxing only to this unique distribution, we have no theoretical arguments that this distribution is

indeed unique.

The aligned rotator
Contopoulos, Kazanas & Fendt 1999
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Note that, in our global solutions, ψopen (the amount of open
field lines) is determined self-consistently, and consequently it
is not a free parameter (see, however, Goodwin et al. 2004, for
a different point of view). Similarly to CKF, the poloidal elec-
tric current distribution that guarantees smoothness and conti-
nuity at the open field light cylinder is obtained iteratively, and
an approximate analytic expression is given. Our results gener-
alize the solution presented in CKF; Gruzinov (2005).

We also obtained a generalized expression for the steady-
state spindown magnetospheric energy losses (Eq. (25)), which
is different from the canonical one for a misalingned magnetic
rotator. Magnetospheres with different values of ΩFo and/or
rc contain different amounts of electric currents, and therefore
spin down differently. This changes slightly our estimates of
stellar magnetic fields B∗ (see also Harding et al. 1999, for a
relevant discussion in the case of magnetar magnetic field es-
timates). More importantly, however, this might have serious
implication in the calculation of the magnetic braking index
n ≡ ΩΩ̈/Ω̇2. One can easily check (Eq. (25)) that any func-
tional dependence of ΩF and ψopen different from the canonical
one ΩF ∝ Ω, and ψopen ∝ Ω will yield a braking index n ! 3 as
obtained observationally (Contopoulos & Spitkovsky, in prepa-
ration).

Finally, we argued that the magnetosphere may sponta-
neously evolve between steady-state configurations character-
ized by different values of ΩFo and/or rc. The evolution from
a high to low value of ΩFo and/or low to high value of rc will
result in the dramatic release of a significant amount of elec-
tromagnetic field energy and magnetic flux. The return to the
former configuration will be less dramatic, since it will require
the buildup of the corresponding electromagnetic field energy
difference. Our results might be relevant in understanding the
SGR burst phenomenon.

Acknowledgements. We would like to thank Christos Eftymiopoulos
and Demos Kazanas for their support in reviving this intriguing prob-
lem. We would also like to thank Jonathan Arons, Roger Blandford,
Roger Romani, and Anatoly Spitkovsky for interesting discussions
and comments. We would finally like to acknowledge the contribution
of the unknown referee in improving the presentation of our ideas.

Appendix A: Pulsar spindown estimates

When a neutron star is not surrounded by vacuum, the rotat-
ing charged relativistic Goldreich-Julian-type magnetosphere
is threaded by poloidal and toroidal electric currents. We will
consider only the axisymmetric case for simplicity. Two large
scale poloidal electric current circuits (north & south) are gen-
erated. These flow only along open field lines, and close along
the surface of the star at the two polar caps where they generate
electromagnetic torques antiparallel to the angular momentum
of the neutron star

1
c

rBJdS dr (A.1)
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z

r

Fig. B.1. A solution with 2.7 times more efficient spindown than the
solution shown in Fig. 2. The “dead zone” extends up to rc = 0.59.
ΩFo = 0.8. ψopen = 2.03.

through any stellar cross section dS threaded by poloidal elec-
tric current density J. One can easily check that the stellar
kinetic energy loss through the above torques is given by

Lem spindown = Ω

∫ ψopen

ψ=0
A(ψ)dψ $ 2

3
ΩΩFoψ

2
open ≈ ΩFo (A.2)

(our expression accounts for the two hemispheres, north &
south). We made use of the numerical result ψopen ≈ 1.23. At
the same time, the magnetosphere radiates electromagnetic
energy
c

4π
rEpBφdS (A.3)

through any cross section dS in the region of open field lines.
One can easily check that the total electromagnetic energy loss
through the above Poynting flux is given by

Lem =

∫ ψopen

ψ=0
A(ψ)ΩF(ψ)dψ $ 2

3
Ω2

Foψ
2
open ≈ Ω2

Fo. (A.4)

