

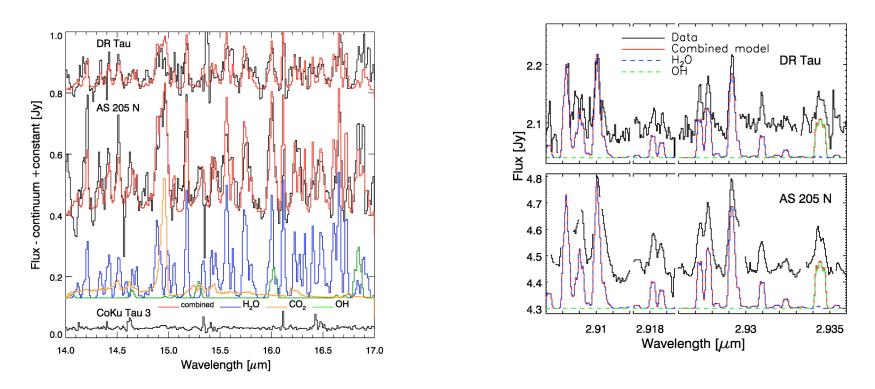
Heat and Dust in Active Layers of Protostellar Disks

Jeremy Goodman Xuening Bai Princeton University Observatory

Astrophysical MRI Ringberg 14-18.04.2009

Acknowledgments

- Bruce Draine
 - For much help with dust, CR ionization, etc.
- Martin Ilgner
 - For help with understanding Ilgner & Nelson 2006a
- Stephanie Cazaux
 - For help with her work on H_2 formation
- Steve Balbus, Natalia Dzjurkevitch, Mario Flock, Hubert Klahr, the MPA, & all who made this conference possible


...and the person who did most of the work

Xuening Bai

Astrophysical MRI Ringberg 14-18.04.2009

Prelude: Hot water at 1 AU (Salyk et al. 2008, ApJ 646, L49)

- DR Tau & AS 205 were selected for high accretion rates: $\geq 10^{-7} M_{\odot} yr^{-1}$
- Inferred physical conditions: $T \approx 1000$ K, $r \approx 1-3$ AU, N(H₂O) $\approx 10^{18}$ cm⁻²

 $\Rightarrow \Sigma \ge 0.1 \text{ g cm}^{-2}$

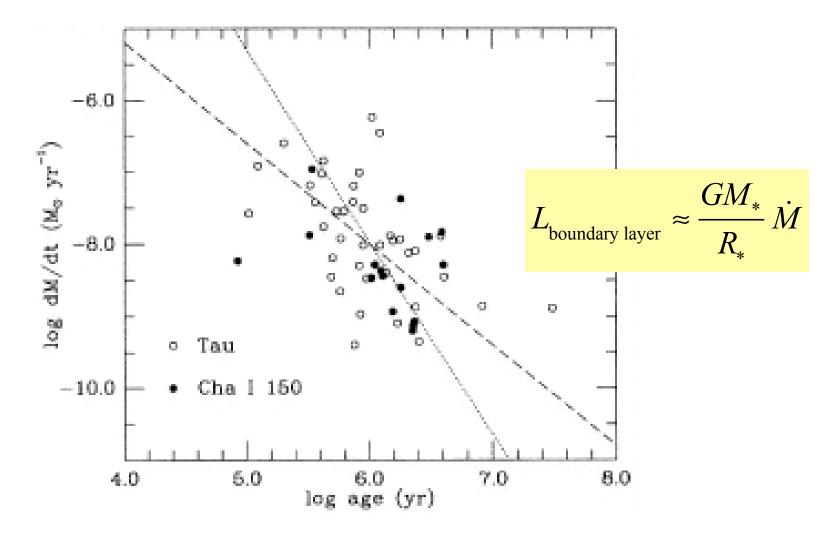
Astrophysical MRI Ringberg 14-18.04.2009

Why study MRI in Protostellar Disks?

- The observational constraints are good
 - The only angularly resolved accretion disks (except galactic disks)
 - Well-determined accretion rates (from boundary-layer emission)
- The conditions for MRI are marginal (perhaps), and marginal cases can be instructive
 - Low electrical conductivity, extremely low $Pm = v/\eta$
- The contingency of turbulence may be important to planet formation
 - high densities & dust settling in dead zones
 - gap formation
 - *etc.*

The importance of dust

- PSDs are detected and characterized by their IR excesses
 - disk mass
 - requires temperature profile, emissivity, dust-to-gas ratio
 - lifetime
 - via IR excess vs. stellar age
 - geometry
 - inner & outer disk radii, gaps, flaring, warps
- Refractory elements in dust are the precursors of planets
- In the solar system, dust (in comets & meteorites) bears a fossil record of the primordial nebula
- Dust controls the coupling of the disk to magnetic fields


