The Biermann Lectures: Adventures in Theoretical Astrophysics I: The Physics of Galaxy Cluster Plasmas Eliot Quataert (UC Berkeley)

w/ Mike McCourt, Ian Parrish, Prateek Sharma

The Biermann Lectures: Adventures in Theoretical Astrophysics

- analytic theory + sims w/ students, postdocs
- work on a range of problems: 'model building' & studying key processes
 - Compact Object Astrophysics
 - gamma-ray bursts, transients, accretion theory, the Galactic Center
 - Galaxy Formation
 - massive black hole growth, galactic winds, 'feedback', star formation in galaxies
 - Plasma Astrophysics
 - plasma instabilities (disks, galaxy clusters, ...), plasma turbulence (incl solar wind)
 - Stellar Astrophysics
 - stellar seismology, tides

The Biermann Lectures: Adventures in Theoretical Astrophysics I: The Physics of Galaxy Cluster Plasmas Eliot Quataert (UC Berkeley)

w/ Mike McCourt, Ian Parrish, Prateek Sharma

Clusters of Galaxies

- largest gravitationally bound objects: $M_{vir} \sim 10^{14-15} M_{\odot}$ $R_{vir} \sim 1-3 M_{PC}$
 - ~ 84% dark matter; ~ 14 % plasma; ~ 2% stars (10²⁻³ galaxies)
 - on exponential tail of the mass function: potential cosmological probe
 - host the most massive galaxies (~ $10^{12} M_{\odot}$) and black holes (~ $10^{9-10} M_{\odot}$)

Hot Plasma in Clusters

$$L_{x} \sim 10^{43-46} \text{ erg s}^{-1}$$

n ~ 10^{-4}-1 cm^{-3}
T ~ 1-15 keV
M_{gas} ~ 10^{13-14} M_{\odot}

large electron mean free path:

$$\ell_e \simeq 2 \, \left(\frac{T}{3 \, \mathrm{keV}}\right)^2 \left(\frac{n}{0.01 \, \mathrm{cm}^{-3}}\right)^{-1} \, \mathrm{kpc}$$

 \rightarrow thermal conduction impt

n, T → radiative cooling impt in cluster cores

Galaxy Clusters: a Key to Understanding Massive Galaxy Formation

central cooling time (Myr)

in ~ 2/3 of cluster cores, t_{cool} << age of Universe

absent a heat source: M_{cool} ~ 100-1000 M_☉ yr⁻¹

Not Observed

 $\dot{M}_{star} \ll \dot{M}_{cool}$

no sufficiently large reservoirs of cold gas

X-ray Spectra: $T_{min} \sim 1/3 < T >$

Lack of cooling gas \rightarrow A heat source! AGN, conduction,

Galaxy Clusters: a Key to Understanding Massive Galaxy Formation

understanding the thermal evolution of clusters requires progress on:

- heating, turbulence, heat transport over ~ 4π , interaction btw hot & cold gas, CRs, ...

start with the basics: convection & thermal instability

Hydrodynamic Convection

- Schwarzschild criterion for convection: ds/dz < 0
- Motions slow & adiabatic: pressure equil, s ~ const solar interior: $t_{sound} \sim hr \ll t_{buoyancy} \sim month \ll t_{diffusion} \sim 10^4 \text{ yr}$

background fluid $s'_{bg} \ \rho'_{bg} \ p'_{bg}$ $s(p,\rho) \propto \ln[p/\rho^{\gamma}]$ if ds/dz < 0 $\rightarrow \rho_{\rm f} < \rho'_{\rm bg}$ convectively unstable

Cluster Entropy Profiles

Radius (Rvir)

Schwarzschild criterion \rightarrow clusters are stable

Anisotropic Thermal Conduction in Cluster Plasmas

 $I_e >> \rho_e \Rightarrow$ heat transport is **anisotropic**, primarily along B momentum transport is also anisotropic

The Magnetothermal Instability (MTI)

Balbus 2000, 2001; Parrish & Stone 2005, 2007; Quataert 2008; McCourt+ 2011

The MTI

cold

g hot

instability saturates by generating sustained convection & amplifying the magnetic field (analogous to hydro convection)

Radius (Rvir)

Mach #s ~ 0.3-0.6!

largest near ~ R_{vir} (impt for X-ray, SZ mass measurements)

The Heat Flux-Driven Buoyancy Instability (HBI)

Quataert 2008; Parrish & Quataert 2008

converging & diverging heat flux \Rightarrow conductive heating & cooling for dT/dz > 0upwardly displaced fluid heats up & rises, bends

field more,

convectively

unstable

suppressing heat flow in direction of gravity

Global Cluster Simulations

- 3D MHD w/ cooling, anisotropic conduction
 - non-cosmological: isolated cluster core (≤ 200 kpc)
 - HBI \rightarrow conduction cannot halt the cooling catastrophe

New Forms of Convection in Cluster Plasmas

The Entire Cluster is Convectively Unstable

a number of other astrophysical applications ... instabilities only suppressed by 1. strong B (e.g., solar corona) or 2. isotropic heat transport >> anisotropic transport (e.g., solar interior)

Galaxy Clusters: a Key to Understanding Massive Galaxy Formation

- Cluster cores: $t_{cool} \ll t_{Hubble}$ But most of the gas isn't cooling
- Lack of cooling gas \rightarrow A heat source must balance radiative losses
- Plausible source of heating: an AGN in the cluster's central galaxy

Observationally, Energy Required to Inflate Bubbles/Jets ~ L_X of hot ICM

Why this 'Feedback' is more subtle than you thought: Local Thermal (In)Stability

there is some cool, dense gas observed in many clusters

Evidence for Cool, Dense Gas Ubiquitous in 'Cool-Core' Clusters

H amission

Hα emission spatially extended in many cases McDonald+ 2010

molecular gas (CO, HCN)

star formation & AGN activity (radio power) also correlate w/ short cooling times

origin of cold gas? role of cold gas in feedback/heating cycle?

