
Gravitational Instabilities in Protoplanetary Disks

Speaker: Wenhua(Wendy) Ju 11/06/2012

Outline

- Motivation of studying Gravitational Instabilites (GI) in protoplanetary disks
- Gravitoturbulence and locality of GI
- Fragmentation of disks due to GI
- FU Orionis outbursts and models of disk evolution

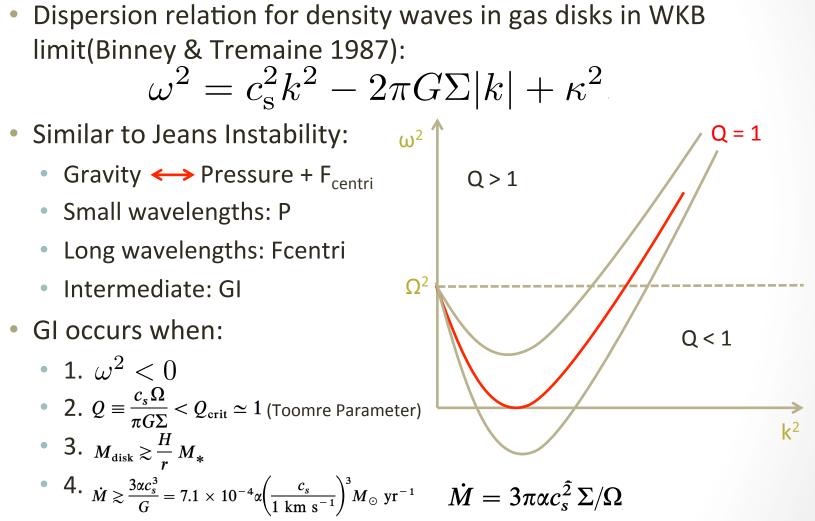
Motivation – Protoplanetary Disks

Credit: C. Burrows and J.Krist(STScI), K.Stapelfeldt(JPL) and NASA

- Accretion disks are required:
 - Observation(Infrared and sub-mm)
 - Dynamical role in star formation: accretion
 - Site of planet formation

Properties of Protoplanetary Disks

- Masses: $10^{-3} 10^{-1}$ M_{sun} in gas
- Sizes: 100 1000 AU
- Lifetimes: $10^6 10^7$ yr
- Temperature: cold, ~ several 100 K
- Thickness: H/R ~ 0.03 0.05
- Opacity: $\tau \sim 10^3 10^4$ (at 1 AU in optical, mainly due to dust)
- Very low ionization fraction: MRI couldn't work in "dead zones"


Motivation – Gravitational Instability(GI)

- Alternative source of angular momentum transport in cold disks (Lin & Pringle 1987; Armitage, Livio & Pringle 2001).
 - Locally: gravitational turbulence \rightarrow "viscosity"
 - Globally: bar structures, spiral arm structures
- Giant Planet Formation:
 - Limit of time:

giant planets have to be formed within several million years from the star forming event

- Difficulty with current planet formation theory(i.e. core instability models, (Ida & Lin 2004; Rafikov 2010)
- Giant planets might have formed by Gravitational Instability(disk fragmentation, Boss 2000).

When does GI work?

Pre-assumption for 4: No external torques, no heating from external illumination .

Thermal processes are important to GI

$$Q \equiv \frac{c_s \Omega}{\pi G \Sigma} < Q_{\rm crit} \simeq 1$$

- Timescales:
 - Change of Σ : accretion timescale ~ (r/H)²($\alpha\Omega$)⁻¹
 - Cooling or heating: thermal timescale $\sim (\alpha \Omega)^{-1}$
 - r/H >> 1

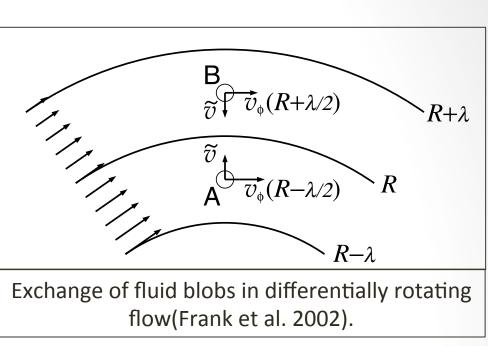
Final Fate for GI Unstable Disks

Quasi-steady, long-lived state:

- Gravitational turbulences transport angular momentum out
- Marginally stable Q~Q_{0.}
- Self-regulated state cooling ~ heating by GI
- Rapid fragmentation:
 - If cooling is much more efficient than heating
 - Formation of massive planets or substellar objects (Boss 1997).
- Bursts of accretion (FU Ori bursts):
 - If temperature becomes high enough to trigger MRI

1.GI as a specific form of "viscosity": Controversy about locality of GI

Locality

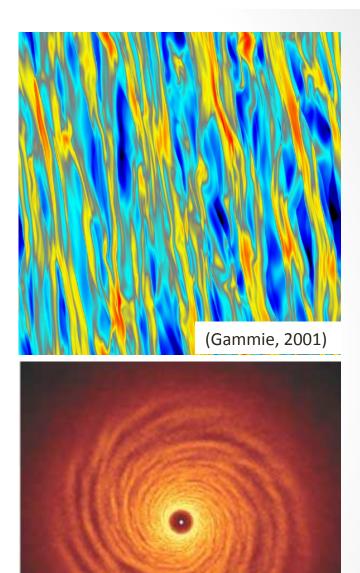

• Evolution of viscous disks:

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} \left(\nu \Sigma R^{1/2} \right) \right]$$
$$\nu \sim \lambda \tilde{v}_{1}$$

• α-prescription:

 $u = lpha c_{
m s} H\,$ (Shakura and Sunyaev, 1973)

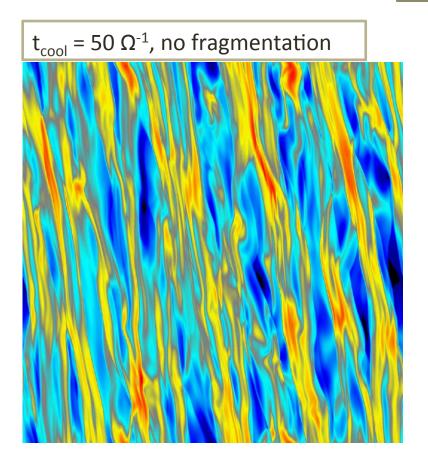
Lin & Pringle, 1987: Self-gravity could be treated as local, gravitoturbulent process, and thus could be described in a modified viscous α framework.

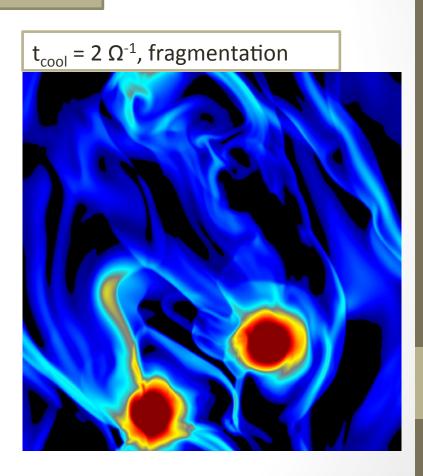

Balbus & Papaloizou, 1999: Self-gravitating disks could only be described as local process when the pattern speed Ω_p matches the local angular velocity Ω . Otherwise, the energy equation cannot be put into the form of a diffusion equation as required in local viscous scenario.