Central idea of this work

- The requirements of MHD/MRI give one set of constraints on the dust
- Observed emissions (IR SEDs, silicate & PAH features, <u>molecular lines</u>) give another set
- Let's try to combine these
- There are some obvious difficulties here
 - uncertainties in grain growth & size distribution
 - uncertainties in ionization rates
 - poor angular resolution (10s of AU at present)
 - immaturity of MRI simulations regarding microphysics, thermodynamics and resolution studies (this is evolving, of course)

Outline of this talk

- Introduction
- Review of required magnetic fields & ionization levels
- (Re)calculation of conductivity & active surface density (Σ_a) in the presence of grains
- Implications for the optical depth of active layers to dust
- Calculations of molecular (H_2O) emissivity of active layers
- Combining the constraints
- Summary and Discussion

Observed accretion rates

Hartmann et al. 1998, ApJ 495, 385

Astrophysical MRI Ringberg 14-18.04.2009

Minimum Mass Solar Nebula

$$\Sigma = 1700 r_{AU}^{-3/2} \text{g cm}^{-2}$$
 $T = 280 \text{ K} r_{AU}^{-1/2}$ $c_s = 1.0 r_{AU}^{-1/4} \text{ km s}^{-1}$

Vertically isothermal: $\rho(r,z) = \rho_0(r) \exp(-z^2/2h^2)$

$$\rho_0(r) = \frac{\Sigma}{h\sqrt{2\pi}} = 1.4 \times 10^{-9} r_{AU}^{-11/4} \text{g cm}^{-3}$$

Flared disk:

$$\frac{h}{r} = \frac{c_s}{\Omega r} \approx 0.03 r_{\rm AU}^{1/4}$$

Astrophysical MRI Ringberg 14-18.04.2009

Outline of this talk

- Introduction
- Review of required magnetic fields & ionization levels
- (Re)calculation of conductivity & active surface density (Σ_a) in the presence of grains
- Implications for the optical depth of active layers to dust
- Calculations of molecular (H_2O) emissivity of active layers
- Combining the constraints
- Summary and Discussion

Required Magnetic Field

Conservation of angular momentum implies, at $r \gg r_{in}$,

$$\dot{M}\Omega r^{2} + 2\pi r^{2} \int_{-\infty}^{\infty} \left(\rho \overline{v_{r}' v_{\phi}'} - \overline{B_{r} B_{\phi}} / 4\pi \right) dz \approx 0.$$
But Maxwell stress $\left| \overline{B_{r} B_{\phi}} / 4\pi \right| \gg$ Reynolds stress $\left| \rho \overline{v_{r}' v_{\phi}'} \right|$
So $\left| \overline{B_{r} B_{\phi}} \right| \gtrsim \dot{M}\Omega / h_{a}$
where $h_{a} \approx 0.5 c_{s} / \Omega$ is the thickness of active layer (one side)

:
$$B = \sqrt{B_r^2 + B_\phi^2 + B_z^2} \gtrsim 3M_{-7}^{1/2}r_{\rm AU}^{-9/8}$$
 Gauss

$$\Rightarrow \text{ Equipartion :}$$

$$\frac{P_{\text{gas}}}{P_{\text{mag}}} \lesssim 1.0\Sigma_1 \dot{M}_{-7}^{-1} r_{\text{AU}}; \quad \Sigma_1 \equiv \Sigma_a / 10 \text{ g cm}^{-2}$$

Astrophysical MRI Ringberg 14-18.04.2009

Required ionization

An Elsasser number $\Lambda \equiv \frac{V_A^2}{\eta \Omega} \gtrsim 1$ is required for MRI.

Ohm's Law is tensorial: $\vec{J} = \vec{\sigma} \cdot \vec{E}$ (e.g. Wardle 2007) Tensorial conductivity $\vec{\sigma}$ involves ionization (x_e, x_i) but also \vec{B} via the Hall parameters : $\beta_i \equiv (\text{collision time})/(\text{cyclotron time})$ for species *j*.

$$\partial_t \vec{B} - \vec{\nabla} \times \left(\vec{v} \times \vec{B} \right) = -\frac{c^2}{4\pi} \vec{\nabla} \times \left(\vec{\sigma}^{-1} \cdot \vec{\nabla} \times \vec{B} \right)$$

 \Rightarrow In Elsasser number, $\eta \propto$ largest eigenvalue of $\vec{\sigma}^{-1}$.

Astrophysical MRI Ringberg 14-18.04.2009

Required ionization (continued)

In the extreme Hall regime $(\beta_i \ll 1 \ll \beta_e), \quad \Lambda \to \Lambda_{\rm H} = \frac{en_e B}{\rho \Omega c} \propto x_e B/\Omega$

 $\beta_e \approx 100 \Sigma_1^{-1} B_0 r_{AU}^{3/2} \gtrsim 300 \Sigma_1^{-1} \dot{M}_{-7}^{1/2} r_{AU}^{1/8}$ $\beta_i \approx 0.2 \ \Sigma_1^{-1} B_0 r_{AU}^{5/4} \gtrsim 0.6 \ \Sigma_1^{-1} \dot{M}_{-7}^{1/2} r_{AU}^{-1/8} \text{ in the MMSN.}$

So we're probably in the Hall regime: $\beta_i < 1 \ll \beta_e$ or possibly in the ambipolar regime: $1 < \beta_i \ll \beta_e$

$$\Rightarrow x_e \approx 10^{-10} \Lambda \dot{M}_{-7}^{-1/2} r_{AU}^{-1/4}$$
 (MMSN, Hall regime)

Astrophysical MRI Ringberg 14-18.04.2009

Outline of this talk

- Introduction
- Review of required magnetic fields & ionization levels
- (Re)calculation of conductivity & active surface density (Σ_a) in the presence of grains
- Implications for the optical depth of active layers to dust
- Calculations of molecular (H_2O) emissivity of active layers
- Combining the constraints
- Summary and Discussion

There have been many calculations of active layers & conductivity

- Gammie (1996)
 - cosmic rays, **no grains**, $\operatorname{Re}_{M,\operatorname{crit}} = 1$
 - − Σ_a (1 AU) ≈100 g cm⁻²
- Glassgold, Najita, & Igea (1997); Igea & Glassgold (1999)
 - X-rays, no grains
 - $\Sigma_a(1~\text{AU}) \approx 40~g~cm^{-2}$
- Sano, Miyama, et al. (2000)
 - enlarged chemical reaction network
 - $a = 0.1 \ \mu m \ grains$
 - $\Sigma_{\rm a}(1{\rm AU}) \approx 0 {\rm ~g~cm^{-2}}$ at $f = 10^{-2}$
 - $\Sigma_{\rm a}(1{\rm AU}) \approx 70 \text{ g cm}^{-2} \text{ at } f = 10^{-6}$ (*f* is dust mass fraction)

- Fromang, Terquem &Balbus(2002)
 - metal ions (Mg, Fe,); **no grains**
 - α disks not MMSN ($\alpha = 10^{-2}, \dot{M}_{-7} = 1$)
 - $-\Sigma_{a}(1\text{AU}) \approx 30 \text{ g cm}^{-2}$
- Semenov, Wiebe, & Henning(2004)
 - $a = 0.1 \ \mu m \ grains$
 - improved chemistry
 - α disk (as above)
 - $\Sigma_{\rm a}(1{\rm AU}) \approx 200 \text{ g cm}^{-2}$ (?whole disk)
- Ilgner & Nelson (2006a) [IN06a]
 - Much extended network
 - **0.1** μm grains
 - α disk (as above)
 - − $\sum_{a}(1AU) \approx 10 \text{ g cm}^{-2}$ for f=10⁻⁶ ("model7")

Active-layer calculations (continued)

- Ilgner & Nelson (2006b,c; 2008)
 - like IN06a, plus turbulent mixing but no grains
- Wardle (2007)
 - MMSN
 - tensorial conductivity
 - simple chemistry
 - **0.1-3.0 \mum grains**, f = 10⁻² $\approx f_{ISM}$
 - $\Sigma_{\rm a}(1{\rm AU}) \approx 2 {\rm g \ cm^{-2}}$ for 0.1µm grns.
 - $\Sigma_{\rm a}(1{\rm AU}) \approx 80 {\rm ~g~cm^{-2}} {\rm ~for} {\rm ~3~} \mu{\rm m~grns}.$
- Salmeron & Wardle (2008)
 - like Wardle (2007), but only for radii 5 & 10 AU

- <u>This study</u>: like Ilgner & Nelson (2006), with some improvements:
 - Enlarged & updated chemistry based on UMIST06 vs. UMIST95
 - MMSN vs. α disk
 - H ionization & H₂ formation on grains
 - Two grain populations with variable sizes & mass fractions
 - $10^{-2}\,\mu\text{m} \le a_1 \le a_2 \le 10\,\mu\text{m}$
 - $0 \le f_1 + f_2 \le 10^{-2} = f_{\text{ISM}}$
 - Variation of X-ray flux, X-ray temperature, & CR ionization parameter

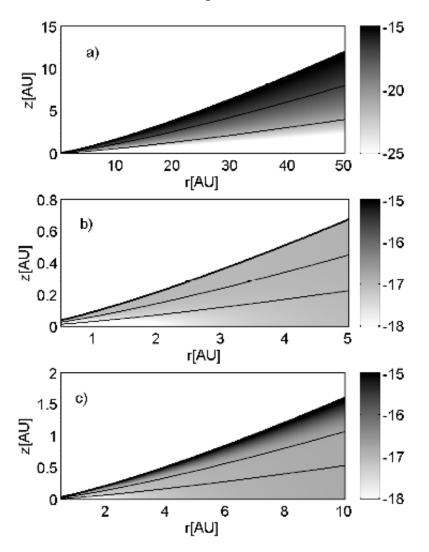
Magnetic Reynolds number

We actually use the criterion

$$\operatorname{Re}_{M} \equiv \frac{c_{s}^{2}}{\eta \Omega} \geq 100$$

for active zones,

where
$$\eta = \eta_{\text{Ohmic}} \approx 230T^{1/2}x_e^{-1} \text{ cm}^2 \text{ s}^{-1}$$
.
 $\Rightarrow x_e \gtrsim 10^{-11}r_{\text{AU}}^{-5/4} \text{ (cf. } 10^{-10} \Lambda \dot{M}_{-7}^{-1/2}r_{\text{AU}}^{-1/4} \text{ for Hall regime})$

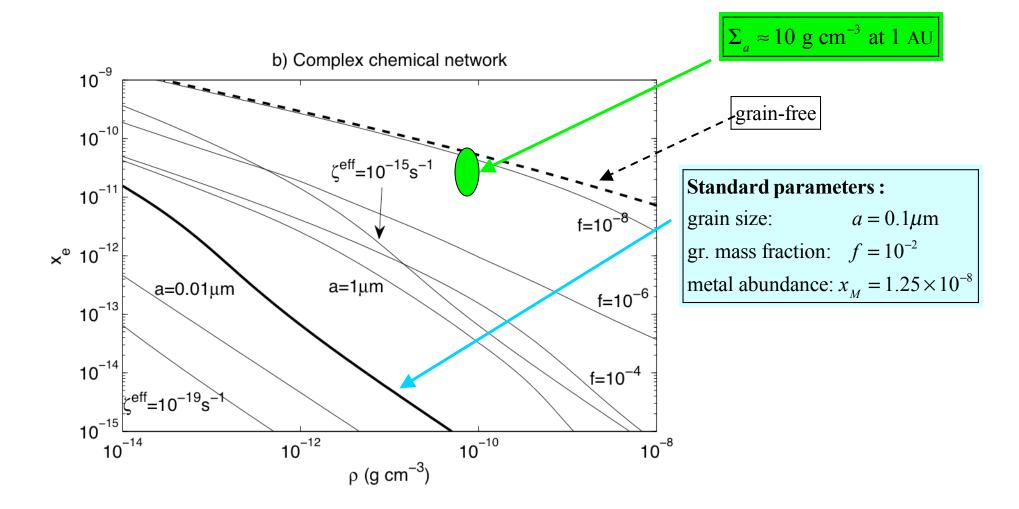

This doesn't involve \vec{B} or \dot{M} explicitly.

However, $\eta_{\text{Hall}} \approx \beta_e \eta_{\text{Hall}}$ in the Hall regime, and $\beta_e \gtrsim 10^2$.

The conductivity required to support accretion at high rates is larger than for linear stability, because the tensorial diffusivity increases with magnetic field strength.

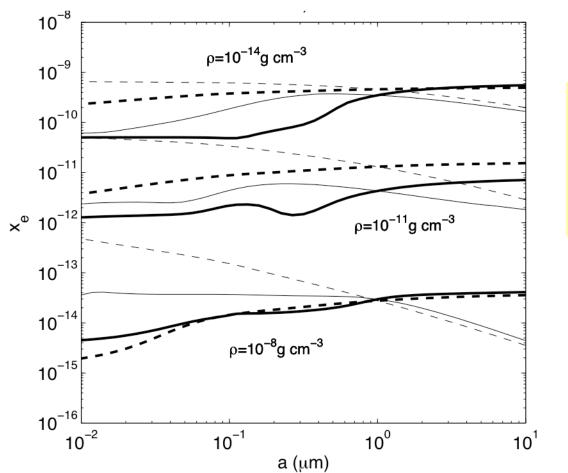
Astrophysical MRI Ringberg 14-18.04.2009

X-ray & CR ionization rates


X-rays only:
$$L_X = 5 \times 10^{29} \text{ erg s}^{-1}$$
, $T_X = 3 \text{ keV}$

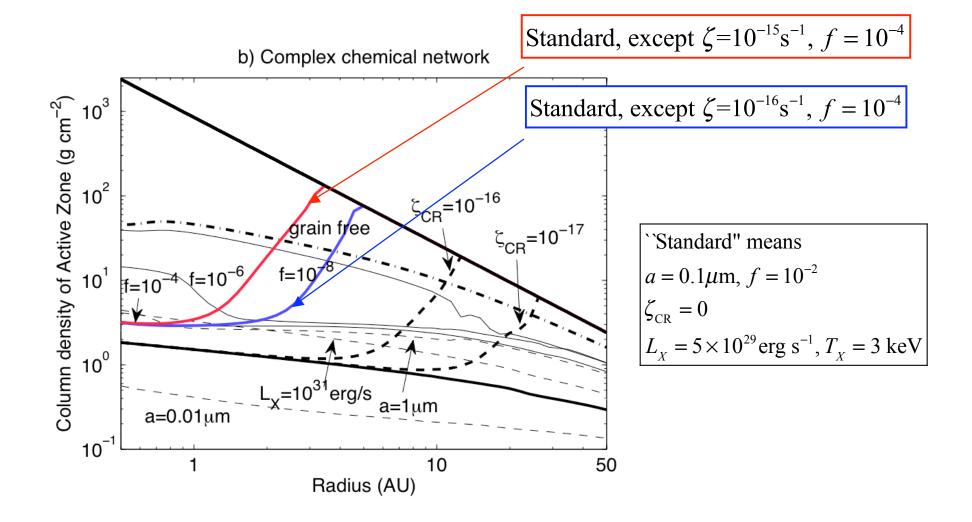
Cosmic rays only: $\zeta_{CR} = 10^{-17} \text{ s}^{-1} \text{ molecule}^{-1}$

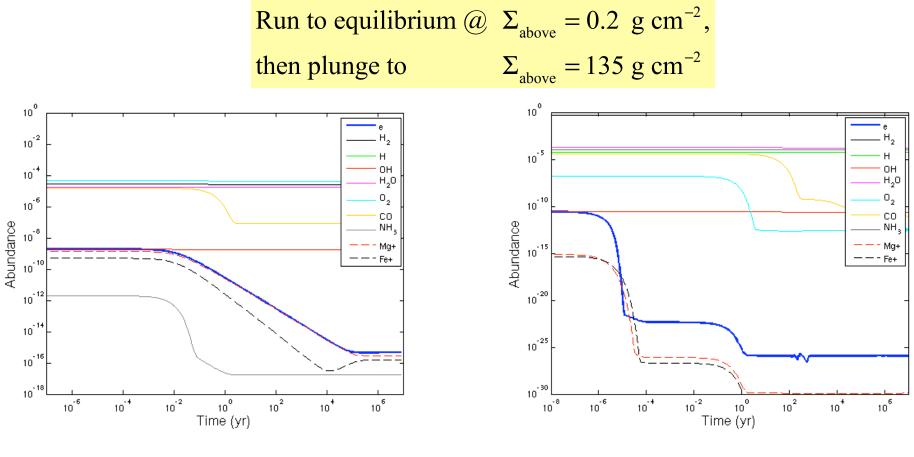
Both X-rays & CR


Astrophysical MRI Ringberg 14-18.04.2009

Electron abundance

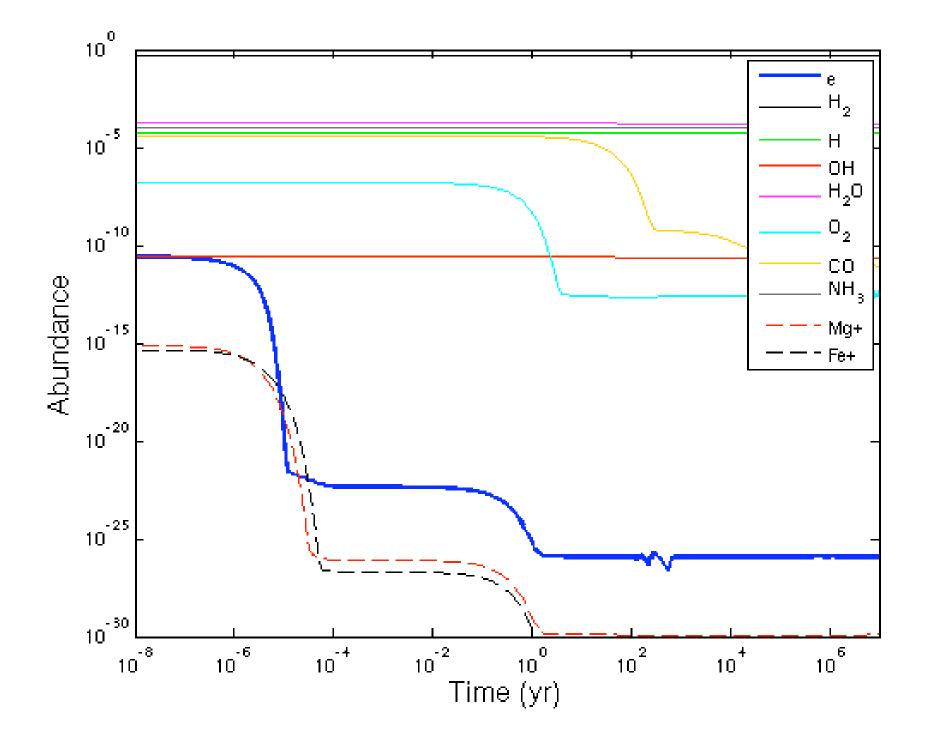
Astrophysical MRI Ringberg 14-18.04.2009


