PDR Chemistry

Heating and Cooling

Simulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions

GMC Microphysics

Brandon Hensley

Department of Astrophysical Sciences Princeton University

> AST 542 October 2, 2012

Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions
Outline				

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction to PDRs Overview

PDR Chemistry

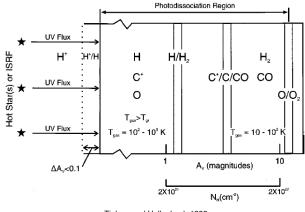
H₂ Formation and Dissociation CO formation and dissociation Grain Chemistry

Heating and Cooling

Heating Processes Cooling Processes

Simulations

Conclusions


Introduction to PDRs ●○○	PDR Chemistry	Heating and Cooling	Simulations	Conclusions
Overview				

- A photodissociation region (PDR) is the interface between an HII Region and a molecular cloud
- It is marked by a photodissociation surface— a region where the hydrogen in half atomic and half molecular
- Nearly all of the atomic gas and most of the molecular gas in a galaxy can be found in a PDR

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction to PDRs ○●○	PDR Chemistry	Heating and Cooling	Simulations	Conclusions
Ctructure				

Tielens and Hollenbach 1999

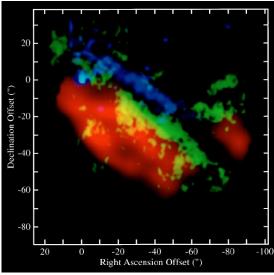
æ

► We will discuss each of the zones in a PDR in detail

Introduction	to	PDRs
000		

PDR Chemistry

Heating and Cooling


Simulations

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Conclusions

Observation

Tielens et al 1993

PDR Chemistry

Heating and Cooling

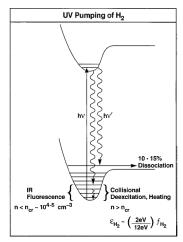
Simulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

H₂ Formation and Dissociation

- H₂ is by far the most common molecule in PDRs (factor 10⁴ more abundant than CO)
- Most H₂ forms on the surfaces of dust grains


PDR Chemistry ○●○○○○ Heating and Cooling

Simulations

Conclusions

H₂ Formation and Dissociation

- Upon absorption of a FUV photon, H₂ has a ~ 10 - 15% chance of dissociating
- Otherwise, H₂ will remain in a vibrationally excited state. Collisional de-excitation from this state can heat the gas

Tielens and Hollenbach 1999

イロト イポト イヨト イヨト

Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions
Self-Shieldir	ig			

- Because the H₂ density is so high, FUV lines can become optically thick
- This creates a sharp transition between HI and H₂
- The location of this transition is set both by self-shielding (high density / low radiation regime) and by dust opacity (low density / high radiation regime)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction to PDRs PDR Chemistry Heating and Cooling Simulations

CO Formation and Dissociation

- C⁺ and C are balanced by photoionization and radiative recombination
- CO formed through burning neutral radicals like CH and CH₂
- Alternatively:

 $C^+ + OH \rightarrow CO^+ + H$ $CO^+ + H_2 \rightarrow HCO^+ + H$ $HCO^+ + e \rightarrow CO + H$

- CO is slow to form because its reactants have relatively low abundance
- CO is not significantly shelf-shielded due to low abundance
- Thus, CO exists primarily deep within a cloud, and the transition to CO is set by dust extinction

Introduction to PDRs	PDR Chemistry ○○○○●○	Heating and Cooling	Simulations	Conclusions
Dust				

- Silicate and carbonaceous grains provide the dominant source of opacity
- Dust receives 10² 10³ more heating than the gas, but maintains lower temperature by effective cooling

(日) (日) (日) (日) (日) (日) (日)

- Greatly affect heating/cooling balance via IR radiation
- Also important for catalyzing H₂ formation

Introduction to PDRs	PDR Chemistry ○○○○○●	Heating and Cooling	Simulations	Conclusions
PAHs				