Locality

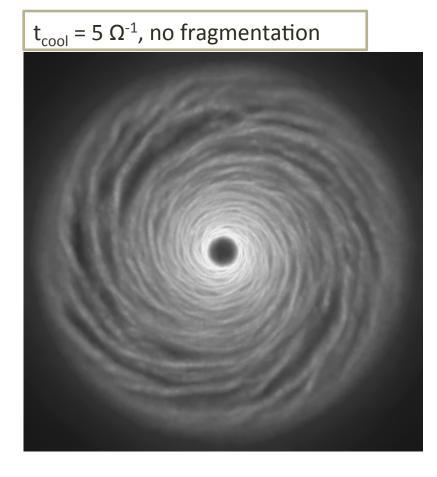
- Gravitoturbulence:
 - Local Thermal Equilibrium:

$$\alpha = \frac{4}{9\gamma(\gamma - 1)} \frac{1}{t_{\rm cool}\Omega}$$

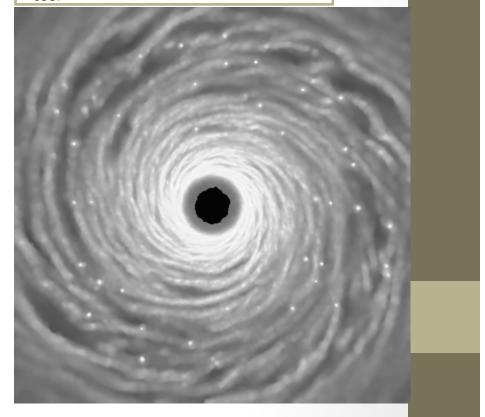

- Assuming opacity to be power law of midplane temperature: $\alpha \sim \frac{\sigma}{\kappa_0} \left(\frac{\mu m_p}{\gamma k_B}\right)^{4-\beta} (Q_0 \pi G)^{6-2\beta} \Sigma^{4-2\beta} \Omega^{2\beta-7}$ (Levin 2007)
- Locality is proved when:
 - M_{disk} / M_{*} < 0.25 (Lodato&Rice 2004)
 - M_{disk} / M_{*} = 0.1, departure is 10% (Cossin, Lodato & Clarke, 2009)
 - M_{disk} / M_{*} < 0.5 (including radiative transfer, Forgan et al. 2010)



(Lodato & Rice, 2004)

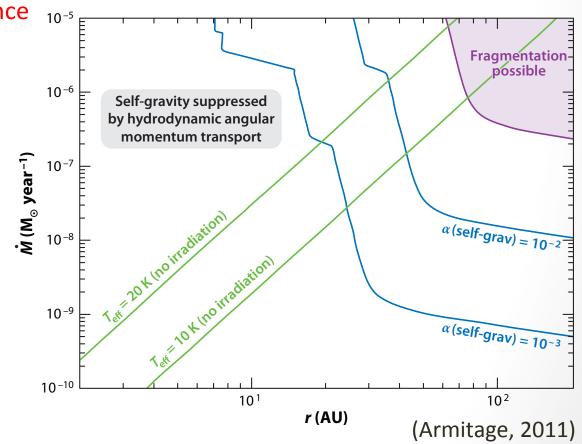

2. Fragmentation due to GI

2D hydrodynamic simulation by Gammie 2001: Disks will fragment when $t_{cool} \le 3 \Omega^{-1}$



3D hydrodynamic simulation by Rice et al. 2003: Disks will fragment when $t_{cool} \le 5 \Omega^{-1}$

 $t_{cool} = 3 \Omega^{-1}$, fragmentation



• If:

- there's no irradiation from central star;
- angular momentum transport is totally dominated by gravitoturbulence 10-5
- Then:

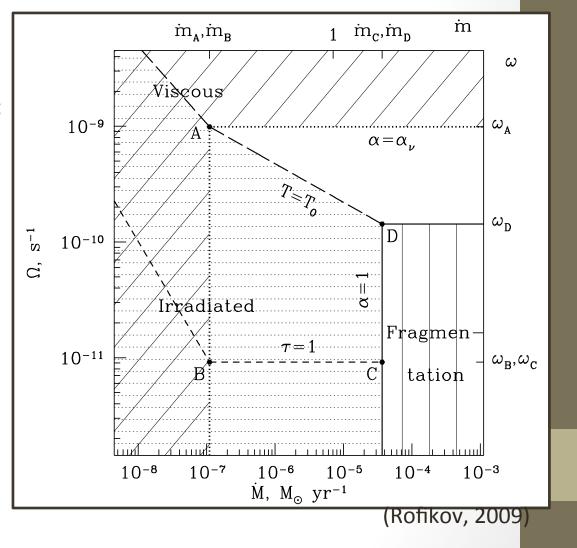
1.around a 1 M star, 2.self-gravity acts as a local process whose efficiency is set by the requirement of thermal equilibrium (Clarke 2009, Rafikov 2009).

3.The opacity includes contributions from water ice, amorphous carbon, silicates, and graphite

1

 $(\gamma - 1) t_{
m cool} \Omega$

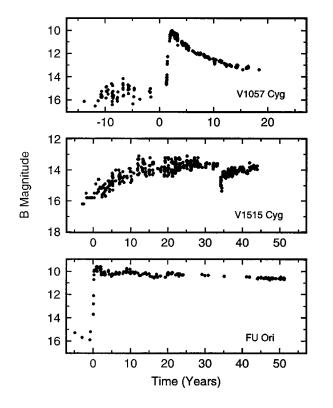
4

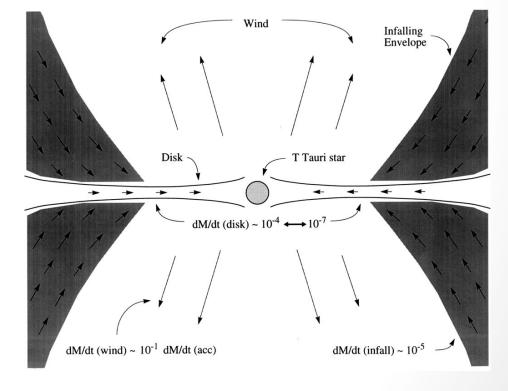

 $3\alpha c_s^3$

 $\alpha =$

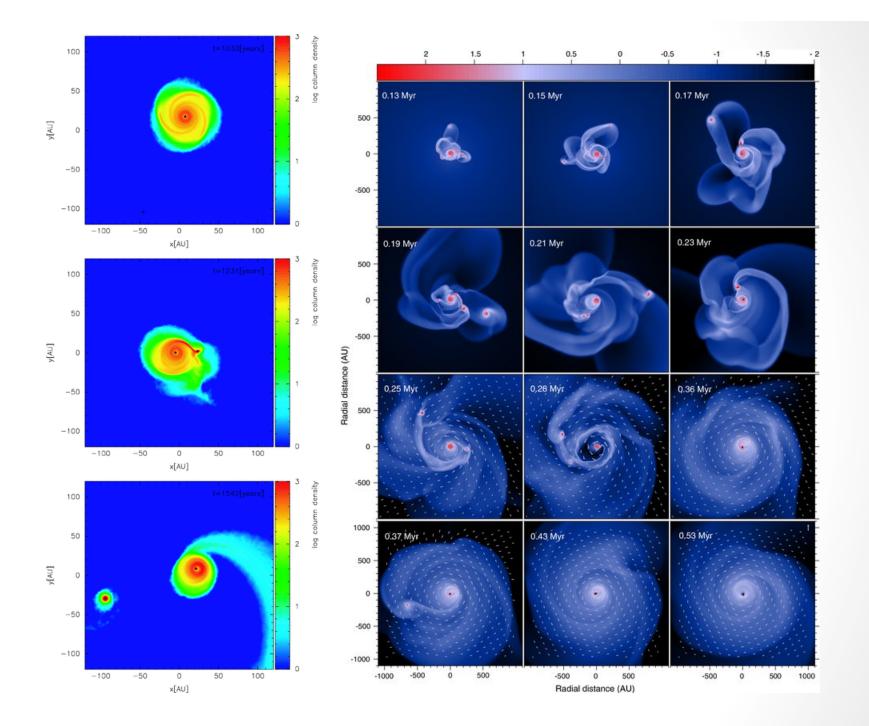
 $\dot{M} \gtrsim$

- Two caveats:
 - Background viscosity: if background viscosity dominates, then the disk might be gravitationally stable;
 - Stellar irradiation: external heating source keeps the disk gravitationally stable

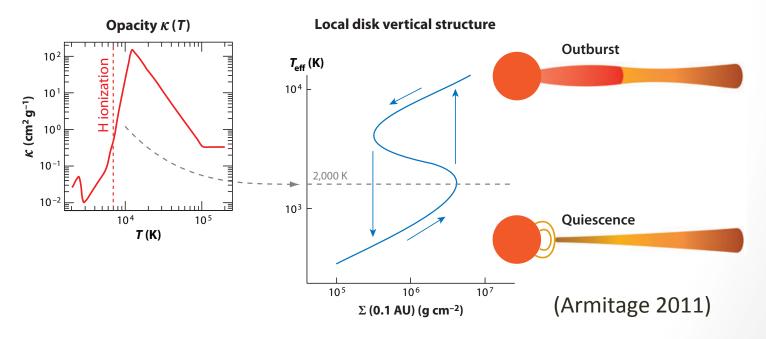

- Background viscosity:
 - α_v = 0.003
- Strong stellar irradiation :
 - T₀ = 35K due to irradiation, spatially constant
- Opacity:
 - $\kappa = \kappa_0 T^2$



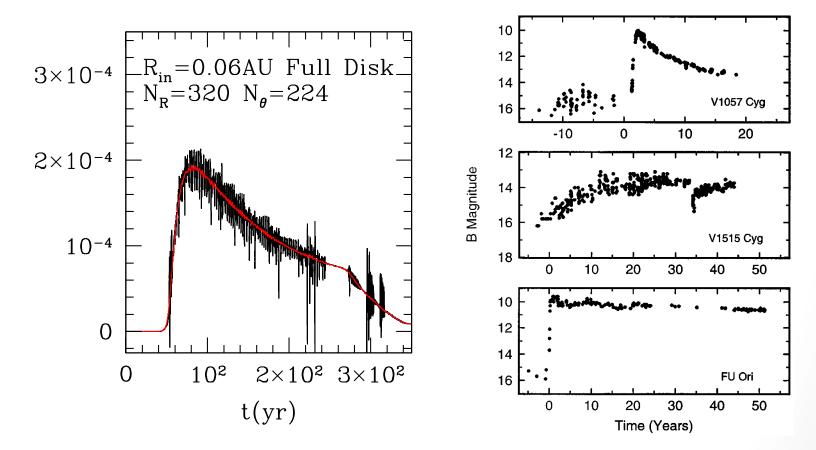
3. Disk Evolution & FU Orionis Bursts


Phenomena

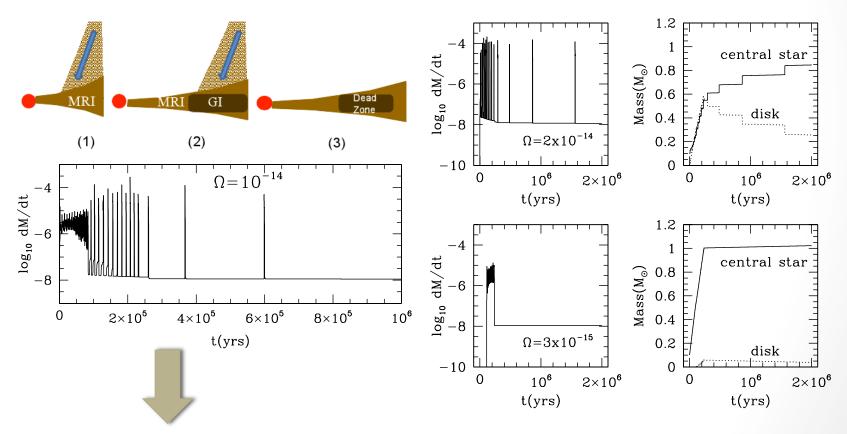
- Luminosity problem of protostars(Kenyon et al. 1990): Typical bolometric luminosity << infall rate
- FU Orions outbursts(Hartmann & Kenyon 1996)



- Rapid matter addition to the disk
 - Perturbations from companions.(Bonnell & Bastien 1992; Forgan & Rice 2010)
 - Inspiral of clumps formed in outer self-gravitating region of the disk.(Vorobyov & Basu 2005, 2010)


- Thermal Insabilities (TI, Bell & Lin 1994):
 - Opacity of the disk changes rapidly at T ~ 10⁴ K due to ionization of hydrogen.
 - Problem: only works if angular momentum is extremely inefficient($\alpha^{-10^{-3}} 10^{-4}$).

- Association with MRI:
 - Dead zone at r ~ 1 AU, where angular momentum transport is low in the midplane, and where materials pile up and heat up;
- MRI triggered at T_M ~ 1200K (Zhu et al. 2009), rapid accretion 5.0 α (b) 2.0 1.5 4.3 $\alpha = 0.1$ α= 1.0 4 0.025 0.5 3.6 Z(AU) $log_{10}T(K)$ (c)(d) 2.9 0.15 0.15 Lasts 100yr at $2x10^{-4} M_{sun}/yr$ 0.10 0.10 2.2 0.05 0.05 1.5 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 (Zhu et al. 2009) R(AU)


2D simulation (Zhu et al. 2009):

Observed FU Ori (Hartmann & Kenyon 1996):

Long-term evolution

• Layered accretion with infall (Zhu, Hartmann & Gammie, 2010):

Solves the luminosity problem!

Conclusions

- Gravitational instability could be common and so important to protoplanetary disks
- Locality of gravitational instability is plausible in low-mass disks
- Gravitational instability results in two outcomes depending on the cooling time:
 - Gravitoturbulence (steady angular momentum transport)
 - Fragmentation
- Irradiation and background viscosity constrain regimes where GI works:
 - Irradiation stabilizes disks against fragmentation at low mass accretion rates
 - Background viscosity could dominate angular momentum transport and stabilize the disk
- Heating up due to GI could trigger MRI and produce bursts of accretion, which explains FU Ori outbursts.

References

- Armitage P.J., 2011, ARAA, 49, 195
- Forgan D., Rice, K., 2010 MNRAS, 402, 1349
- Gammie, C., 2001, APJ, 553, 174
- Hartmann, L., Kenyon, S., 1996, ARAA, 34, 207
- Lodato, G., Rice, W.K.M., 2004, MNRAS, 351, 630
- Lodato, G., Rice, W.K.M., 2005, MNRAS, 358, 1489
- Rice, W. K. M., Armitage, P. J., Bate, M. R., and Bonnell, I. A., 2003, MNRAS, 339, 1025
- Rafikov, R., 2009, APJ, 704, 281
- Vorobyov, E.I., Basu, S., 2007, MNRAS, 381, 1009
- Vorobyov, E.I., Basu, S., 2010, APJ, 719, 1896
- Zhu, Z., Hartmann, L., Gammie, C., McKinney, J.C., 2009, APJ, 701, 620
- Zhu, Z., Hartmann, L, Gammie, C., Book, L., Simon, J., Engelhard, E., 2010, APJ, 713, 1134
- Zhu, Z., Hartmann, L, Gammie, C., 2010, APJ, 713, 1143