Electron abundance depends roughly on total grain area


Astrophysical MRI Ringberg 14-18.04.2009

$\boldsymbol{\Sigma}_{\mathbf{a}}$ is very sensitive to grains

Astrophysical MRI Ringberg 14-18.04.2009


Grains hasten recombination when gas is "mixed" from shallow to deep

Without grains

With grains

Astrophysical MRI Ringberg 14-18.04.2009

Outline of this talk

- Introduction
- Review of required magnetic fields & ionization levels
- (Re)calculation of conductivity & active surface density (Σ_a) in the presence of grains
- Implications for the optical depth of active layers to dust
- Calculations of molecular (H_2O) emissivity of active layers
- Combining the constraints
- Summary and Discussion

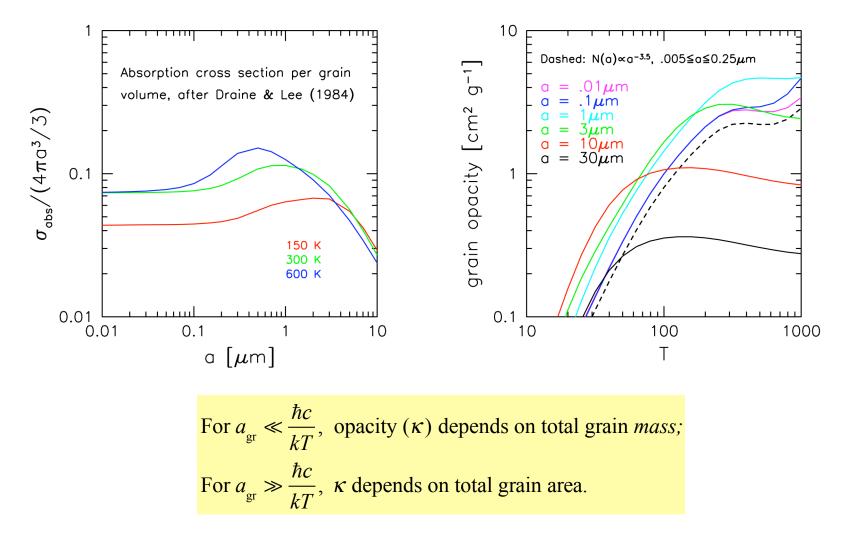
The heat of accretion

The heat of accretion has to be radiated: at $r \gg r_{in}$,

$$F = \sigma T_{\text{eff}}^4 \approx \frac{3\dot{M}\Omega^2}{8\pi} \implies T_{\text{eff}} \approx 150 \,\dot{M}_{-7}^{1/4} r_{\text{AU}}^{-3/4} \,\text{K}.$$

One would expect the emissivity to be dominated by dust, and that the active layer would be optically thick:

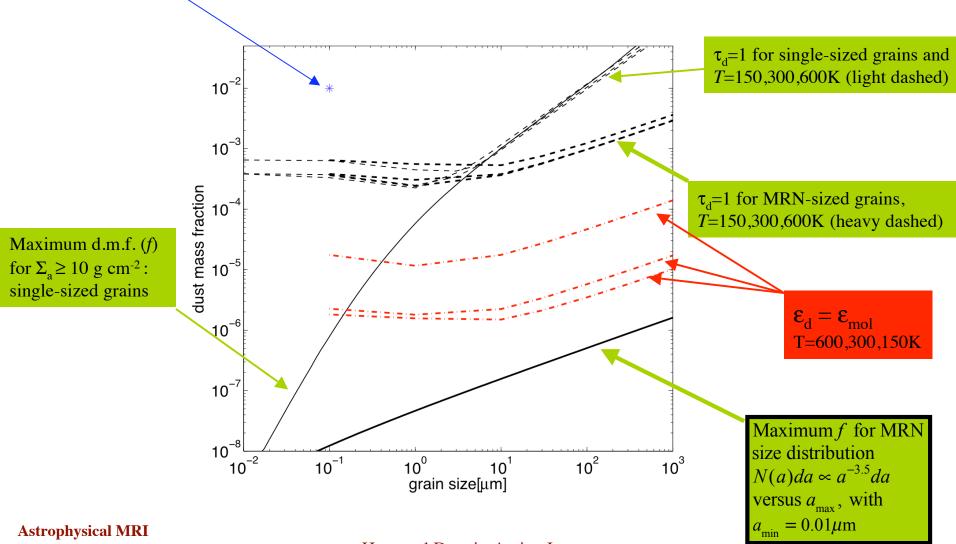
$$\varepsilon_{a} \approx 1 - \exp\left(-\kappa_{\text{dust}}\Sigma_{a}\right)$$


$$\kappa_{\text{dust}} \gtrsim 1 \text{ cm}^{2}\text{g}^{-1} \text{ for ISM dust } (f = 10^{-2}, \overline{a} \sim 0.1 \mu\text{m})$$

$$\Rightarrow \tau_{\text{dust}} \gtrsim 10^{3} f \Sigma_{a} / (10 \text{ g cm}^{-2}) \equiv 10 f_{-2}\Sigma_{1}$$

But τ_{dust} may have to be < 1 to allow Re_M>100

Astrophysical MRI Ringberg 14-18.04.2009


IR grain opacities

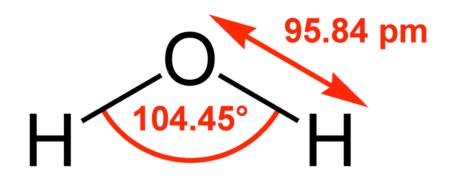
Astrophysical MRI Ringberg 14-18.04.2009

Combined constraints at 1 AU

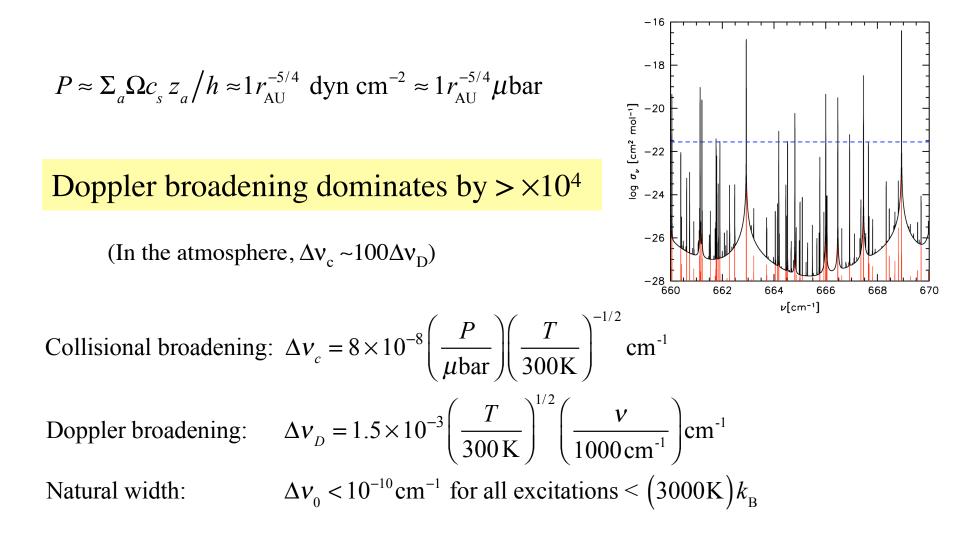
Typical ISM dust

Ringberg 14-18.04.2009

Outline of this talk


- Introduction
- Review of required magnetic fields & ionization levels
- (Re)calculation of conductivity & active surface density (Σ_a) in the presence of grains
- Implications for the optical depth of active layers to dust
- Calculations of molecular (H_2O) emissivity of active layers
- Combining the constraints
- Summary and Discussion

Molecular cooling


- H_2O , CO_2 are the main opacity sources (at thermal wavelengths) in the Earth's atmosphere
 - O₃, CH₄, NO are rarer but also significant
- These (& CO, NH₃,...) should be abundant in protostellar disks
 similar temperatures
- Molecular lines are much narrower in PDs than in the atmosphere, however, because of lower pressures and densities
- This leads to gaps between the lines, and hence lower emissivity

The water molecule: a brief introduction

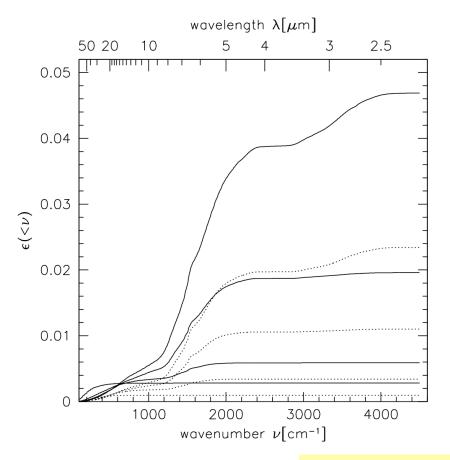
- Tri-axial rotator:
 - (I_x, I_y, I_z) ≈ (1, 3, 2) × 10⁻⁴⁰ dyn cm²
 - \Rightarrow richer rotational spectrum than linear molecules (CO, CO₂)
- Lowest vibrational excitation ≈ 1500K
- Partition function at $<10^3$ K: $Z(T) \approx 180 (T/300 \text{K})^{3/2}$
 - as for classical asymmetric top
 - this is \sim # excited energy levels
 - lowest vibrational mode $\approx 1500 \text{ K}$
- Dipole moment 1.86 Debye

Line broadening

Astrophysical MRI Ringberg 14-18.04.2009

Molecular emissivity of active layer

- We use the H_2O line list of Barber et al (2006)
 - ~5×10⁸ transitions, but only a few thousand matter here
- We calculate the specific intensity emerging from isothermal (T=300K) slabs of 10 g cm⁻², solar abundance of O, all in H₂O ⇔3.6×10²⁰ mol g⁻¹

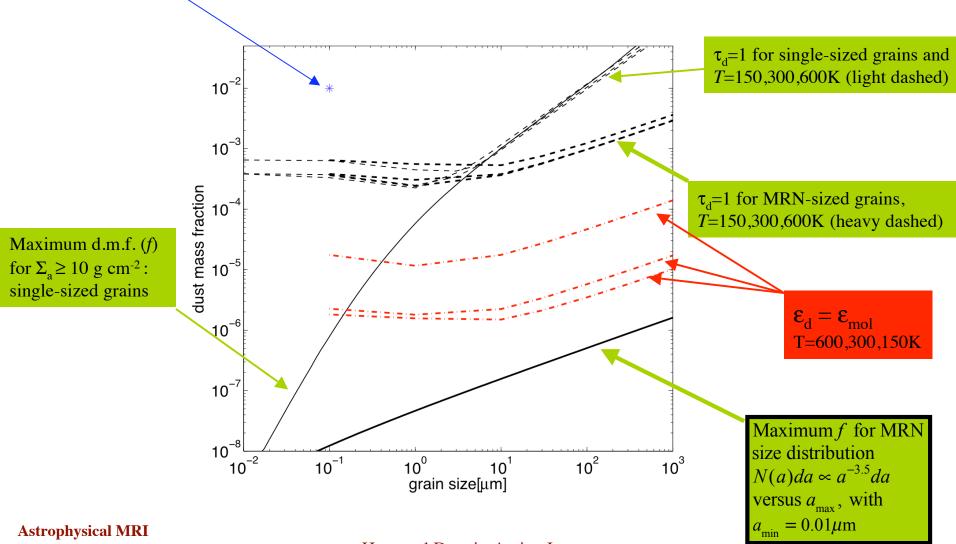

Cumulative emissivity defined by a sum over saturated lines:

$$\epsilon($$

– This ignores line overlap: a very good approximation

Astrophysical MRI Ringberg 14-18.04.2009

Emissivities (continued)


Solid curves: $\Sigma_a = 10 \text{ g cm}^{-2}$; Dashed: 1 g cm⁻² Top to bottom: T = 600,450,300,150 K

Hence total emissivity is typically ~ 10^{-2} for $\Sigma_a \sim 1 - 10$ g cm⁻². Compare the Planck-averaged opacity: $\kappa_p(H_2O) \approx 8$ cm² g⁻¹

Astrophysical MRI Ringberg 14-18.04.2009

Combined constraints at 1 AU

Typical ISM dust

Ringberg 14-18.04.2009

Evidence for small dust

- Flat IR SEDs
 - equilibrium temperature of submicron grains is larger by $\sim (\epsilon_{vis}/\epsilon_{IR})^{1/4}$
- Silicate features indicate presence of $\leq 0.1 \mu m$ grains
 - especially chrystalline features: enstatite, fosterite
- PAH features in some disks
- Importantly, these signatures of small grains are seen even in "old" PDs
- This is not to deny the evidence for grain growth (e.g. from submm data), but it does suggest that some process replenishes the small-grain population, even as the bulk of the grain mass shifts to larger sizes
- And even a small mass in small grains has an enormous effect on $\boldsymbol{\Sigma}_a$

Summary

- Ionization x_e ≥10⁻¹¹-10⁻¹⁰ and magnetic fields ≥ 3 G are required at 1 AU to sustain accretion rates ~ 10⁻⁷ M_☉yr⁻¹ in MMSN
 Influence of magnetic field on ion-neutral drift is important here
- With standard ionization sources (X-rays, CR), such x_e require small grains to be suppressed by ~10⁻⁴ compared to ISM
- Active layers should be at least marginally optically thin, even if submicron grains are entirely absent, and perhaps so thin that molecular emission lines may dominate the cooling
 - thus molecular line observations may probe physical conditions in active layers

Questions for future research

- Have we overlooked a major source of nonthermal ionization?
 - Only ~10⁻⁴ of the locally dissipated energy would need to be invested in such sources (Particle acceleration in reconnection events? Lightning?)
 - How do we calculate such sources, or how might they be confirmed observationally?
- The thermal structure of turbulent active layers needs to be explicitly modeled in simulations
 - Can temperatures approaching 1000 K occur in the upper parts of the layer (where $\Sigma \le 0.1 \text{ g cm}^{-2}$) ?
 - Does true stratification (dS/dz > 0) inhibit mixing?