- Polycyclic aromatic hydrocarbons (PAHs) are large carbon molecules that give rise to distinctive IR features
- \blacktriangleright Typical size: 50 C atoms, giving a PAH abundance relative to H of $\sim 10^{-7}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Important for photoelectric heating

PDR Chemistry

Heating and Cooling

Simulations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions

Heating and Cooling

Heating

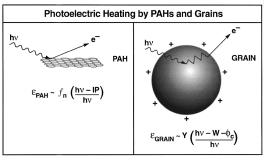
- Photoelectric Heating
- Collisional De-excitation
- Cosmic Ray Heating
- Cooling
 - Atomic Line Emission
 - Molecular Line Emission
 - Collisional Excitation
 - Grain Cooling

PDR Chemistry

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Photoelectric Heating

- ► UV photons can liberate electrons from PAHs
- An ejected photoelectron can then heat the gas
- Photoelectric heating is dominated by the smallest grains
- 0.1 1% of the UV intensity goes into photoelectrons ejected by PAHs


PDR Chemistry

Heating and Cooling

Simulations

Conclusions

Photoelectric Heating Schematic

- Limiting factor for high-efficiency small grains is that some may have an ionization potential > 13.6 eV
- Efficiency drops as PAHs become more charged

PDR Chemistry

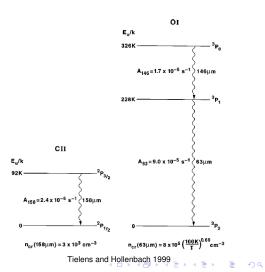
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Collisional De-excitation

- Recall that H₂ molecules may absorb a photon, then decay radiatively to a vibrationally excited state
- At high densities, these molecules may be de-excited via collisions with atomic H, thereby heating the gas
- A vibrationally excited H₂ molecule has ~ 2 eV of vibrational energy

PDR Chemistry

▲□▶▲□▶▲□▶▲□▶ □ のQ@


Cosmic Ray Heating

- At high densities, cosmic ray ionization of molecules becomes important
- Standard H₂ cosmic ray ionization rate of 3 × 10⁻¹⁷ molecules per second
- Important for ionizing in regions where UV does not penetrate

Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions

Atomic Line Emission

- Infrared fine structure lines, notably [CII] 158 µm and [OI] 63 µm, 146 µm
- The [CII] fine structure line often dominated cooling in the ISM of a galaxy

PDR Chemistry

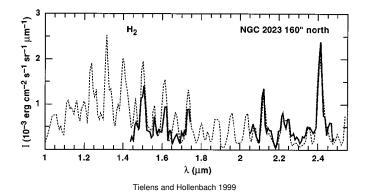
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Atomic Line Emission

- [CII] and [OI] lines are good for determining density and temperature since their range of critical densities (3 × 10³ − 3 × 10⁵ cm⁻³) and excitation temperatures (100 − 300K) span the range of conditions found in PDRs
- Ratio of the cooling rate to FIR dust emission yields the photoelectric heating efficiency

Introduction to PDRs PDR Chemistry Heating and Cooling

Simulations


・ロット (雪) (日) (日)

э

Conclusions

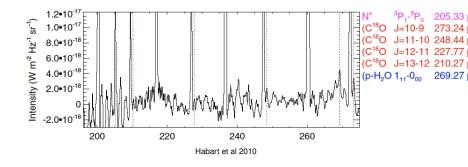
Molecular Line Emission

Ro-vibrational emission from H₂

 UV-pumped H₂ decays via electric guadrupole transitions, emitting in the red and NIR

PDR Chemistry

Heating and Cooling


Simulations

(日)

э

Conclusions

Molecular Line Emission

 The dipole moment of CO allows it to be an effective radiator

Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions
CO to H ₂ Re	elation			

The strength in the CO 1-0 line has been observed to correlate well with the mass of H₂

$$X_{CO} \equiv N(\mathrm{H}_2) / \int T_A \mathrm{d}v$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