Cluster Central 'Entropy' ($K_0 = kT/n^{2/3}$)

Conjecture: Signature of Local Thermal Instability in a Globally Stable System

Global Thermal Balance *≠* **Local Thermal Balance**

<Heating> ~ <Cooling> \Rightarrow no cooling flow

Heating \neq Cooling locally \Rightarrow local thermal instability

Subtle physics w/ critical implications for multiphase gas in clusters & the feedback cycle that regulates ICM properties (analogous to the ISM of galaxies)

competition btw cooling & gravity: key parameter t_{cool}/t_{ff}

Cartesian sims (movies ~ 10 t_{cool}) toy model w/ htg \ni H(r) ~ < \mathcal{L} >(r) no B-fields or conduction slow cooling: $\delta \rho / \rho \sim$ linear \Rightarrow no extended multiphase structure

significant dense gas via thermal instability iff t_{cool}/t_{ff} ≲ few

competition btw cooling & gravity: key parameter t_{cool}/t_{ff}

slow cooling, t_{cool}/t_{ff} ≥ few

thermal instability amplifies density perturbations but blobs sheared apart before $\delta \rho / \rho \sim I$ \Rightarrow no multiphase structure

analytically
$$\frac{\delta \rho}{\rho} \sim \frac{t_{ff}}{t_{cod}}$$

competition btw cooling & gravity: key parameter t_{cool}/t_{ff}

slow cooling, t_{cool}/t_{ff} ≥ few

thermal instability amplifies density perturbations but blobs sheared apart before $\delta \rho / \rho \sim I$ \Rightarrow no multiphase structure

analytically
$$\frac{\delta \rho}{\rho} \sim \frac{t_{ff}}{t_{cool}}$$

Net cooling rate & inflow to small radii strongly suppressed **only if** $t_{cool}/t_{ff} \ge few$

$$\frac{\dot{M}}{\dot{M}_{\rm CF}} \sim \left(\frac{t_{\rm ff}}{t_{\rm cool}}\right)^2 \ll 1$$

Global Cluster Sims

Criterion for multiphase structure: $t_{cool}/t_{ff} \leq 0$

somewhat less stringent than cartesian bec. of compression during inflow in spherical systems

• Thermal Instability w/ Realistic Physics ⇒ Cold Filaments (not cold blobs)

- Realistic = B-fields, anisotropic conduction/viscosity, & cosmic-rays
- filaments typically aligned along local B-field
- CR pressure significant in filaments

Evidence for Cool, Dense Gas Ubiquitous in Cool-Core Clusters

Hα emission

star formation & AGN activity also correlated w/ $K_0 \lesssim 30 \text{ keV cm}^2$

consistent w/ predictions for multiphase structure from thermal instability

 $\frac{t_{\rm cool}}{t_{\rm ff}} \sim 5 \frac{(K/30 \ {\rm keV \ cm^2})^{3/2}}{T_{\rm keV}^{1/2} \Lambda_{-22.8} \left(t_{\rm ff} / 100 \ {\rm Myr} \right)}$

Cluster Central 'Entropy' ($K_0 = kT/n^{2/3}$)

 $min(t_{cool}/t_{ff})$ at ~ 10-30 kpc ~ observed radii of filaments

Feedback & the Self-Regulation of Cluster Properties

axisymmetric global cluster sims (NFW halo) in global thermal equilibrium (H $\sim \mathscr{L}$) Net cooling rate & inflow to small radii strongly suppressed only if $t_{cool}/t_{ff} \ge few-10$,

$$\frac{\dot{M}}{\dot{M}_{\rm CF}} \sim \left(\frac{t_{\rm ff}}{t_{\rm cool}}\right)^2 \ll 1$$

If Heating ~ εΜc² (AGN, SNe, ...) ⇒ clusters self-regulate to

 $\min(t_{cool}/t_{ff}) \sim 10$ min(entropy) ~ 10-30 keV cm²

Feedback & the Self-Regulation of Cluster Properties

If Heating ~ $\epsilon \dot{M}c^2$ (AGN, SNe, ...) \Rightarrow clusters self-regulate to

 $min(t_{cool}/t_{ff}) \sim 10$

(weakly dependent on details of heating; intrinsically multi-D physics -- not in ID models)

Feedback & the Self-Regulation of Cluster Properties

observed central cooling times peak at ~ 5-10 t_{ff} consistent w/ 'feedback' loop in which is M induced by local thermal instability

central cooling time (Myr)

The Thermal Physics of Galaxy Cluster Plasmas

- Clusters are convectively unstable at all radii!
 - induced by anisotropic thermal conduction (accept no substitute)
 - these mediate heat transport in clusters & drive turbulence at all radii
- Clusters are in ~ global thermal equilibrium, but are locally unstable
- Local TI: competition btw cooling & gravity: tcool/tff
 - $t_{cool}/t_{ff} \le 10 \Rightarrow$ significant multi-phase structure
 - $\dot{M} \ll \dot{M}_{CF}$ iff $t_{cool}/t_{ff} \gtrsim 3-10$ (i.e, not too much dense gas via TI)
 - feedback \Rightarrow min(t_{cool}/t_{ff}) ~ 10, K₀ ~ 30 keV cm²: consistent w/ data

1 pc