ΩF is in general smaller than Ω, and therefore, Lem is in gen-
eral less than Lem spindown. The difference between the two is
consumed in the particle acceleration gaps that develop along
open field lines, namely

Lparticles = Lem spindown − Lem =

∫ ψopen

ψ=0
A(ψ)(Ω −ΩF(ψ))dψ

$ 2
3
ΩFo(1 −ΩFo)ψ2

open ≈ ΩFo(1 − ΩFo). (A.5)

The above expressions are normalized to the Goldreich-Julian
value

LGJ ≡
B2
∗Ω

4r6
∗

4c3 · (A.6)

Appendix B: Alternative magnetospheric solutions

In solving Eq. (10), we have all along argued that nature will
choose the most natural solution, namely the one with the max-
imum extent of the “dead zone”. A competing to the above sce-
nario might be one where the extent of the “dead zone” is a
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Figure 4. Global structure of the magnetosphere for x 0 = 0.992 – top panels, x 0 = 0.7 – middle panels, x 0 = 0.2 – bottom panels. The magnetic flux surfaces

are shown by thin solid lines, the labelled vertical lines are contours of the drift velocity and the grey area is the domain where the GJ charge density is positive.

The dashed line separates regions with direct (above the line) and return (below the line) volume currents. The separatrix is shown by the thick solid line. Almost

the whole calculation domain is shown in the left-hand panels, and the central part of the calculation domain is shown in the right-hand panels. Distances along

x-axis (horizontal) and z-axis (vertical) are measured in units of LC radius RLC.

the relation θ/θpc =
√

ψ/ψlast. In Fig. 5 j pc is shown for several

solutions with different x0 values. The current density never exceeds

the corresponding GJ current density and goes to zero at the polar

cap boundary. The latter property is the consequence of the assumed

topology of the magnetosphere. Indeed, from the condition at the

LC, equation (39), the current density along a given magnetic sur-

face is proportional to the partial derivative ∂xψ at the LC, but in

configurations with the Y null point ∂xψ = 0 for ψ = ψ last. The

deviation of the current density j pc from the GJ current density

increases close to the polar cap boundaries with increasing x0. For

solutions with x 0 ! 0.6 the current density j pc changes sign at some

point near the boundary. On the other hand, j pc never exceeds the

corresponding Michel current density and approaches jMichel when

x0 decreases.

4.2 Drift velocity and force-free approximation

The drift velocity in our notations is given by

uD ≡
|U D|

c
=

#$

c

Bpol

B
=

x
√

1 + S2

(∂x ψ)2+(∂zψ)2

, (52)

B pol is the poloidal component of the magnetic field. The light

surface, i.e. the surface where the force-free approximation breaks

down, coincides with the surface, where uD = 1. We verified the

applicability of the force-free approximations in each case. For most

of the cases the calculations have been performed in the domain with

x max = 8, zmax = 7, but for x 0 = 0.2, 0.7, 0.992 we also performed

calculations with x max = 16, zmax = 14. In all cases the light surface

C© 2006 The Author. Journal compilation C© 2006 RAS, MNRAS 368, 1055–1072
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Figure 5. Current density distribution in the polar cap of pulsar j pc as a

function of the colatitude. j pc is normalized to the GJ current density | j GJ|
and the colatitude is measured in units of the polar cap boundary colatitude

θ pc.

is located somewhere outside of these domains (see Fig. 4). The drift

velocity distribution for the solutions with x0 close to 1, even at large

distances from the null point, differs significantly from that in the

corresponding Michel solution (the solution with the same ψ last),

where the drift velocity is the function of only the x-coordinate. On

the other hand, when x0 decreases, uD approaches the values from

the corresponding Michel solution.

4.3 Charge distribution in the magnetosphere

The GJ charge density in the magnetosphere in our notation is

given by

ρGJ = ρ0

SS′ − 2
x
∂xψ

1 − x2
, ρ0 ≡

µ

4πR4
LC

. (53)

Close to the rotation axis the GJ charge density is negative and

with increasing of the colatitude it becomes positive. While for the

solutions with x 0 ! 0.6 the domain of positively charged plasma

extends to infinity, for the solutions with smaller x0 values it becomes

finite (cf. plots for x 0 = 0.2 with other plots in Fig. 4). The reason

for this is as follows. At large distances from the LC the magnetic

field lines becomes radial, so ∂xψ is always greater than 0. Hence,

there only the term SS′ is responsible for changing of the charge

density sign. However, SS′ for x 0 " 0.6 never changes sign (see

left-hand plots in Fig. 4). For the same reason the volume return

current always flows trough the positively charged domain. Close to

the NS it passes trough the layer where charge density changes sign

(see right-hand plots in Fig. 4). At this layer the so-called outer-gap

cascade should develop (see e.g. Cheng, Ruderman & Sutherland

1976; Takata, Shibata & Hirotani 2004).

The force-free solution fixes not only the volume charge density,

but also the charge density of the current sheet. As the electric field

at opposite sides of the current sheet is different, the current sheet

must have non-zero surface charge density. In Fig. 6 we plot the

linear charge density $ of the current sheet as a function of distance

l along the separatrix

$ ≡ 2π%σ , (54)

where σ is the charge density of the current sheet. $ represents the

total charge of a volume that is co-moving with particles flowing

along the separatrix with constant speed, emitted at the same time
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Figure 6. $ – linear charge density of the current sheet (see text) as a func-

tion of the distance l along the current sheet. $ is normalized to 0.5 µ/R2
LC.

l is measured in units of RLC. The points marks the position of the corre-

sponding null point. Note the jump in the charge density at these points. The

dotted line corresponds to $ = 0.

(either at the NS or at ‘infinity’). $ ≡ constant would imply a

constant velocity flow of particles of one sign. However, for each

solution $ is a non-monotonic function with discontinuity in the

null point. Such a complicated dependence of $ on l implies some

non-trivial physics connected with particle creation in the current

sheet, which is discussed in the next section.

This complicated dependence of the current sheet charge density

is easy to understand if one consider the so-called ‘matching condi-

tion’ at the separatrix. As was shown by Lyubarskii (1990),4 at the

current sheet the following condition for the electric and magnetic

field in closed (c) and open (o) field line domains should be satisfied

E2
c − B2

c = E2
o − B2

o . (55)

This follows from the integration of equation (6) across the current

sheet. In the closed field line zone there is no toroidal magnetic field.

It follows from equations (14) and (8) that the electric field

E = x Bpol . (56)

Substituting this equation into equation (55), we get

B2
pol, c − B2

pol, o =
B2

φ,o

1 − x2
. (57)

From this and equation (56) it follows that E c > E o and that the

charge density in the current sheet between the closed and open field

line domains,

σ =
1

4π
(Eo − Ec) , (58)

is always negative. On the other hand, from the symmetry of the

system – the electric field in regions [2] and [2′] in Fig. 1 has different

directions – the charge density of the current sheet in the open field

line zone

σ =
1

2π
Eo (59)

is always positive.

The total charge of the system, i.e. the charge of the NS, the

magnetosphere and the current sheet together, must be zero. The

boundary condition (45) implies that the total flux of electric field

4 See also Okamoto (1974), equation (69).
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The 3D rotator

Time-dependent force-free electrodynamics     
Gruzinov 1999; Blandford 2002

11

∇ ·B = 0

E ·B = 0

ρeE + J ×B = 0

J = ρe
E ×B

B2
+

1

4π

(B ·∇×B − E ·∇× E)

B2
B

∂E

∂t
= ∇×B − 4πJ

∂B

∂t
= −∇× E



The 3D rotator

Gruzinov 2006

12

V = Ω× r

E = −V ×B

∇× (B + V × (V ×B)) = λB

ρe =
∇·E
4π = −Ω·B

2πc + V ·(∇×B)
4π



The 3D rotator

Staggered cartesian mesh ( δ=0.025Rlc )

Finite difference time domain (Yee 1966)

Non-reflecting absorbing boundaries (PML)