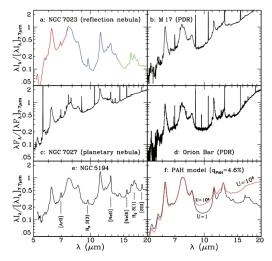
- In "dark molecular gas" (Wolfire 2010), the hydrogen is in molecular form but the CO is not
- \blacktriangleright ~30% of the molecular cloud mass may be in such gas

PDR Chemistry

Heating and Cooling

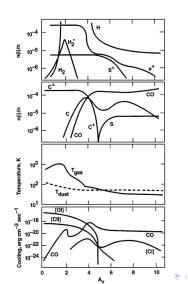
Simulations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

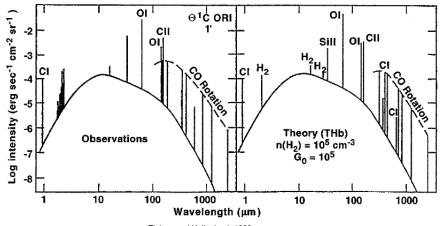

Conclusions

Collisional Excitation

 Collisional excitation of atoms, molecules, and ions by electrons, H, or H₂ followed by radiative decay cools the gas


Introduction to PDRs	PDR Chemistry	Heating and Cooling ○○○○○○○○○●○	Simulations	Conclusions
Grain Cooli	ng			

- Grains absorb UV radiation and re-radiate in the IR
- Collisions with grains, which are typically cooler than the gas, can also lead to net cooling


Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions
Summary				

 We can now understand the detailed structure and spectrum of a PDR

Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions
Summarv				

.

Tielens and Hollenbach 1999

Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions
Simulations				

Simulations

Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions

Simulations of PDRs can be difficult

Simulations

- Reaction rates can span many orders of magnitudetimestep needs to be quite small
- Solving for abundance of N species implicitly goes as O(N³)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- > 3D problem with turbulence, magnetic fields...
- Some common simplifications are made

Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions	
Gas Clumpiness					

- Molecular gas will be inherently clumpy, but can it be modeled as a constant-density medium?
- Levier et al 2012 compared clumpy vs constant density models of PDRs and found constant density models underpredicted chemical abundances by a factor of 2 – 4

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Also found 35 – 40% dark molecular gas

PDR Chemistry

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Simulations and XCO

- Glover and Clark 2012 studied a range of PDR simulations, from relatively simple to quite complex
- Varied primarily in complexity of chemical reactions / species considered
- Fairly robust agreement in value of X_{CO}, lending credence to universiality of the relation that is relatively insensitive to chemistry
- However, CO distribution varied considerably among models

PDR Chemistry

Heating and Cooling

Simulations

Conclusions

Simulations and XCO

 Table 2. Computational performance of the various approaches.

Table 4. Comparison of the CO-to-H₂ conversion factor X_{CO} , at the end of the runs.

Method	Approximate runtime (CPU hours)		Method	$X_{\rm CO} \ [10^{20} {\rm cm}^{-2} ({\rm Kkms^{-1}})^{-1}]$	
	Run 1	Run 2		Run 1	Run
G10g	1190	1360	G10g	2.67	1.30
G10ng	880	1240	G10ng	2.01	1.23
NL97	110	140	NL97	0.57	0.90
NL99	310	460	NL99	1.47	1.17
KC08e	100	130	KC08e	0.50	0.89
KC08n	120	150	KC08n	0.49	0.87

Glover and Clark 2012

Glover and Clark 2012

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction to PDRs	PDR Chemistry	Heating and Cooling	Simulations	Conclusions
Summary				

- PDRs are a site of rich interstellar chemistry that has dramatic effects on gas sturcture, temperature, etc
- Simulations of PDRs are difficult but have been successful in reproducing key observables

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで