Protostellar jets and outflows


Pre-main sequence stars are observed to have powerful winds over much of their lifetimes, with the winds from young, embedded protostars sweeping up their surrounding cores to produce massive molecular outflows, and the winds from older, optically-visible T Tauri stars seen directly as Herbig-Haro jets. These winds are believed to be driven by a combination of magnetic and centrifugal forces, and may originate either in the body of the protoplanetary disk surrounding the forming star, or at the interface of the disk and the stellar magnetosphere.

Our group at Maryland is involved in theoretical modeling and analysis of the structure and kinematics of swept-up wind shells and bow shock shells, and their comparison to observational data (see Figures below). With collaborators at Maryland and other institutions, I have also studied the processes of MHD wind acceleration and collimation, and analyzed the susceptibility of MHD winds to a local and global instabilities. These studies involve a combination of analytic and semi-analytic calculations, steady-state numerical solutions, time-dependent numerical simulations, and radio observations.


Comparison of shell shape from simulation and ballistic bow shock model
 

Comparison of position-velocity structure in bow shock shell from simulation and ballistic bow shock model
 


For more information, see publications page.


Return to  Eve Ostriker's Research Page
Return to  Eve Ostriker's Home Page