We impose the conditions                 and    

13

E ⊥ B E < B
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FFE orthogonal rotator
Spitkovsky 2006
Kalapotharakos & Contopoulos 2009
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Aligned rotator

Vacuum orthogonal rotator

FFE orthogonal rotator

L(θ) =
B2

∗r
6
∗Ω

4
∗

4c3
(1 + sin2 θ)



Aligned rotator
Contopoulos & Kalapotharakos 2010
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30o inclination
Contopoulos & Kalapotharakos 2010
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60o inclination
Contopoulos & Kalapotharakos 2010
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Orthogonal rotator
Contopoulos & Kalapotharakos 2010
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Orthogonal rotator
Contopoulos & Kalapotharakos 2010
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The aligned rotator
Kalapotharakos & Contopoulos 2009
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Bφ(z = 0)



The pulsar synchrotron: coherent radio emission 5
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Figure 1. Schematic of the dependence of the poloidal (dashed
line) and toroidal (solid line) magnetic field components on radial
distance R from the star along the equator near the tip of the dead
zone. The poloidal field varies as ∝ 1/R3 near the star, reaches
a minimum value at 87% of the light cylinder distance, grows to
a very large value at the tip of the dead zone as given by eq. 5,
and drops to zero outside. The toroidal field is zero inside the
dead zone, and rises to some finite value outside. The jumps in
Bp and Bφ at the tip of the dead zone take place over some finite
distance d " rlc.
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Figure 2. Schematic of electron and positron trajectories along
the separatrix and the equatorial current sheet respectively for
aligned magnetic and rotation axes, and detail of the tip of the
dead zone. The light cylinder is denoted with a dashed line. d ∼

10−3 cm is the separatrix thickness. λ ∼ 1 m is the electron path
length in the pulsar synchrotron.

Equatorial current sheet
Contopoulos 2009
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Equatorial current sheet
Contopoulos & Kalapotharakos 2010
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3D rotator
Contopoulos & Kalapotharakos 2010
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The pulsar synchrotron in 3D: curvature radiation 9

intensities normalized to the maximum pulse intensity for various
inclination and observation angles α and θ (calculated with respect
to the axis of rotation). In the context of our model of equatorial
current sheet emission, emission intensity dramatically decreases
at high latitudes, and the quality of our numerical results deterio-
rates. This is why we only plot light curves for θ � 45o. Azimuthal
phase zero is defined as the phase where a photon that is emitted
radially outward from the surface of the star when the magnetic
axis lies in the plane defined by the rotation axis and the line of
sight reaches the observer. As defined, azimuthal phase zero cor-
responds to the arrival phase of the radio pulse in the prevailing
model of pulsar radio emission coming from a magnetospheric re-
gion just above the magnetic polar cap. Several interesting features
in the pulse/sub-pulse distribution are worth mentioning:

(i) Pulses are narrower when observed from higher latitudes.
(ii) Pulses are narrow despite the fact that the corresponding

emission regions have significant azimuthal extent. This effect is
analogous to the ‘caustics’ obtained in pulsar slot-gap models for
radiation emitted along trailing magnetic field lines (e.g. Arons
1983; Harding et al. 2008).5

(iii) Interpulse intensity decreases fast compared to that of the
main pulse as the observer moves away from the rotational equato-
rial plane.

(iv) Whenever an interpulse is seen (α greater than about 30o),
pulse-interpulse separation varies mostly between about 0.4 to 0.5
times the period (Fig. 6). The closer the inclination or the observa-
tion angle is to 90o, the closer the pulse-interpulse separation is to
one-half of the period.

(v) The main pulse trails the radio pulse (in the prevailing model
of radio pulsar emission coming from above the stellar polar cap)
by about 0.15 to 0.25 times the period whenever an interpulse is
seen, and up to one-half of the period when no interpulse is seen.
In particular, notice the striking similarity between our Fig. (6) and
Fig. 4 of Abdo et al. (2009).

We would like to end this section with an investigation of
the expected polarization angle profiles. Radiation propagates in
the magnetosphere in the form of ordinary and extraordinary wave
modes (Barnard & Arons 1986). The ordinary mode is polarized
in the plane of the wave vector and the local magnetic field di-
rection, whereas the extraordinary mode is linearly polarized per-
pendicularly to the wave vector and the local magnetic field. Gil,
Lyubarsky & Melikidze (2004) showed that, for radiation frequen-
cies ν � νlim, the ordinary mode is heavily suppressed, and only the
extraordinary mode escapes freely and thus reaches the observer. In
our case νc ≈ νlim in the emission region (eq. 5), and therefore, we
will heretofore consider only the radiation mode linearly polarized
perpendicularly to the line of sight and the local magnetic field.

In Fig. (7) we show the polarization profiles that correspond
to the light curves in Fig. (5). The polarization angles shown are
the mean polarization angles from all the emission points observed
at each time instance weighted by their relative intensity. They lie
in the range −90o to +90o and are measured on the plane of the sky
with zero along the projected direction of the axis of rotation, and
positive in the north-to-east direction. Our results are not very clear
because of numerical problems associated with the equatorial cur-
rent sheet. We do observe several cases with dramatic (up to ±90o)
polarization angle sweeps across the main pulses and interpulses.
In particular, at observation angles θ = 60o and 75o, we obtain po-

5 A similar effect is described in Bai & Spitkovsky 2009.

Figure 6. Phase difference between the high-energy peaks, versus phase lag
between the radio and main high-energy peak. Dotted circles correspond to
those cases where interpulses are not clearly defined.

larization angle sweeps reminiscent of those seen in the Crab pulsar
(e.g. Słowikiwska et al. 2009). In order to explore the origin of this
effect, we plot in Fig. (8) the polarization angles expected from ra-
diation produced in 2π annular regions around the rotation axis if
one happens to be looking along the direction of the local J. The
observed polarization angles sweeps are associated with the abrupt
change of magnetic field direction at the crossings of the equatorial
current sheet. We thus conclude that, in the context of our model,
polarization angle sweeps essentially cut across and resolve the thin
equatorial current sheet, as in the phenomenological model of Petri
& Kirk 2005.

4 SUMMARY

2D and 3D numerical simulations of the force-free relativistic pul-
sar magnetosphere show that a strong electric current develops at
the tip of the closed line region on the light cylinder. This elec-
tric current consists of extremely relativistic electrons and positrons
that move along curved trajectories in the azimuthal and outward
direction in an equatorial current sheet beyond the light cylinder.
As in C09, we call this configuration the pulsar synchrotron.

In the present paper, we studied the emission of curvature radi-
ation from the pulsar synchrotron, and defered the study of inverse
Compton to a future publication. We showed that curvature radia-
tion seems to be responsible for the high-energy pulsed emission up
to X-ray frequencies in normal pulsars, and up to γ-ray frequencies
in millisecond pulsars. We produced high-energy light curves that
show sharp pulses and interpulses in pulsars with high inclination
angles α >∼ 45o, and wide single pulses in pulsars with low inclina-
tion angles α <∼ 30o (except when observed from very low latitudes
with respect to the rotation equatorial plane). Our model of an ex-
tended emission region in the equatorial direction is in some sense
complimentary to that of the polar cap ‘lighthouse beam’ emission.
Polarization angle profiles are less well determined numerically.

c� 0000 RAS, MNRAS 000, 000–000

3D rotator
Contopoulos & Kalapotharakos 2010
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3D rotator
Bai & Spitkovsky 2010
Spitkovsky 2006
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3D rotator
Bai & Spitkovsky 2010
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Parallelize code to run on ~1000 CPUs

Higher grid resolution ( δ=0.0025Rlc )

Extended integration region 

Adaptive Mesh Refinement (AMR) on current sheet

Relax force-free assumption

Singular regions with E || B

Include radiation reaction

Relax ideal MHD condition

Reconnection in equatorial current sheet 28

Prospects for the future
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